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Abstract

We evaluate whether expectations of professional forecasters are consistent with

the properties of Bayesian learning that claims that the expected uncertainty

should decline with the forecast horizon and the weight used in updating the prior

expectation should be bounded between zero and one. We construct a measure of

uncertainty from the density forecasts of the Survey of Professional Forecasters and

use it to measure the prior weight as the ratio of the precision in two consecutive

quarters. Empirically, we find that these predictions are often violated, in particular

when forecasters face a data release which is extreme relative to their prior density

forecasts, and when large negative revisions occur, in particular for GDP. In addition,

we find that the precision of the prior distribution is positively related to the prior

weight for some forecasters, which suggests that they under-predict uncertainty in

the first quarter of the year, and they later revise it upward in the second or third

quarter. We also find that large surprises are related to lower absolute forecast error

for approximately a quarter of the forecasters in our sample.
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1 Introduction

The analysis of survey expectations shows that consumers and professional forecasters have diverg-

ing views about the future evolution of economic variables, which calls for a better understanding

of the mechanism that agents use to form and revise their expectations (Mankiw et al., 2004, and

Dovern et al., 2012). Mankiw and Reis (2002) propose a theory of sticky information in which

agents update their forecasts only occasionally due to the cost involved in processing the newly

released information. This produces dispersion in forecasts since at any point in time there is

co-existence of agents that incorporate the most recent macroeconomic information while others

persist using outdated forecasts. An alternative argument for the existence of heterogeneous beliefs

among agents is that they update their forecasts at every point in time but are limited in their abil-

ity to process public information (Woodford, 2002, and Sims, 2003). Coibion and Gorodnichenko

(2010) and Andrade and Le Bihan (2013) provide empirical evidence on the relevance of models

with information rigidities based on survey expectations. Another argument for the existence of

heterogeneous expectations is that agents use different models to form their expectations (Kandel

and Pearson, 1995, and Brock and Hommes, 1997, 1998). Agents might produce different forecasts

because they hold diverging prior views but also because, despite common priors, they interpret

differently the relevance of the newly released information. There are several recent papers that

try to disentangle these effects based on survey expectations. Lahiri and Sheng (2008) found that

belief heterogeneity is largely due to differences in priors at long forecast horizons while it is driven

by differential interpretation of news at short horizons. Using the same survey data but a different

modeling strategy, Patton and Timmermann (2010) confirm that differences in priors represent

the most important source of heterogeneity, although their results point to a minor role for the

diversity in the interpretation of the signal. On the other hand, Manzan (2011) abstracts from the

role of prior expectations to focus on the interpretation of news and finds evidence that forecast-

ers are significantly heterogeneous in the way they update their forecasts. Overall, these papers

suggest that forecasters are different in the way they form their prior expectations and in the way

that they interpret the signal, although it is empirically difficult to disentangle the different effects

without imposing any modeling assumption.

The aim of this paper is to investigate empirically what can be learned about the way in which

agents form expectations and their heterogeneity based on individual density forecasts rather than

point forecasts. The source of density forecasts is the Survey of Professional Forecasters (SPF)

that collects expectations about the distribution of output growth and inflation by professional
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forecasters, in addition to point forecasts that have been used in some of the studies discussed

earlier. The SPF requires forecasters to provide density forecasts from the first to the forth quarter

of a year with the objective to predict the outcome for that year. The target is thus fixed and it

is possible to observe how individuals change their density forecasts in response to the incoming

macroeconomic news that is released in a certain quarter. We conduct the analysis assuming

that agents use a simple model of Bayesian learning to update their prior density forecasts. In

particular, the hypothesis of normality of the prior and signal distributions produces a normal

posterior distribution with mean equal to the weighted average of the prior mean and the signal

contained in the new data releases, while the posterior precision (inverse of the variance) is given

by the sum of the prior and the signal precisions. The model also specifies the weight used to

combine the prior mean and the signal which is obtained as the ratio of the prior and posterior

precisions. Hence, the Bayesian learning model is capable to generate dispersion in beliefs through

differences in prior expectations, and also as a result of heterogeneity in the weights used to update

the prior. In particular, the latter channel occurs when forecasters use different models to interpret

the incoming news, which leads to heterogeneous beliefs about its relevance to forecast the outcome.

The objective is thus to investigate the contribution of differential interpretation to explain the

evidence of heterogeneous beliefs without relying on restrictive identification assumptions.

Our empirical strategy consists of using the SPF density forecasts to construct an observable

measure of the prior weight for each forecaster at each point in time. This is accomplished by

extracting the variance of the densities which we then use to calculate the weight as the ratio

of the prior and posterior precisions. The measured uncertainty and the weights can then be

used to evaluate if the forecasts produced by professional forecasters are consistent with Bayesian

learning and to what extent they are different across forecasters. We first evaluate empirically two

testable implications of the learning model for the precision and weight measures: 1) the precision

of the posterior distribution should not be smaller than the prior precision, and 2) the prior

weight should be less or equal to 1 (and, of course, larger than 0). The empirical evidence shows

frequent violations of these predictions. Forecasters often provide density forecasts for output

growth and inflation that are more uncertain with regards to the forecasts that they produced

in the previous quarter (for the same target). This is inconsistent with Bayesian learning since

the additional macroeconomic data released in the current quarter should reduce their expected

uncertainty if they consider the data informative or at least not increase when they regard the

signal as uninformative. In those circumstances in which the posterior precision is smaller than

the prior precision we find that the weight is larger than 1, which contradicts the second prediction
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of Bayesian learning. In addition, we find that the non-Bayesian behavior is common among most

professional forecasters in our sample, although the frequency and magnitude of the deviations

might be different. Furthermore, a fact that emerges from the analysis is that forecasters have

disperse beliefs about the uncertainty of output growth and inflation which persist even in the

last quarter of the year. We then investigate if the violations from Bayesian updating are purely

random events or whether we can find a structural explanation for their occurrence. We construct

a measure of individual surprise which captures the unexpected part of the GDP or GDP deflator

latest release in the current quarter relative to the forecaster’s prior distribution. We find that

models for the prior weight that include the surprise variable are favored by most forecasters

instead of a simple model with only quarterly dummy variables. The estimation results indicate

that large surprises seem to be associated with higher weights and higher probability of non-

Bayesian behavior, as argued in the theoretical models of Epstein (2006) and Ortoleva (2012).

We also find that revisions of earlier released GDP and GDP deflator data lead some forecasters

to increase the prior weight, although other forecasters interpret the revisions by assigning more

weight to the new data rather than the prior expectation. In addition, another fact that emerges

from the analysis is that for some forecasters the weight depends positively on the magnitude of

the prior precision which suggests that they systematically under-estimate uncertainty in early

quarters, and increase it later in the year. We also investigate if the surprise variable plays a

role in determining the accuracy of the mean forecasts and find that low prior precision and large

negative surprises lead to lower forecast errors for some forecasters.

This paper is organized as follows. In Section (2) we introduce the Bayesian Learning Model (BLM)

and discuss its implications for the updating behavior of professional forecasters. In Section (3)

we discuss the density forecasts provided by the Survey of Professional Forecasters (SPF) and in

Section (4) we conduct an exploratory analysis of the empirical support for the BLM predictions

followed by a regression analysis to understand the determinants of the observed non-Bayesian

behavior of forecasters. Section (5) provides an empirical analysis of the relationship between

forecast error and measures of surprises and, finally, Section (6) draws the conclusions of the

paper.

2 Bayesian learning model

We discuss the Bayesian Learning Model (BLM) in the context of the timing of the information

arrival and expectation formation of the SPF. In quarter 1 of year t forecasters observe the first
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release of real GDP and GDP deflator for quarter 4 of year t−1. This allows them to calculate the

average level of the variable for the previous year, which is given by Ȳt−1 =
∑4
q=1 Yq,t−1/4 where

q = {1, 2, 3, 4} indicates the quarter and Yq,t−1 denotes the level of real GDP or GDP deflator in

quarter q of year t−1. After observing the first release for Q4 of the previous year, the forecaster is

asked to provide an expectation about the (year-on-year) growth rate of the variable in year t which

we denote by yt and is given by yt = (Ȳt − Ȳt−1)/Ȳt−1 and refer to the forecast of the probability

density function of forecaster i by f i1(yt). Notice that as forecasters form an expectation of yt in

the first quarter they only observed the realization of the variable for the previous quarter due

to the publication lag. Similarly, in the following quarters the forecaster observes the first data

release for the previous quarter of that year, Yq−1,t, and provides a density prediction, denoted by

f iq(yt). In Q4 the forecaster has observed the data releases for quarter 1 through 3 and the only

uncertainty remaining concerns the realization of the current quarter. The structure of the Survey

is such that the forecast target yt remains fixed throughout the year which allows to investigate

how agents interpret the arrival of news when revising their expectations for the same target.

We assume that the density forecast of yt in quarter q−1 (for q = 2, 3 and 4) of year t by individual

i is normally distributed with mean µiq−1,t and precision (inverse of the variance) equal to ψiq−1,t.

We interpret the density forecast in quarter q− 1 as the agent prior expectation about the growth

rate in the current year. In the following quarter, the forecaster observes the release of Yq−1,t

and several other macroeconomic variables which can be interpreted as a generic signal Lq,t about

yt defined as Lq,t = yt + εq,t where εq,t represents an interpretation error of forecaster which we

assume is distributed normally with mean νiq,t and precision φiq,t. After observing the signal, the

agent revises the mean and precision of the density forecast. Since both the prior and signal are

normally distributed and assumed to be independent, the posterior mean and precision are given

by

µiq,t = ρiq,tµ
i
q−1,t + (1− ρiq,t)(Lq,t − νiq) (1)

ψiq,t = φiq,t + ψiq−1,t (2)

where ρiq,t = ψiq−1,t/(φ
i
q,t+ψ

i
q−1,t) represents the weight assigned to the prior (relative to the signal)

and is given by the ratio of the precision of the prior to the precision of the posterior distribution

in Equation (2). The posterior mean in quarter q is thus given by a weighted average of the prior

mean and the recently released information with the weight assigned to each component depending

on the subjective precision of the signal and prior. If the agent believes that the signal does not
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provide any insight on yt he/she will assign the precision φiq−1,t a value equal to zero so that ρiq,t

will take a value of 1 and the posterior is thus anchored to the prior mean expectation. On the

other hand, if the forecaster believes that the signal is very informative about yt he/she will expect

the signal to have high precision and thus ρiq,t will be close to 0 and a large fraction of the new

information is incorporated in the posterior.

The BLM represents an expectation formation model that provides restrictions on the revisions of

expectations that can be tested empirically. Kandel and Pearson (1995) use this model to evaluate

the revisions of earning forecasts around news releases and find evidence that a significant fraction

of analysts revise their forecasts in a manner that is inconsistent with the common interpretation

of the signal. There are also several applications of the BLM to macroeconomic expectations,

such as Kandel and Zilberfarb (1999), Lahiri and Sheng (2008) and Patton and Timmermann

(2010). Manzan (2011) estimates the prior weight coefficients ρiq,t based on point predictions and

assumes that the signal is represented by the latest release for the variable being forecast. He finds

significant evidence of weight heterogeneity across forecasters at most horizons. These studies use

only the point forecasts to test their hypothesis about the learning model. Instead, in this paper

we propose to look at the second moment of the subjective distribution forecasts to test hypothesis

about the expectation formation process. In particular, the model implies that as time moves from

the first to the forth quarter, the individual precision of forecaster i in quarter q is given by

ψiq,t = ψi1,t +

q∑
j=2

φij,t (3)

for q = {2, 3, 4}. This Equation shows that the posterior precision of agent i is the sum of the prior

precision in the first quarter and the cumulative precision of the signals. The BLM thus predicts

that the posterior precision ψiq,t should not decrease as the target date gets closer since the φiq

are non-negative. This is a sensible prediction since uncertainty should reduce as we approach the

target date and the forecaster should provide more precise density forecasts of the growth rate

of the variable in the current year. Hence, for each forecaster it should hold that ψiq,t ≥ ψiq−1,t

with equality holding only when the forecaster considers the latest signal totally uninformative. A

related prediction that emerges from the BLM model concerns the prior weights ρiq,t. Since the

weight is the ratio of the prior and the posterior precision, the restriction in Equation (3) implies

that

ρiq,t =
ψiq−1,t
ψiq,t

≤ 1 (4)

The weights ρiq,t are thus bounded to be smaller or equal to 1 with the constraint binding when
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the forecaster assigns zero precision to the signal in the current quarter. Of course the weights are

also restricted to be non-negative since they represent ratios of precisions (or variances).

The discussion above suggests that forecasters updating their expectations in a Bayesian manner

should be characterized by non-decreasing precisions of their posterior density as the target date

approaches, and also by the fact that the prior weight used in revising their expectations should

not be larger than 1. In other words, new information is likely to shift the center of the density

forecasts but its dispersion should decrease as we approach the target date because forecasters

should expect less uncertainty about the future outlook for output and inflation. The density

forecasts provided by the SPF represent a unique dataset to test these hypotheses since they allow

us to track the time evolution of the mean and variance of their forecasts. This approach is likely

to provide more accurate insights on the expectation formation process and the hypothesis of

differential interpretation relative to alternative approaches that treat the weight as one of several

latent variables (Lahiri and Sheng, 2008, Patton and Timmermann, 2010 and Manzan, 2011).

3 Data

>>>>>>>>>>>> ADD DISCUSSION ECB-SPF

We consider two surveys that provide expectations about the probability that the year-over-year

growth rate of real GDP and inflation (GDP deflator or HICP). For the USA we consider the

ASA-NBER-Philadelphia Fed Survey of Professional Forecasters (SPF) while for the Euro-area

we use the European Central Bank Survey of Professional Forecasters (ECB-SPF). These surveys

have several common features. Both survey professional forecasters employed in the private sector

and research organization about several macroeconomic variables with the forecast horizon ranging

from the current year up to 2-3 years ahead. In both surveys, forecasters are asked to predict the

probability that the variable will fall in a certain interval of values which can be interpreted as an

histogram forecast. One difference between the surveys is that the SPF requires the forecast of the

average-over-average growth rate of the variable while the ECB-SPF requires the Q4 of the current

year relative to Q4 of the previous year. The SPF is administered by the Federal Reserve Bank

of Philadelphia since 1992, but it started in 1968 by the American Statistical Association (ASA)

and the National Bureau of Economic Research (NBER). Instead, the ECB-SPF is administered

by the European Central Bank (ECB) which started the survey in the second quarter of 1999.

Croushore (1993) provides a detailed description and discussion of the SPF and Garcia (2003) for

the ECB-SPF.
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The density forecasts from these Surveys are unique among expectations data because they provide

a measure of the mean/median outcome expected by forecasters, but also an individual measure

of the expected uncertainty about the future growth in output and prices. Several studies have

investigated the properties of these density forecasts, in particular for the SPF which started in

1968. Zarnowitz and Lambros (1987) is one of the first analysis of the characteristics and properties

of density forecasts. An issue that they investigate is the relationship between the cross-sectional

dispersion of point forecasts (i.e., disagreement) and aggregate measures of uncertainty given the

common practice of considering them equivalent although conceptually different. They measure

uncertainty by the standard deviation of the aggregate density forecast obtained by averaging the

individual forecasts. They found that disagreement and uncertainty have positive and high cor-

relation which provides support to the use of measures of forecast disagreement as a proxy for

macroeconomic uncertainty. This conclusion has later been revisited using longer sample periods,

individual rather aggregate density forecasts, and alternative measures of uncertainty derived from

the histogram forecasts. Giordani and Söderlind (2003) find even stronger evidence to support

these earlier findings, while Lahiri and Liu (2006) and Rich and Tracy (2010) conclude that there

is weak evidence of a relationship between disagreement and uncertainty using alternative measures

of uncertainty. Another issue that has received attention in the literature is the mechanism used

by forecasters to form expectations about future uncertainty. The SPF is an invaluable tool to in-

vestigate this issue because it provides an observable measure of uncertainty at the individual and

aggregate level. Giordani and Söderlind (2003) and Lahiri and Liu (2006) use GARCH-type spec-

ifications for the (observable) variance of the density forecasts and found that there is significant

persistence in these measures, although the persistence is smaller than values obtained from aggre-

gate time series. Lahiri and Liu (2006) also found that uncertainty is more responsive to expected

increases of the inflation rate than to expected declines in the rate. Clements (2013) compares

measures of forecast uncertainty with suitably constructed measures of ex-post uncertainty. He

finds that forecasters seem to under-estimate dispersion at long horizons but over-estimate it at

short forecast horizons when considering inflation and output growth. In addition, Sheng and Yang

(2013) test the hypothesis that the precision in Equation (3) has a unit root and interpret the re-

jection for several forecasters as evidence that they update their density in a non-Bayesian way.

Some other papers (see Engelberg et al., 2009, and Clements, 2010) have looked at the consistency

of point and density forecasts produced by the same individuals. The findings indicate that point

forecasts are closely related to measures of central tendency obtained from the density forecasts.

>>>>>>>>>> add references and studies about the ECB-SPF; Bowles et al. (2007),
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Andrade and Le Bihan (2013), Genre et al. (2013), Kenny et al. (2014)

3.1 Distribution-free measures of mean and standard deviation

D’Amico and Orphanides (2008)

• Define:

– x̄j : mid-point of the j-th interval [xj , xj+1] (for j = 1, J − 1 and J the total number of

histogram intervals)

– pij,q,t: the probability assigned to the j-th interval by forecaster i in quarter q of year t

• Distribution-free measures of the mean and standard deviation can be defined as follows:

– µiq,t =
∑J−1
j=1 x̄jp

i
j,q,t

– (σiq,t)
2 =

∑J−1
j=1 (x̄j − µiq,t)2pij,q,t − w2/12

– skiq,t =
∑J−1
j=1 (x̄j − µiq,t)3pij,q,t

where w is the bin width and the term w2/12 represents the Sheppard’s correction.

4 Application

Every quarter we fit a normal distribution to the histogram forecast of each individual as described

above, and obtain parameter estimates θiq,t = [µiq,t, 1/ψ
i
q,t] which represent the mean and precision

of the density forecast for forecaster i in quarter q of year t. In the empirical analysis we consider

the current year forecasts, and include in our sample only those forecasters that provide a minimum

of 30 two-quarter consecutive predictions over the period considered. In addition, although the

SPF density forecasts are available since 1968 there are several changes of definition of the output

measures from GNP to GDP, and from nominal to real, which makes the analysis over time

challenging. We thus start the analysis in 1982 for both real GDP and GDP deflator, and ending

in Q4 of 2012. This gives us a sample of 23 forecasters for PGDP and 24 for GDP over 124 quarters.

The BLM predicts that the precision of the density forecasts increases as the target date approaches.

Figure (1) shows the (time) average precision of each forecaster for density forecasts provided in

quarter 1 through 4. Overall, the precision increases toward the end of the year and there is

significant dispersion of the precision measure among forecasters. For example, in the first quarter

some forecasters expect a precision of 1 while others expect it as large as 8. The dispersion of
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precision seems to increase in later quarters since some forecasters increase the precision of their

posterior more rapidly than others. However, a closer look at the graph shows that some of these

lines do not monotonically increase over time, which is inconsistent with the prediction of the

BLM model that the precision of the density forecasts should be non-decreasing. Another way

to evaluate the validity of this prediction is to plot the (time) average prior weight ρiq,t given in

Equation (4). The prior weight is defined as the ratio of the prior and posterior precisions, and

should thus be bounded between 0 and 1. Figure (2) shows the average weight from the second

to the forth quarter with each line representing a forecaster. It is clear that there are several

forecasters that have weights larger than 1, in particular in the second and third quarters and,

in some cases, also in the forth quarter. The finding that some forecasters have (average) prior

weights above 1 in some quarters indicates that the precision of their posterior density forecasts

decline relative to the prior precision. The inconsistency with the BLM model arises because

the newly released signal should convey information, and thus increase precision relative to the

previous quarter or, if the signal is expected to be uninformative, the prior and posterior precision

should be equal, and the weight should be one. However, the evidence seems to suggest that some

forecasters form density predictions that underestimate future uncertainty, and in later quarters

they revise their distribution forecast by increasing its dispersion. This inconsistency seems more

apparent when plotting the ρ̄iq in Figure (2) rather than the average ψ̄iq in Figure (1). This is due

to the fact that averaging the precision forecast misses the dynamic aspect of taking the ratio of

the prior and posterior precisions, i.e.,
∑T
t=1 ψ

i
q−1,t/ψ

i
q,t.

In order to analyze in more detail this finding, we divide the forecasters in two groups: a group

which we call Bayesians Forecasters (BF) is composed of those forecasters with ρ̄iq smaller than 1 at

all quarters, and the remaining forecasters are pooled in a group that we denote as Non-Bayesians

Forecasters (NBF), since they violate the prediction of the BLM in at least one quarter. In practice,

we use a threshold of 1.05 rather than 1 to avoid the fact that small errors in fitting the parametric

distributions might lead to spuriously classify a forecaster in one group rather than the other.

Figure (??) shows the average prior weight ρ̄iq by quarters, and separately for BF and NBF. When

considering PGDP there are 7 forecasters out of 23 that provide forecasts consistent with BLM,

and 16 that are not consistent. For GDP we have 24 forecasters who are equally divided between

BF and NBF. The two left plots of Figure (??) show that forecasters that are classified as Bayesians

have weights close to 1, and declining very slowly in the second and third quarter, which indicates

that (on average) they put a small weight on the signal contained in the new data release while

they prefer to hold on to their prior expectation of uncertainty. However, in the forth quarter they
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seem to increase their posterior precision, and assign a lower weight to the prior, which oscillates

between 0.5 and 0.75 across forecasters. The average prior weig ts are not subject to the careful

scrutiny of clients and media who are mostly interested in point forecasts. They might thus be very

attentive in crafting a prediction for the mean of the density, but guesstimate the magnitude of its

precision. Stark (2013) conducted a Survey of SPF participants and found that only 8 forecasters

use the density forecasts in their analysis while 17 forecasters produce the forecasts only for the

SPF. In addition, 11 participants declare to use the results of the survey’s density forecasts in

their work as opposed to 15 who do not. This suggests that the findings in the previous Section of

weights larger than 1 might be the outcome of inattention when it comes to predict the dispersion

of the forecast distribution. A more structural explanation for non-Bayesian behavior is provided

by Epstein (2006) and Epstein et al. (2008, 2010). They argue that non-Bayesian updating might

arise in response to a signal that is interpreted as positive or negative by forecasters, and leads

them to produce a posterior forecast which is inconsistent with the prior since, after the signal is

observed, the forecaster believes in a different prior. The forecaster is thus updating in a Bayesian

manner a prior which is different from the prior he/she expected before the signal was observed.

In the context of the SPF, it could be the case that in the second quarter the forecaster realizes

that the signal is at odds with the first quarter prior density, and thus produces a new prior

which is then updated to incorporate the newly released information. Since we do not observe the

revised prior belief of forecasters, we might thus conclude that the posterior is inconsistent with

the prior, although it might be the outcome of a retroactive change in prior beliefs of the forecaster.

Another explanation that has been offered in the literature suggests that forecasters might re-assess

their prior forecasts in response to signals that have low probability to occur based on their prior

forecasts (Ortoleva, 2012). In this case, a forecaster might interpret the fact that the realization

of the signal (e.g., the quarterly release of the variable) is not very likely to happen based on her

prior density as an indication of misspecification of the forecasting model which leads to re-evaluate

her beliefs. These theoretical models thus assume that the signal triggers a re-assessment of the

forecaster’s beliefs and leads to posterior densities that are inconsistent, in a Bayesian sense, with

their reported priors in the previous quarter. In practice, the information available in the SPF

might not be sufficient to be able to distinguish between the two explanations. In the empirical

analysis described below we pursue the more modest goal of investigating the variables that explain

the dynamics across quarters and forecasters of the prior weight, and the role played by a measure

of news or surprise in explaining the non-Bayesian behavior.
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4.1 A measure of surprise and revisions

• US-SPF: the surprise is obtained by comparing the previous quarter forecast to

the forecast that would have been calculated if the forecaster knew the latest

data release about the variable. We calculate the surprise as follows. We first

calculate the quarterly rate of growth implied by the annual forecast in quarter

q−1 µiq−1,t by finding the mi
q−1,t that minimizes the square distance of the implied

annual growth rate of the average-over-average of the variable. We then use the

implied quarterly rate to construct a measure of expected level of the variable

in year t as Ỹq−1,t = Yq−1,t+g(mi
q−1,t) and the surprise is then defined as Ỹq−1,t/Ȳt−1

• EU-SPF: the real time HICP monthly data have a strong seasonality (march in particular)

which affects the surprise measures

• To overcome this problem we thus calculate the realized monthly growth rate by

making monthly rates of the 12 month growth rate of inflation, instead of the

h month.

• mq,t = (Ym,t/Ym−12,t)
m/12 ∗ (1 + µq−1,t)

12−m

To capture the unexpected part of the latest announcement, we construct a measure of surprise

for each forecaster by relating the prior mean expectation and the recent announced value. In

addition, another component of surprise might arise from data revisions which might also lead to

a re-evaluation of the prior forecast, in particular when revisions are large. The forecaster-specific

measures of surprise and revision are then used as explanatory variable to explain the evolution of

the Bayesian weight.

We define the surprise for forecaster i in quarter q of year t, denoted by Siq,t, as follows:

Siq,t =
√
ψiq−1

(
µ̃iq−1,t − µiq−1,t

)
(5)

where µiq−1,t and ψiq−1,t are the mean and precision of the density forecasts of individual i produced

in the previous quarter and µ̃iq−1,t (for q ≥ 2) represents the expected value of the growth rate

of PGDP or GDP obtained by replacing the nowcast for quarter q − 1 (i.e., the point forecast

Eiq−1,t(Yq−1,t)) with the first release available in quarter q (i.e, Yq−1,t). More specifically, we

construct µ̃iq−1,t as follows:

µ̃iq−1,t =
1

4

q−1∑
i=1

Yi,t +

4∑
j=q

Eiq−1(Yj,t)

 /Ȳt−1 (6)

where the denominator Ȳt−1 represents the average level of the variable in the previous year

calculated using the data vintage available in quarter q− 1. Instead, the numerator represents the

average of the data releases available in the quarter q − 1 vintage, the realization of the previous

quarter (which is released in quarter q), and the point forecasts for the current and future quarters
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produced in quarter q − 1. We use the point forecasts because they are formulated in the level of

the variable, and they allow to calculate the year-over-year growth rate in a given quarter. In this

way we transform the recent data release from the level of the variable to a growth rate which can

be related to the prior density forecasts to define a surprise measure. We define the surprise Siq,t

as the difference between the updated mean from the prior mean standardized by the predicted

uncertainty of forecaster i in the previous quarter. Hence, the measure captures the strength of

the news in the most recent data release relative to the prior view of the forecaster.

Another source of unexpected news for forecasters might come from the announcement of revisions

of data released in previous quarters. Statistical agencies provide every quarter the first release

for the previous quarter (i.e., Yq,t) and also revisions of earlier released data for the current and

previous years. Notice that in Equation (5) we defined the surprise based on the vintage of data

available in quarter q−1 (except for the first release of q−1). However, forecasters also observe the

new vintage of data and these data revisions might be substantial, and may induce forecasters to

change the weight they assigned to their prior and to the signal. We define the revision in quarter

q of year t for forecaster i as follows:

Ri,q,t = µ̂iq−1,t − µ̃iq−1,t (7)

where µ̂iq−1,t is constructed in the same way as Ẽiq−1(yt) in Equation (6) using the latest available

vintage released in quarter q instead of the previous quarter vintage. Ri,q,t can thus be interpreted

as the surprise content of the data release which is due to revision of earlier data. For example, in

the last quarter of the year the revision Ri,4,t might be different from zero if there were revisions

to the level of the variable for the first and second quarter of the current year, or revisions about

the previous year which affect the denominator of the growth rate. In the regression analysis for

the prior weight ρiq,t we decided to include the revision as a dummy variable that equals 1 in case

of a large positive or negative revision. We define as IhighRi,q,t the dummy variables that take value 1

if the revision is larger than the 0.95 quantile of forecaster’s i revision distribution and by I lowRi,q,t if

the revision is smaller than the 0.05 quantile. In Figure (5) we show the histogram of the revisions

for PGDP and GDP pooled across forecasters and time. The revisions for PGDP appear to be

smaller in magnitude and more concentrated relative to those for GDP, which can be as large as

1%, and in some cases even 2%. This is expected since revisions to GDP data releases are typically

more biased and volatile relative to the PGDP ones (Aruoba, 2008).

In Figure (3) we show a histogram of the surprise for PGDP and GDP obtained by pooling

13



the surprises over time and across forecasters. The distribution appears to be very peaked at

the center (close to zero) and asymmetric due to the long left tail for PGDP and right tail of

GDP. The asymmetry in the tails suggests that, when large surprises occur, forecasters are more

likely to overestimate the inflation rate while for output they seem to underpredict its value. We

also calculate the probability to observe a growth rate equal or smaller than µ̃iq−1,t based on the

density forecast produced by each individual in quarter q − 1. Given our assumption of normality

the probability is calculated as Φiq−1,t(µ̃
i
q−1,t), with Φiq−1,t(·) denoting the prior normal CDF

with mean µiq−1,t and variance 1/ψiq−1,t. In Figure (4) we find that for both PGDP and GDP

the probabilities are concentrated in the interval 0.4 to 0.6, which suggests that most often the

forecasters are not surprised by the recent announcement of the data. Furthermore, the peaks for

small p-values in the PGDP histogram and for large values for GDP show, similarly to Figure (3),

that the news content of data releases are occasionally considered extremely unlikely by forecasters

based on their forecasts of the previous period.

4.2 Empirical specification

Our empirical specification relates the Bayesian prior weight ρiq,t with quarterly dummy variables

and a vector Xi
q,t that includes forecaster-specific variables that we use to explain the variation

over time of the prior weight. In particular, we include the previous value of the weight (in quarter

3 and 4) to evaluate if there is persistence or reversal in the dynamics of the weight. Another

variable that we include is the level of the precision in the first quarter of the year, ψi1,t. The

reason for including this variables is to assess if forecasters that start forecasting the year with

high precision are more likely to reduce or increase their prior weight in the following period than

forecasters that expected lower precision. In addition, we also include the surprise and revision

variables discussed above which measure the unexpected component of the latest data release which

might be responsible for triggering a (non-) Bayesian update of the prior forecast. We consider

different specifications of the panel model that allow for different degrees of heterogeneity in the

parameters across forecasters. One specification consists of allowing for quarter fixed effects, but

pooling the effect of the explanatory variables, Xi,q,t, that is,

ρiq,t = βi,2Q2q,t + βi,3Q3q,t + βi,4Q4q,t +X
′

i,q,tγ + εiq,t (8)

where the βs are forecaster-specific while the coefficient γ is common across all forecasters. We

also estimate a model that allows for forecaster-specific coefficients of Xi,q,t, in addition to the
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quarter dummy variables. The panel regression model in this case is given by:

ρiq,t = βi,2Q2q,t + βi,3Q3q,t + βi,4Q4q,t +X
′

i,q,tγi + εiq,t (9)

Finally, as an intermediate case between the pooled and the individual case we also consider a

model in which parameter heterogeneity is allowed across different groups of forecasters, although

all forecasters share the same parameters within the group. This approach has recently been

proposed by Lin and Ng (2012) as a way to account for heterogeneity among individuals in a

parsimonious way. Assume that there are G groups and each of the N forecasters can be assigned

to one of them. The panel model for the Bayesian weight is then given by:

ρiq,t = βi,2Q2q,t + βi,3Q3q,t + βi,4Q4q,t +X
′

i,q,tγg + εiq,t (10)

for i ∈ g and g = 1, · · · , G. We still allow for quarter fixed effect, but now the effect of the

independent variables are common across forecasters in the same group. We estimate the model

following the K-means algorithm of Lin and Ng (2012). We implement the algorithm as follows:

1. Fix a starting value for the number of groups denoted by G

2. Assign randomly each forecasters to one of the G groups

3. Estimate the panel model above and obtain the parameters γg (for g = 1, · · · , G)

4. Calculate the error for each forecaster had he/she been assigned to one of the other groups

5. Re-assign the forecaster with the largest gain from moving from group g to g′ to group g′

6. Repeat 3-5 until no more forecasters change group and store the overall RSS

7. Repeat 1-6 M times and select the grouping that achieves lower overall RSS

The algorithm is sensitive to the initial allocation of the forecasters and for this reason we perform

step 7 which repeats steps 1-6 several times in order to mitigate the effect of the initial random

allocation. As for the choice of G, we follow Lin and Ng (2012) and use BIC with penalty equal

to 1 to select the optimal number of groups. For both Surveys and variables, we find that three

groups reaches a minimum of the BIC criteria and thus set G = 3 in the empirical section.

We consider the possibility that the prior weight ρi,q,t might be non-linearly related to the surprise

variable, such as the case that forecasters react differently to a positive or negative surprise. We

thus create the variables S+
i,q,t and S−i,q,t which are equal to the surprise when the surprise is positive

and negative, respectively, and zero otherwise.
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4.3 Estimation results

We consider several specifications of the model for the prior weight in Equation (4) which differ

for the set of predictors that are included in the vector Xi
q,t. We estimate the model individually

for each forecaster by OLS although it is possible that the errors are correlated across forecasters

due to unobserved common shocks which causes OLS to be inconsistent. Hence, after estimat-

ing the models by OLS we test for the null hypothesis of no cross-sectional dependence and, in

case of a rejection, we re-estimate the model using the Common Correlated Estimator (CCE) pro-

posed by Pesaran (2006), which provides consistent estimates even in the presence of unknown

common shocks. We test for the presence of cross-sectional correlation in the errors using the

Cross-Section Dependence (CD) test proposed by Pesaran (2004). The test statistic is standard

normally distributed and is given by

CD =

√
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

√
Ti,j ξ̂i,j

 (11)

where ξi,j represents the correlation coefficient of the errors in Equation (4) for forecaster i and

j, Ti,j represents the number of observations available for each pair of forecasters (which might

differ due to the unbalanced nature of the panel), and N is the number of forecasters. In the

application that follows, we found no evidence of dependence in the forecaster errors for PGDP

and thus estimate the model by OLS. Instead, the residuals for the GDP regression show significant

evidence of correlation across forecasters, and we thus report the CCE estimates.

>>>>>>>>>> HERE DISCUSS ESTIMATION RESULTS

4.4 Binary model

In the previous Section we consider an empirical model for the prior weight ρi,q,t, and investigated

the variables that could explain its variation over time and across individuals. However, the

analysis focused on explaining the magnitude of the weight which offers a limited perspective on

the factors behind the non-Bayesian behavior of forecasters. We thus perform an analysis similar

to the previous Section, but considering as dependent variable the binary event that takes value 1

if ρiq,t is larger than 1 and 0 otherwise. We use a probit model and consider the same variables and

specifications that we adopted in the previous Section. The model is estimated individually for

each forecaster by maximum likelihood and in Tables (??) and (??) we report the average estimates

along with the number of forecasters for which the coefficient is significant. We also test for the

presence of cross-sectional dependence using the CD test discussed above, which is appropriate also
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for residual measures from limited dependent variable models as argued by Hsiao et al. (2012). For

each specification we also report the number of forecasters for whom the model is best according

to AIC and BIC as well as a measure of fit given by the fraction of correct predictions.

The results for PGDP in Table (??) show that the probability of non-Bayesian behavior (i.e.,

ρi,q,t > 1) increases when forecasters experience a large positive surprise, both for BF and NBF.

In other words, some forecasters increase the expected uncertainty relative to their belief in the

previous quarter when the latest PGDP release is significantly higher than they expected. This is

consistent with the earlier discussion, although we find that large negative news do not increase

the probability that the weight is larger than one. All other variables have a negative impact on

the prior weight, and the lagged prior weight and the surprise variable are significant for a large

fraction of forecasters. On the other hand, the prior precision and the revision dummy variables

are significant for few forecasters, which indicates that they might not be relevant contributors to

the non-Bayesian behavior of forecasters. For all models the CD test statistic is calculated using

the generalized residuals for the probit model, and it is not significant at conventional significance

levels. The AIC and BIC indicate that for a large fraction of forecasters the simple model with just

the quarter dummy variables outperforms all other specifications. For the remaining forecasters,

the most often chosen specifications are G, D and E. These findings seem also to hold for GDP in

Table (??) with the only difference that also the dummy for large negative revisions is significant

for 4 forecasters (3 of which are NBF), and with a positive coefficient. This suggests that some

forecasters might be surprised by large unexpected downward revisions to the earlier released data,

and they might respond by increasing the variance (or decreasing the precision) of their density

forecasts relative to their forecast of the previous quarter. Similarly to the linear regression case,

we find that the CD test statistic for the GDP probit model rejects the null hypothesis of no

cross-sectional dependence in the errors among forecasters. This suggests that the results provided

in the Table for GDP should be interpreted cautiously, although the magnitude of the correlation,

which ranges between 0.053 and 0.067, is quite modest to expect dramatic changes in these findings

once dependence across forecasters is taken into account.

5 Are Bayesian forecasters more accurate?

In this Section we investigate if the non-Bayesian updating adopted by some forecasters has an

effect on their forecast accuracy. In Figure (??) we show the box plot of the absolute forecast error

in quarter 1 through 4, where we calculate the error as the difference between the realization of
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the growth rate in year t and the mean of the fitted normal density forecast. As expected, the

median absolute error reduces later in the year, with only few differences between BF and NBF.

For PGDP, the NBF seem to experience a reduction of error only in the third quarter, while for

BF the reduction starts already in the second quarter. In the forth quarter, NBF have a median

error which is slightly larger relative to BF, while for GDP we find the opposite result that the

median absolute forecast error for NBF is smaller than for BF. For both variables, the results

indicate that forecasters make errors as large as 0.5% and with the third quartile close to 0.4% in

the forth quarter, which is quite large considering that in the following quarter they are able to

calculate yt. An alternative way to relate the realization yt to the density forecast is to calculate the

Probability Integral Transform (PIT) (see Diebold et al., 1997) which is defined as Φi,q,t(yt), with

Φi,q,t(·) denoting the normal CDF forecast of individual i in quarter q of year t. If the individual is

using the correct model to produce forecasts, the PITs should be uniformly distributed in the unit

interval, with deviations from uniformity indicating the misspecification of the density forecasts.

In Figure (??) we show the box plot of the PIT by quarter for PGDP and GDP, and separately for

BF and NBF, along with horizontal lines at 0.25, 0.5, and 0.75 to facilitate the visual evaluation of

the uniformity assumption. For GDP (bottom two graphs) we find that the median PIT is quite

close to 0.5 although the interquartile range appears to be wider than expected in the first quarter

and smaller in the forth quarter (in particular for NBF). This indicates that professional forecasters

under-estimate the probability of tail events at the beginning of the year (in particular for large

positive events), but overestimate the likelihood of the extremes at the shortest forecast horizon.

This could be related to the earlier discussion that in the first quarter some forecasters produce

density forecasts with a small variance (high precision) which they later revise upward (downward).

Instead, for PGDP we find that the median PIT is typically below 0.5 and the interquartile range

is shifted downward relative to the 0.25-0.75 interval, in particular from the second to the forth

quarters. This suggests that, for most forecasters and quarters, the realization of the GDP deflator

happens on the left tail of the density forecasts provided by the SPF participants. This conclusion

relates also to the earlier discussion of the surprise histogram for PGDP that showed that many

forecasters expect inflation to be higher than it turns out to be. These two facts together point

to the fact that, despite the negative surprises about inflation, forecasters overweight their prior

beliefs of higher inflation relative to the real-time information so that the realized inflation rate

occurs often on the left tail of density forecasts.

To better understand the determinants of the forecast errors, we estimate a regression model using

the same independent variables adopted in the previous Section to explain the prior weight. Notice
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that all these variables are available to the forecasters once the statistical agencies release the data

for the previous quarter. On the other hand, the dependent variable represents the ex-post accuracy

of the density forecasts and there is thus a clear causality between the RHS and the dependent

variable. Among the regressors, we are particularly interested in evaluating whether the surprise

variable discussed in the previous Section has any explanatory power for the forecast error, which

would indicate that forecasters might have over or under-reacted to the informational content of

the latest data release. The regression model is given by

|ei,q,t| = βi,1Q1q,t + βi,2Q2q,t + βi,3Q3q,t + βi,4Q4q,t +X
′

i,q,tγi + εi,q,t (12)

where the error ei,q,t is defined as the difference between the realization yt and the mean of the

density forecast Ei,q(yt). In the vector Xi,q,t we include the same variables that were considered in

the previous Section, except that the lagged dependent variable is now represented by the absolute

error of the previous quarter |ei,q−1,t|. The application of the CD test to the OLS residuals indicates

the presence of statistically significant cross-sectional dependence so we estimate the model using

the CCE estimator of Pesaran (2006) for both variables and the results are reported in Table (??)

for PGDP and Table (3) for GDP. The AIC and BIC criteria indicate that Models B, D to E are

selected by a large fraction of forecasters. The difference in results between the two criteria is partly

due to the higher penalization assumed in BIC relative to AIC, but also because the CCE estimator

increases significantly the number of parameters by requiring to include the cross-sectional averages

for every additional variable included in the model.

In terms of the relevant variables for PGDP, we find that the coefficient estimates of the lagged

absolute error are positive and statistically significant at 10% for approximately half of the fore-

casters, and in particular for NBF, who seem to have higher error persistence in comparison to BF.

The prior precision is significant for only a few forecasters, and the positive estimates indicate that

forecasters with larger prior precision (smaller variance) are likely to be characterized by higher

absolute forecast errors. We also find that the surprise variable is more significant when it is con-

sidered in a nonlinear form. Model E indicates that some forecasters have smaller forecast errors

following large surprises (either positive or negative) than small surprises (relative to the median).

This could be interpreted as evidence that these forecasters might be more attentive to the real-

time information and to the formation of their density forecasts when faced with large unexpected

news (with regards to their prior forecast) which thus leads to smaller absolute forecast errors.

The results for Model F provide a similar interpretation since large negative surprises (5% lowest

surprises of each forecaster) have a MG estimate which is negative and is thus associated with
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lower absolute errors. This variable is significant for 4 NBF. On the other hand, the large positive

surprise variable is only significant for one forecaster and the MG estimate is very small, which

suggests that this type of surprise might not be relevant to explain the performance of forecasters.

Contrary to the case of PGDP, we find that large revisions, in particular negative ones, have an

effect on the accuracy of density forecasts for GDP growth. In particular, we find that after a large

negative revision to the earlier released data some BF experience an increase in absolute error,

while some NBF a decline in the measure. Another difference between the results for GDP and

PGDP is that the residuals are characterized by stronger correlation across forecasters. For Model

A the correlation estimate is 0.486 and the CD test statistic is over 50. The application of the

CCE estimator in Models B to H reduces significantly the cross-correlation to a range between

0.035 and 0.051 (in absolute value), and the CD statistic takes values between 2 and 3. Although

the CD statistic still rejects the null of no cross-correlation in the residuals at 5%, the size of the

correlation is not so large to expect a relevant change in the results. Overall, these results indicate

that the more relevant predictor of future performance is the past performance of the forecaster,

although measures of surprises and revisions are able to capture some of rthe variability over time

of the absolute forecast error.

6 Conclusion

Are professional forecasters Bayesians? We find empirical evidence that they form expectations

that occasionally are inconsistent with the predictions of a model of Bayesian learning. The first

prediction is that forecasters should expect uncertainty to decline or stay constant nearing the

target date while the second prediction is that the weight used to update the prior expectation

should be smaller or equal to 1. Our empirical evidence of violations of these predictions is based

on measures of individual uncertainty and prior weight that we construct from density forecasts,

rather than relying on point forecasts as in the recent literature on testing models of expectation

formation. The reasons for these violations is that forecasters sometimes report a density forecast

with larger variance relative to the forecast they provided in the previous quarter. This fact goes

against the principle that the availability of more information should not increase the expected

uncertainty of the revised forecast. Furthermore, we also find that professional forecasters are

significantly heterogeneous in the way they process information and respond to macroeconomic

surprises.

We investigate empirically the possible determinants of this behavior and find that, for some
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forecasters, a measure of surprise or unexpected news contributes to explaining the time-variation of

the prior weight, and the non-Bayesian behavior of professional forecasters. We find that forecasters

are more likely to update their prior in a non-Bayesian manner when hit by a news release that

is unlikely relative to their prior density forecasts. It seems also that large negative revisions to

GDP prompt some forecasters to increase (relative to the prior) their expected uncertainty, while

this is not the case for PGDP inflation. Another relevant variable to explain the variation in

weights is the precision of the prior distribution, which is significantly and positively related to the

prior weight for several forecasters. We also find that large surprises are related to lower absolute

forecast error for approximately a quarter of the forecasters in our sample. This is probably due to

the fact that a large unexpected data release motivates agents to re-evaluate their prior forecast,

and revise it by increasing the expected variance. This might lead to more realistic forecasts and

to higher ex-post accuracy.
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Appendix: From histograms to continuous distributions

The SPF provides participants with a set of intervals and asks them to assign probabilities to the

event that the growth rate for the current year, yt, will fall in each of these intervals. Denote

by pij,q,t the probability forecast in quarter q of year t that individual i assigns to interval j

(for j = 1, · · · , J) that has left and right bounds given by xj−1 and xj , respectively. Fitting a

parametric density to the histogram requires minimizing the following quantity:

min
θiq,t

J∑
j=1

[(
j∑

k=1

pik,q,t

)
− F (x̄j , θ

i
q,t)

]2

where x̄j represents the mid-point of the interval and
∑j
k=1 p

i
k,q,t is the cumulative probability

provided by the forecaster in the SPF up to interval j and F (·, θiq,t) represents the CDF of the

parametric distribution which depends on a vector of parameters θiq,t. Giordani and Söderlind

(2003) assume that F (·) is the normal distribution which is convenient due to its simplicity and

ease of interpretability. However, Engelberg et al. (2009) argue that the normal distribution might

not be an appropriate assumption for the SPF density forecasts because it requires symmetry of

the distribution which is at odds with the empirical evidence that in many instances forecasters

provide asymmetric histograms. As an alternative they propose to use the beta distribution defined

on a finite interval which is able to account for the possible asymmetry of the density forecasts.

In this paper we approximate the histograms using the normal distribution. One reason for this

choice is to have a consistent distributional assumption in the theoretical model and in the em-

pirical analysis. Although it is certainly true that occasionally forecasters provide asymmetric

histograms, it does not seem a widespread phenomena across forecasters and across time. Overall,

the assumption of normality of the SPF seems an appropriate distribution to use, although in some

cases it might be at odds with the evidence. Empirically, we find that the correlation between the

fitted mean of the normal and beta distribution is 0.9998, and the correlation between the stan-

dard deviations is 0.9934 with the average difference between the implied means of -0.0034 and

for the standard deviations the difference is 0.068. For the purpose of this paper we feel that the

consistency between the theoretical and empirical models is an important consideration and thus

adopt the assumption of normality, although it might come at the cost of the misspecification of

the density predictions of some forecasters in some quarters.
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Figure 1: Precision of the Density Forecasts
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Each line represents the average precision (the inverse of the variance) of the density forecasts of a forecaster by

quarter the forecast was issued. The top two graphs refer to the US forecasts and include 23 and 22 forecasters for

PGDP and GDP, respectively, while the bottom graphs are for EUR and involve 31 forecasters for both variables.
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Figure 2: Prior Bayesian Weight
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Each line represents the time-average prior weight of a forecaster by quarter with the weight defined as the ratio of

the posterior to the prior precisions. The left graph refers to forecast of the PGDP growth rate for the current year

and includes 23 forecasters and the right graph refers to the GDP growth rate and includes 24 forecasters.
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Figure 3: Distribution of surprises
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Histogram of the forecaster-specific surprise variable for PGDP (left) and GDP (right) defined in Equation (5). The

histogram pools surprises across forecasters and time.
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Figure 4: Prior probability of surprises
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Histogram of the prior probability of the forecaster-specific unexpected part of the data release which is obtained

by evaluating the forecaster’s normal CDF in quarter q of year t at the surprise value. The histogram pools these

probabilities across forecasters and time. >>> assuming a triangular distribution
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Figure 5: Prior probability of revisions
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Histogram of the prior probability of the forecaster-specific news due to revisions to previously announced data which

is obtained by evaluating the forecaster’s normal CDF in quarter q of year t at the revised value. The histogram

pools these probabilities across forecasters and time.
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Table 1: PGDP

Variable Pooled Group 1 Group 2 Group 3 Min Med Mean Max # sig

ρi,q−1,t -0.177 -0.255 -0.033 -0.057 -0.573 -0.169 -0.195 0.071 4

p-value 0.000 0.000 0.620 0.589

ψi,q−1,t 0.044 0.076 0.029 0.022 -0.008 0.048 0.075 0.332 8

p-value 0.000 0.000 0.022 0.171

S+
i,q,t 0.248 0.113 0.449 0.389 -0.2 0.115 0.202 0.741 4

p-value 0.000 0.184 0.002 0.006

S−
i,q,t -0.176 -0.075 -0.832 -0.054 -1.008 -0.05 -0.216 0.226 6

p-value 0.000 0.212 0.000 0.449

N 22 14 4 4

CD -1.129 -1.163 -1.267

Av. Corr. -0.015 -0.016 -0.016

BIC -0.894 -0.849 -0.409

R-square 0.7 0.62 0.76 0.72 0.45 0.79 0.74 0.95

Hom. 2.436 -0.154 -1.199 -1.456

Regression results for ...
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Table 2: ECB - GDP

Variable Pooled Group 1 Group 2 Group 3 Min Med Mean Max # sig

ρi,q−1,t -0.033 -0.128 -0.614 -0.159 -0.614 -0.307 -0.281 0.194 12

p-value 0.219 0.002 0.209 0

ψi,q−1,t 0.028 0.029 0.017 0.024 -0.031 0.022 0.026 0.083 11

p-value 0 0 0.711 0

S+
i,q,t 0.341 0.212 -0.682 0.315 -0.682 0.214 0.161 1.088 6

p-value 0.001 0.014 0.459 0

S−
i,q,t -1.034 -1.034 -0.106 -0.408 -1.144 -0.211 -0.271 0.195 11

p-value 0 0 0.909 0

N 31 10 1 20

CD -1.598 -2.996 -1.474

Av. Corr. -0.012 -0.026 -0.012

BIC 0.488 0.342 -1.106

R-square 0.2 0.75 0.44 0.44 -0.02 0.87 0.81 0.96

Hom. 15.796 10.214 0 13.127

Regression results for ...

Table 3: ECB - HICP

Variable Pooled Group 1 Group 2 Group 3 Min Med Mean Max # sig

ρi,q−1,t -0.205 -2.173 -0.196 -0.082 -2.173 -0.267 -0.327 0.128 11

p-value 0 0.015 0 0.457

ψi,q−1,t 0.012 0.094 0.011 0.011 -0.023 0.015 0.022 0.094 6

p-value 0 0.161 0 0.125

S+
i,q,t -0.174 -1.232 -0.099 -0.885 -1.416 -0.122 -0.221 0.655 3

p-value 0.015 0.351 0.087 0.047

S−
i,q,t -0.264 -0.416 -0.203 -0.653 -0.628 -0.208 -0.217 0.141 10

p-value 0 0.524 0 0

N 31 1 28 2

CD 0.94 -1.42 -1.016

Av. Corr. 0.005 -0.014 -0.009

BIC -1.07 -1.03 -0.834

R-square 0.67 0.65 0.71 0.84 0.53 0.82 0.8 0.93

Hom. 0.877 0 0.962 0.884

Regression results for ...
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