Are energy market integrations a green light for FDI?

MT. Costa-Campi^{*a,b*} J. Paniagua¹*c*</sup> E. Trujillo-Baute^{*b,d*}

^aUniversity of Barcelona and IEB

^bChair of Sustainable Energy

^cCatholic University of Valencia

^dUniversity of Warwick

XVIII Applied Economics Meeting, Alicante, June 5, 2015

¹ jordi.paniagua@ucv.es		• • • •	< <i>₫</i> →	く言う く言う	æ	୬୯୯
Costa, Paniagua, Trujillo (UB, UCV, UW	Energy markets and FDI			EEA 2015		1 / 21

イロト イヨト イヨト イヨト

The new domestic market of reference will be MIBEL

2 / 21

Costa, Paniagua, Trujillo (UB, UCV, UW

The new domestic market will be MIBEL

market of reference will be MIBEL

2 / 21

Outline

Motivation

- MIBEL prospects
- Contributions
- Stylized facts
- Background
- The model
 - Domestic production
 - Foreign Production
 - Energy Market Integration

◆□▶ ◆□▶ ◆□▶ ◆□▶

2

- 3 Empirics
 - FDI Gravity equation
 - Results
 - EMI
 - Within EMI

In this paper

- we develop a stylized theoretical model to explain the effect of energy market integration on FDI
 - Includes energy as a production input in a Melitz framework
- 2 we provide empirical evidence of the MIBEL's effect
 - on inward FDI in Spain & Portugal
 - within Iberian Peninsula

・ 同 ト ・ ヨ ト ・ ヨ ト

In this paper

- we develop a stylized theoretical model to explain the effect of energy market integration on FDI
 - Includes energy as a production input in a Melitz framework
- 2 we provide empirical evidence of the MIBEL's effect
 - on inward FDI in Spain & Portugal
 - within Iberian Peninsula

Electrical single market on the spot

Stylized facts

MIBEL's Price evolution

Stylized facts

Costa, Paniagua, Trujillo (UB, UCV, UW

Energy markets and FDI

EEA 2015 7 / 21

Previous work

- The expected results of a single energy market are a harmonisation of energy prices and higher quality of service (Correlje and Van der Linde, 2006; Glachant, 2009).
 - Price convergence (Zachmann, 2008), prices dependence (Lindstrom and Regland, 2012), integration (Bunn and Gianfreda, 2010), and cross-border integration (Balaguer, 2011).
- EMIs, influence various economic aspects, like insurance (Mahlberg and Url, 2003)
- FDI-energy link is well established (Correlje and Van der Linde, 2006; Herrerias et al. 2013, 2015; Pao and Tsai, 2011)

< □ > < □ > < □ > < □ > < □ > < □ >

Previous work

- The expected results of a single energy market are a harmonisation of energy prices and higher quality of service (Correlje and Van der Linde, 2006; Glachant, 2009).
 - Price convergence (Zachmann, 2008), prices dependence (Lindstrom and Regland, 2012), integration (Bunn and Gianfreda, 2010), and cross-border integration (Balaguer, 2011).
- EMIs, influence various economic aspects, like insurance (Mahlberg and Url, 2003)
- FDI-energy link is well established (Correlje and Van der Linde, 2006; Herrerias et al. 2013, 2015; Pao and Tsai, 2011)

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Previous work

- The expected results of a single energy market are a harmonisation of energy prices and higher quality of service (Correlje and Van der Linde, 2006; Glachant, 2009).
 - Price convergence (Zachmann, 2008), prices dependence (Lindstrom and Regland, 2012), integration (Bunn and Gianfreda, 2010), and cross-border integration (Balaguer, 2011).
- EMIs, influence various economic aspects, like insurance (Mahlberg and Url, 2003)
- FDI-energy link is well established (Correlje and Van der Linde, 2006; Herrerias et al. 2013, 2015; Pao and Tsai, 2011)

・ 戸 ト ・ ヨ ト ・ ヨ ト

Take Away: EMI effect on FDI

- Ilectricity price dispersion reduction (De Jonghe et al., 2008)
 - Price stability & institutional credibility may have an effect on FDI (Aizenman et al., 2006).
- Electricity price alignment (Correlje and Van der Linde, 2006; Glachant, 2009).
 - Effect within the integrated market area

A (10) A (10) A (10)

Take Away: EMI effect on FDI

- Ilectricity price dispersion reduction (De Jonghe et al., 2008)
 - Price stability & institutional credibility may have an effect on FDI (Aizenman et al., 2006).
- Electricity price alignment (Correlje and Van der Linde, 2006; Glachant, 2009).
 - Effect within the integrated market area

• The production is a standard Nerlove's Cobb-Douglas function

- Greenfield firms choose between domestic and foreign production in a Melitz framework
- An energy market integration introduces a cost markdown after the integration.
 - increasing FDI

- The production is a standard Nerlove's Cobb-Douglas function
- Greenfield firms choose between domestic and foreign production in a Melitz framework
- An energy market integration introduces a cost markdown after the integration.
 - increasing FDI

A (10) > A (10) > A

- The production is a standard Nerlove's Cobb-Douglas function
- Greenfield firms choose between domestic and foreign production in a Melitz framework
- An energy market integration introduces a cost markdown after the integration.

• increasing FDI

- The production is a standard Nerlove's Cobb-Douglas function
- Greenfield firms choose between domestic and foreign production in a Melitz framework
- An energy market integration introduces a cost markdown after the integration.
 - increasing FDI

At home

• The firmz uses three inputs capital K, energy E, and labor L in the production of the goods x_{iz}:

$$x_{iz} = \theta_z(K)^a(E)^b(L)^c$$

• The problem of the firm at home:

$$\max_{K,E,L} \pi_{iz}^{Dom} = \max\{p_i \theta_z(K)^a(E)^b(L)^c - r_i K - e_i E - w_i L - f_i\}$$

• In equilibrium the market clears so that L = 1 and the firms determines the optimal level of capital investment and energy consumption

Abroad

• Let the firm consider a building a similar plant in country *j*. The firm faces the following problem:

$$\max_{K,E,L} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_z(K)^a(E)^b(L)^c - r_jK - e_jE - w_jL - f_j\}.$$
 (1)

- As in Melitz (2003), the firms setups a foreign production plant if $\pi_{iiz}^{FDI} > \pi_{iz}^{Dom}$.
- Equation (1) has the first order conditions of:

$$p_j \tau_{ij} \theta_z a K^{a-1} E^b(L)^c = r_j \tag{2a}$$

$$p_j \tau_{ij} \theta_z a K^a E^{b-1} (L)^c = e_j.$$
^(2b)

(日) (周) (日) (日)

Abroad

• Let the firm consider a building a similar plant in country *j*. The firm faces the following problem:

$$\max_{K,E,L} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_z(K)^a(E)^b(L)^c - r_jK - e_jE - w_jL - f_j\}.$$
 (1)

- As in Melitz (2003), the firms setups a foreign production plant if $\pi^{FDI}_{ijz} > \pi^{Dom}_{iz}$.
- Equation (1) has the first order conditions of:

$$p_j \tau_{ij} \theta_z a K^{a-1} E^b(L)^c = r_j \tag{2a}$$

$$p_j \tau_{ij} \theta_z a K^a E^{b-1} (L)^c = e_j.$$
^(2b)

Abroad

• Let the firm consider a building a similar plant in country *j*. The firm faces the following problem:

$$\max_{K,E,L} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_z(K)^a(E)^b(L)^c - r_jK - e_jE - w_jL - f_j\}.$$
 (1)

- As in Melitz (2003), the firms setups a foreign production plant if $\pi_{ijz}^{FDI} > \pi_{iz}^{Dom}$.
- Equation (1) has the first order conditions of:

$$p_j \tau_{ij} \theta_z a K^{a-1} E^b(L)^c = r_j \tag{2a}$$

$$p_j \tau_{ij} \theta_z a K^a E^{b-1}(L)^c = e_j.$$
^(2b)

FDI & Energy

• After the labor market clears, the optimal equilibrium for capital and energy yields,

$$\begin{aligned}
\mathcal{K}_{ijz}^{*} &= \left(\frac{p_{j}\tau_{ij}\theta_{z}a\sigma^{b}}{\left(r_{j}\right)^{1-b}\left(e_{j}\right)^{b}}\right)^{\frac{1}{1-\mu}} \tag{3a} \\
\mathcal{E}_{ijz}^{*} &= \left(\frac{p_{j}\tau_{ij}\theta_{z}b\sigma^{-a}}{\left(r_{j}\right)^{a}\left(e_{j}\right)^{1-a}}\right)^{\frac{1}{1-\mu}} \tag{3b}
\end{aligned}$$

<**A**□ ► < ∃ ► <

An energy market integration affects bilateral investment flows between the country members. Foreign direct investment increases in countries which converge to a lower energy cost after the integration.

Proof.

The effect is governed by energy costs and a stability mechanism.

Costa, Paniagua, Trujillo (UB, UCV, UW

Energy markets and FD

EEA 2015 14 / 21

An energy market integration affects bilateral investment flows between the country members. Foreign direct investment increases in countries which converge to a lower energy cost after the integration.

Proof.

Let the EMI energy costs at country j be a strictly decreasing concave function of time e(t).

The effect is governed by energy costs and a stability mechanism.

An energy market integration affects bilateral investment flows between the country members. Foreign direct investment increases in countries which converge to a lower energy cost after the integration.

Proof.

Let the EMI energy costs at country j be a strictly decreasing concave function of time e(t). The change in foreign capital invested (1) by our firm z during the converge is:

$$\frac{\partial \mathcal{K}_{ijz}^*}{\partial t} = \frac{-b}{1-\mu} e'(t) \left(\frac{p_j \tau_{ij} \theta_z a \sigma^b}{(r_j)^{1-b} (e(t))^{b+1+\mu}} \right)^{\frac{1}{1-\mu}}$$

• The effect is governed by energy costs and a stability mechanism.

Costa, Paniagua, Trujillo (UB, UCV, UW

An energy market integration affects bilateral investment flows between the country members. Foreign direct investment increases in countries which converge to a lower energy cost after the integration.

Proof.

Let the EMI energy costs at country j be a strictly decreasing concave function of time e(t). The change in foreign capital invested (1) by our firm z during the converge is:

$$\frac{\partial \mathcal{K}_{ijz}^*}{\partial t} = \frac{-b}{1-\mu} e'(t) \left(\frac{p_j \tau_{ij} \theta_z a \sigma^b}{(r_j)^{1-b} (e(t))^{b+1+\mu}} \right)^{\frac{1}{1-\mu}}$$

 $\partial \kappa^*_{ijz}/\partial t>$ 0, since e'(t)< 0 for a strictly decreasing concave function.

• The effect is governed by energy costs and a stability mechanism.

An energy market integration affects bilateral investment flows between the country members. Foreign direct investment increases in countries which converge to a lower energy cost after the integration.

Proof.

Let the EMI energy costs at country j be a strictly decreasing concave function of time e(t). The change in foreign capital invested (1) by our firm z during the converge is:

$$\frac{\partial \mathcal{K}_{ijz}^*}{\partial t} = \frac{-b}{1-\mu} e'(t) \left(\frac{p_j \tau_{ij} \theta_z a \sigma^b}{(r_j)^{1-b} (e(t))^{b+1+\mu}} \right)^{\frac{1}{1-\mu}}$$

 $\partial \kappa^*_{ijz}/\partial t>$ 0, since e'(t)< 0 for a strictly decreasing concave function.

The effect is governed by energy costs and a stability mechanism.
 Costa, Paniagua, Trujillo (UB, UCV, UW
 Energy markets and FDI
 EEA 2015
 14 / 21

An energy market integration affects bilateral investment flows between the country members. Foreign direct investment increases in countries which converge to a lower energy cost after the integration.

Proof.

Let the EMI energy costs at country j be a strictly decreasing concave function of time e(t). The change in foreign capital invested (1) by our firm z during the converge is:

$$\frac{\partial K_{ijz}^*}{\partial t} = \frac{-b}{1-\mu} e'(t) \left(\frac{p_j \tau_{ij} \theta_z a \sigma^b}{(r_j)^{1-b} (e(t))^{b+1+\mu}} \right)^{\frac{1}{1-\mu}}$$

 $\partial \kappa^*_{ijz}/\partial t>$ 0, since e'(t)< 0 for a strictly decreasing concave function.

The effect is governed by energy costs and a stability mechanism.

 Costa, Paniagua, Trujillo (UB, UCV, UW Energy markets and FDI EEA 2015 14 / 21

An energy market integration affects bilateral investment flows between the country members. Foreign direct investment increases in countries which converge to a lower energy cost after the integration.

Proof.

Let the EMI energy costs at country j be a strictly decreasing concave function of time e(t). The change in foreign capital invested (1) by our firm z during the converge is:

$$\frac{\partial K_{ijz}^*}{\partial t} = \frac{-b}{1-\mu} e'(t) \left(\frac{p_j \tau_{ij} \theta_z a \sigma^b}{(r_j)^{1-b} (e(t))^{b+1+\mu}} \right)^{\frac{1}{1-\mu}}$$

 $\partial \kappa^*_{ijz}/\partial t>$ 0, since e'(t)< 0 for a strictly decreasing concave function.

The effect is governed by energy costs and a stability mechanism.
 Costa, Paniagua, Trujillo (UB, UCV, UW Energy markets and FDI EEA 2015 14 / 21

Long run

The problem of exporting and FDI is,

$$\max_{K,E,L} \pi_{ijz}^{EXP} = \max\{p_{ij}\theta_z(K)^a(E)^b(L)^c - r_iK - e_{emi}E - w_iL - f_i\}$$
(4a)
$$\max_{K,E,L} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_z(K)^a(E)^b(L)^c - r_iK - e_{emi}E - w_iL - f_i\}$$
(4b)

$$\max_{K,E,L} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_z(K)^a(E)^b(L)^c - r_jK - e_{emi}E - w_jL - f_j\}$$
(4b)

• Applying the envelope theorem to equations (4a) and (4b), the firm decides to invest in country *j* if and only if

$$K/L < (w_i - w_j)/(r_j - r_i).$$

• Energy costs are left out of the equation and reduces the Melitz threshold

(日) (周) (日) (日)

Long run

The problem of exporting and FDI is,

$$\max_{K,E,L} \pi_{ijz}^{EXP} = \max\{p_{ij}\theta_{z}(K)^{a}(E)^{b}(L)^{c} - r_{i}K - e_{emi}E - w_{i}L - f_{i}\}$$
(4a)
$$\max_{K,E,L} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_{z}(K)^{a}(E)^{b}(L)^{c} - r_{i}K - e_{emi}E - w_{i}L - f_{i}\}$$
(4b)

$$\max_{\substack{K,E,L}} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_z(K)^a(E)^p(L)^c - r_jK - e_{emi}E - w_jL - f_j\} \quad (4b)$$

• Applying the envelope theorem to equations (4a) and (4b), the firm decides to invest in country *j* if and only if

$$K/L < (w_i - w_j)/(r_j - r_i).$$

• Energy costs are left out of the equation and reduces the Melitz threshold

< □ > < □ > < □ > < □ > < □ > < □ >

Long run

The problem of exporting and FDI is,

$$\max_{K,E,L} \pi_{ijz}^{EXP} = \max\{p_{ij}\theta_{z}(K)^{a}(E)^{b}(L)^{c} - r_{i}K - e_{emi}E - w_{i}L - f_{i}\}$$
(4a)
$$\max_{K,E,L} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_{z}(K)^{a}(E)^{b}(L)^{c} - r_{i}K - e_{emi}E - w_{i}L - f_{i}\}$$
(4b)

$$\max_{K,E,L} \pi_{ijz}^{FDI} = \max\{p_{ij}\theta_z(K)^a(E)^b(L)^c - r_jK - e_{emi}E - w_jL - f_j\}$$
(4b)

• Applying the envelope theorem to equations (4a) and (4b), the firm decides to invest in country *j* if and only if

$$K/L < (w_i - w_j)/(r_j - r_i).$$

• Energy costs are left out of the equation and reduces the Melitz threshold

Costa, Paniagua, Trujillo (UB, UCV, UW)

The effect of EMI on the margins of FDI

- In equilibrium (L = 1), the capital threshold to invest abroad is governed by the differential wage to interest ratio in both countries.
- In the long run, the EMI removes the energy border between countries (extensive margin)
- After the integration is reached, the capital invested (intensive margin) is

$$K_{ijk}^{*} = \begin{cases} \rho \left(\frac{\rho_{j} \tau_{ij} \theta_{z} a \sigma^{b}}{\left(r_{j}\right)^{1-b} \left(e_{j}\right)^{b}} \right)^{\frac{1}{1-\mu}} \\ 0 \end{cases}$$

if $K_{ijk}^* < (w_i - w_j)/(r_j - r_i)$

< □ > < □ > < □ > < □ > < □ > < □ >

where $ho=(e_{j0}/e_{emi})^{rac{b}{1-\mu}}>1$ is the energy cost markdown after the integration.

The effect of EMI on the margins of FDI

- In equilibrium (L = 1), the capital threshold to invest abroad is governed by the differential wage to interest ratio in both countries.
- In the long run, the EMI removes the energy border between countries (extensive margin)
- After the integration is reached, the capital invested (intensive margin) is

$$K_{ijk}^{*} = \begin{cases} \rho \left(\frac{\rho_{j} \tau_{ij} \theta_{z} a \sigma^{b}}{\left(r_{j} \right)^{1-b} \left(e_{j} \right)^{b}} \right)^{\frac{1}{1-\mu}} \\ 0 \end{cases}$$

f $K_{ijk}^* < (w_i - w_j)/(r_j - r_i)$

イロト イポト イヨト イヨト

otherwise.

where $ho=(e_{j0}/e_{emi})^{rac{b}{1-\mu}}>1$ is the energy cost markdown after the integration.

The effect of EMI on the margins of FDI

- In equilibrium (L = 1), the capital threshold to invest abroad is governed by the differential wage to interest ratio in both countries.
- In the long run, the EMI removes the energy border between countries (extensive margin)
- After the integration is reached, the capital invested (intensive margin) is

$$\mathcal{K}_{ijk}^{*} = \begin{cases} \rho \left(\frac{p_{j}\tau_{ij}\theta_{z}a\sigma^{b}}{\left(r_{j}\right)^{1-b}\left(e_{j}\right)^{b}} \right)^{\frac{1}{1-\mu}} & \text{if } \mathcal{K}_{ijk}^{*} < (w_{i} - w_{j})/(r_{j} - r_{i}) \\ 0 & \text{otherwise.} \end{cases}$$

where $ho = (e_{j0}/e_{emi})^{rac{b}{1-\mu}} > 1$ is the energy cost markdown after the integration.

$$FDI_{ijt} = exp \begin{pmatrix} \beta_1 \ln (Y_{it} * Y_{jt}) + \beta_2 \ln (D_{ij}) + \beta_3 border_{ij} + \beta_4 colony_{ij} + \beta_5 lang_{ij} + \beta_6 smctry_{ij} + \beta_7 rel_{ij} + \beta_8 locked_{ij} + \beta_{10} BIT_{ijt} + \beta_{11} FTA_{ijt} + \beta_{12} crisis_{ijt} + \rho_1 EMI_{ijt} + \rho_2 EMIROW_{ijt} + \rho_3 EMIFRA_{ijt} + \lambda_{it} + \lambda_{jt} \end{pmatrix} + \varepsilon_{ijt}$$

• Aggregate bilateral FDI flows

- Extensive margin
- PPML (Silva & Tenreyro 2006)
- New Greenfield investments (2003-2012):

(日) (周) (日) (日)

$$FDI_{ijt} = exp \begin{pmatrix} \beta_1 \ln (Y_{it} * Y_{jt}) + \beta_2 \ln (D_{ij}) + \beta_3 border_{ij} + \beta_4 colony_{ij} + \beta_5 lang_{ij} + \beta_6 smctry_{ij} + \beta_7 rel_{ij} + \beta_8 locked_{ij} + \beta_{10} BIT_{ijt} + \beta_{11} FTA_{ijt} + \beta_{12} crisis_{ijt} + \rho_1 EMI_{ijt} + \rho_2 EMIROW_{ijt} + \rho_3 EMIFRA_{ijt} + \lambda_{it} + \lambda_{jt} \end{pmatrix} + \varepsilon_{ijt}$$

- Aggregate bilateral FDI flows
- Extensive margin
- PPML (Silva & Tenreyro 2006)
- New Greenfield investments (2003-2012):

・ 伺 ト ・ ヨ ト ・ ヨ ト

$$FDI_{ijt} = exp \begin{pmatrix} \beta_1 \ln (Y_{it} * Y_{jt}) + \beta_2 \ln (D_{ij}) + \beta_3 border_{ij} + \beta_4 colony_{ij} + \beta_5 lang_{ij} + \beta_6 smctry_{ij} + \beta_7 rel_{ij} + \beta_8 locked_{ij} + \beta_{10} BIT_{ijt} + \beta_{11} FTA_{ijt} + \beta_{12} crisis_{ijt} + \rho_1 EMI_{ijt} + \rho_2 EMIROW_{ijt} + \rho_3 EMIFRA_{ijt} + \lambda_{it} + \lambda_{jt} \end{pmatrix} + \varepsilon_{ijt}$$

- Aggregate bilateral FDI flows
- Extensive margin
- PPML (Silva & Tenreyro 2006)
- New Greenfield investments (2003-2012):

э

A (10) > A (10) > A

$$FDI_{ijt} = exp \begin{pmatrix} \beta_1 \ln (Y_{it} * Y_{jt}) + \beta_2 \ln (D_{ij}) + \beta_3 border_{ij} + \beta_4 colony_{ij} + \beta_5 lang_{ij} + \beta_6 smctry_{ij} + \beta_7 rel_{ij} + \beta_8 locked_{ij} + \beta_{10} BIT_{ijt} + \beta_{11} FTA_{ijt} + \beta_{12} crisis_{ijt} + \rho_1 EMI_{ijt} + \rho_2 EMIROW_{ijt} + \rho_3 EMIFRA_{ijt} + \lambda_{it} + \lambda_{jt} \end{pmatrix} + \varepsilon_{ijt}$$

- Aggregate bilateral FDI flows
- Extensive margin
- PPML (Silva & Tenreyro 2006)
- New Greenfield investments (2003-2012):

-

) () ()

Results

	FDI		Extensive Margin			
	(1)	(2)	(3)	(4)	(5)	(6)
$n(Y_{it} \cdot Y_{jt})$	0.399*** (0.147)	-0.260 (0.248)		0.232*** (0.0621)	-0.372 (0.305)	
$n(D_{ij})$	-0.423***	•0.340***	• 0.257***	0.251***	-0.368***	·0.304***
	(0.0407)	(0.0560)	(0.0498)	(0.0222)	(0.0343)	(0.0401)
oorder _{ij}	0.0949	0.00509	0.217*	0.0558	-0.172**	0.0224
	(0.0909)	(0.132)	(0.123)	(0.0520)	(0.0709)	(0.0722)
ang _{ij}	0.556***	0.5 21 ***	0.495***	0.423***	0.643***	0.623***
	(0.0909)	(0.1 09)	(0.0890)	(0.0593)	(0.0817)	(0.0701)
col _{ij}	0.171**	0.490***	0.423***	0.172***	0.509***	0.377***
	(0.0763)	(0.110)	(0.0838)	(0.0446)	(0.0593)	(0.0580)
mctry _{ij}	0.173	0.409*	0.177	0.155	0.595***	0.181
	(0.169)	(0.245)	(0.210)	(0.0948)	(0.145)	(0.114)
el _{ij}	0.500***	0.833***	0.122	0.227***	0.401***	-0.120
	(0.124)	(0.230)	(0.195)	(0.0606)	(0.130)	(0.154)
ocked _{ij}	0.00161 (0.0584)	-0.119 (0.0918)	0.182** (0.0890)	0.00826 (0.0306)	0.0693 (0.0560)	-0.108* (0.0614)
BIT ijt	-0.165***	-0.103	-0.116	0.103***	-0.00809	-0.0202
	(0.0514)	(0.0742)	(0.0728)	(0.0280)	(0.0444)	(0.0558)
TA _{ijt}	-0.00590	0.230**	0.162*	0.00896	0.250***	0.239***
	(0.0767)	(0.108)	(0.0913)	(0.0419)	(0.0697)	(0.0719)
risis _{ijt}	0.0274 (0.0492)	0.0212 (0.0571)	· 3.404*** (0.876)	0.0194 (0.0190)	-0.0780*** (0.0249)	-4.026*** (0.467)
EMIROW _{ijt}	0.148 (0.176)	-0.287 (0.255)	0.943 (0.947)	-0.0148 (0.0773)	0.165 (0.149)	0.311 (0.524)
EMIFRA _{ijt}	0.737	0.402	-0.241	0.598	0.908***	1.346**
	(0.579)	(0.308)	(0.942)	(0.496)	(0.186)	(0.530)
EMI _{ijt}	0.495**	1.318***	1.318***	0.495*	1.431***	1.373***
	(0.245)	(0.311)	(0.295)	(0.258)	(0.305)	(0.382)
Dbservations	14176	38836	38253	14176	38836	38253
2 ²	0.288	0.443	0.514	0.550	0.781	0.864

Costa, Paniagua, Trujillo (UB, UCV, UW

Energy markets and FD

EEA 2015 18 / 21

∃ 990

Results

	FDI			Extensive Margin			
	(1)	(2)	(3)	(4)	(5)	(6)	
EMIROW _{ijt}	0.148 (0.176)	-0.287 (0.255)	-0.943 (0.947)	-0.0148 (0.0773)	-0.165 (0.149)	0.311 (0.524)	
<i>EMIFRA_{ijt}</i>	0.737 (0.579)	0.402 (0.308)	-0.241 (0.942)	0.598 (0.496)	0.908*** (0.186)	1.346** (0.530)	
EMI _{ijt}	0.495** (0.245)	1.318*** (0.311)	1.318*** (0.295)	0.495* (0.258)	1.431*** (0.305)	1.373*** (0.382)	
Observations	14176	38836	38253	14176	38836	38253	
R^2	0.288	0.443	0.514	0.550	0.781	0.864	
Method	OLS	PPML	PPML	OLS	PPML	PPML	
Year FE	Yes	Yes		Yes	Yes		
Country FE	Yes	Yes		Yes	Yes		
Country*Year FE			Yes			Yes	

Robust standard errors in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01

Ξ.

イロン 不聞と 不同と 不同と

Results

	FI	DI	Extensiv	Extensive Margin		
	(1)	(2)	(3)	(4)		
<i>EMIROW_{ijt}</i>	-0.293	-0.223	-0.167	0.809		
	(0.254)	(0.924)	(0.148)	(0.515)		
<i>EMIFRA_{ijt}</i>	0.402	-1.000	0.905***	1.931***		
	(0.303)	(0.910)	(0.182)	(0.533)		
$POR \rightarrow ESP$	1.154***	0.908**	1.014**	0.861**		
	(0.340)	(0.357)	(0.402)	(0.426)		
$ESP \rightarrow POR$	1.358***	1.716***	1.722***	1.928***		
	(0.469)	(0.276)	(0.227)	(0.204)		
Observations R ² Year FE Country FE	38253 0.514 Yes Yes	36796 0.481	38253 0.864 Yes Yes	36796 0.890		
Country*Year FE		Yes		Yes		

Robust standard errors in parentheses. PPML estimation.

Only variables of interest are reported Costa, Paniagua, Trujillo (UB, UCV, UW Energy markets and FDI 20 / 21

Ξ.

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

Policy

• Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.

• Future EMI

Lessons learned

- We develop a model to explain the mechanisms by which EMI relate to FDI.
 - EMI alleviate the energetic costs in the foreign financial market, thus encouraging FDI through both margins
 - We test the model's predictions by means of the gravity equation and the EMI created by Portugal and Spain in 2007.
- Energy markets design and functioning have a direct effect on cost-driven investment choices by firms.
 - the policy implications relate to importance of considering broader effects of energy markets design.

- Reformulate cross-border priority energetic investment plans to include the positive effects on FDI on the cost-benefits analysis.
- Future EMI