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Abstract

In this paper, we examine the results of GDP trend-cycle decompositions from
the estimation of bivariate unobserved components models that allow for correlated
trend and cycle innovations. Three competing variables are considered in the bivariate
setup along with GDP: the unemployment rate, the inflation rate, and gross domestic
income. We find that the unemployment rate is the best variable to accompany GDP
in the bivariate setup to obtain accurate estimates of the cycle. We show that the key
feature of unemployment that allows for precise estimates of the cycle of GDP is that
its nonstationary component is “small” relative to its stationary component. Using
quarterly GDP and unemployment rate data from 1948:Q1 to 2013:Q4, we obtain the
trend-cycle decomposition of GDP and find no evidence to reject orthogonality between
trend and cycle components.
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1 Introduction

When can we trust trend-cycle output decompositions? Univariate studies, such as Mor-
ley et al. (2003) (MNZ hereafter), typically find a large negative correlation between the
innovations of trend and cycle as well as small and economically unimportant business cy-
cles. However, the Monte Carlo studies by Basistha (2007) and Wada (2012) show that this
strong correlation is spurious. In particular, they find that the correlation is estimated to
be large even when it is zero in the data generating process assumed in the Monte Carlo
experiment. As explained by Wada (2012), the reason the univariate estimation yields this
(incorrect) result turns on the assumption of a positive definite variance-covariance matrix
of the innovations, which makes the likelihood function of the unobserved components (UC)
model have its global maximum at somewhere other than the true parameter values.

In contrast to the results from univariate studies, studies that include additional vari-
ables such as inflation or unemployment typically find estimates of the cyclical component
of output that are largely conventional, closely resembling, for example, estimates published
by the Congressional Budget Office (CBO). Moreover, estimated correlations between GDP
trend and cycle are smaller than in MNZ and often statistically insignificant. Early examples
include Clark (1989), who added the unemployment rate, and Roberts (2001), who added
inflation and hours to the model and estimated separate trends for hours and productivity.
Both these studies found the trend-cycle correlations to be small and statistically insignif-
icant. Basistha and Nelson (2007) and Basistha (2007) focus on inflation as an additional
variable. They find trend-cycle correlations that were larger than in Clark and Roberts but
smaller than in MNZ; their estimated business cycles are conventional. Basistha (2007) per-
formed a set of Monte Carlo simulations to examine the usefulness of a bivariate set up of
the kind in Basistha and Nelson (2007). Results indicated that a univariate specification is
not able to identify the correlation coefficient between trend and cycle innovations, whereas
the bivariate setup yields an estimated correlation coefficient that is close on average to the
true correlation.

The broad consensus among multivariate studies is encouraging, but the experience with
univariate decompositions suggest that it is important to examine the small-sample prop-
erties of trend-cycle estimators. In this paper, we use Monte Carlo experiments to explore
under what conditions an auxiliary variable will be helpful for identifying the business cy-
cle. We examine three specific set-ups, one using an auxiliary variable designed to resemble
unemployment, another with a variable resembling inflation, and a third that amounts to
using two readings on output, meant to resemble the use of gross domestic income (GDI) as
an auxiliary variable.

We find that there is considerable variation in the ability of these auxiliary variables to
distinguish business cycles. In particular, for some auxiliary variables, the econometrician
can obtain spurious estimates of the correlation between trend and cycle, similar to those
obtained by MNZ. In particular, if both variables are nonstationary and resemble GDP—
for example, if the bivariate model included both GDP and GDI—spurious results similar
to those of univariate studies are a risk. If the other variable in the bivariate analysis is
stationary—for example, resembling inflation—we show that spurious results can obtain as
the auxiliary process becomes more persistent. Thus, simply adding an auxiliary variable
appears not to be sufficient to allow the proper identification of trend and cycle, even if it is
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stationary.
We find, however, that if the auxiliary variable in the bivariate analysis resembles the

unemployment rate, the estimation results can be trusted, even if that variable contains a
unit root. Based on our experiments, it appears that the key reason the unemployment
rate is well-suited to help distinguish the trend and the cycle is that the the variance of the
unit root in the unemployment rate is relatively small compared to variance of its cyclical
component.

Motivated by our Monte Carlo results, we use GDP and unemployment rate data to
estimate a bivariate UC model. As in other studies using the unemployment rate, we find
a conventional cyclical component of GDP, similar to that published by the CBO. The
estimated cycle has a pronounced hump-shaped pattern and complex roots, with a period of
7.8 years. We also find that there is no evidence to reject the assumption of orthogonality
between trend and cycle components of GDP. That result is suggested by standard statistical
tests, and we find in our Monte Carlo work that the size and power of these tests are correct.

The paper is structured as follows: Section 2 presents a review of the literature on
trend-cycle decompositions with UC models. In Section 3, we present the characteristics
of the bivariate UC models we will examine. Section 4 presents the results of our Monte
Carlo experiments. In Section 5, we estimate a bivariate UC model including GDP and
unemployment data and test for significance of the correlation between trend and cycle
components. Section 6 concludes.

2 Contacts with the Literature

Clark (1987) was among the first to use the Kalman filter to decompose GDP into
independent nonstationary trend and stationary cycle components. Clark’s estimates implied
that much of the quarterly variability in U.S. economic activity can be attributed to a
stationary cyclical component. By contrast, Nelson and Plosser (1982), found that most of
the variation in U.S. economic activity can be attributed to a nonstationary trend component.
A central assumption of Clark’s estimation was the orthogonality between trend and cycle
components; by contrast, the method of Nelson and Plosser (1982) places no restrictions on
the correlation between trend and cycle.

In a subsequent paper, Clark (1989) proposed considering GDP and the unemployment
rate in a bivariate UC model to decompose GDP into trend and cycle components, and
allowing a nonzero correlation between trend and cycle innovations. In this case, the trend
and cycle disturbances are disentangled by assuming that the cyclical component of output
can be estimated from unemployment data through an Okun’s law relationship. The esti-
mation of the model with U.S. data provides some evidence in favor of the hypothesis that
innovations in the trend and cyclical components are independent: the 90 percent confidence
interval for the correlation is [-0.4,0.3].

Kuttner (1994) pursued an alternative bivariate approach, adding inflation as an ob-
servable and relating inflation and the cycle through a Phillips curve relationship. Kuttner
found a business cycle that was similar to Clark (1989). However, Kuttner did not allow
for correlation between trend and cycle. Following Kuttner, Roberts (2001) also included
a Phillips-curve relationship and further decomposed output into hours and productivity
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components. Hours and output per hour are each divided into trend and gap components,
and the gap affects inflation through a Phillips curve. Both Roberts and Kuttner found
that estimates of the trend-cycle decomposition were not much affected by the addition of
inflation. In addition, Roberts found that the correlations between trend shocks and the
cycle were not statistically significant at conventional levels.

MNZ carefully explored identification in the univariate UC model. They showed that the
unrestricted ARIMA(2,1,2) representation of the UC model implies second moments that
can be matched uniquely to the second moments of the UC model. The estimation of the
cycle through both the Beveridge-Nelson decomposition of the ARIMA(2,1,2) model and a
univariate UC model allowing for correlation between trend and cycle yield a decomposition
where the cycle is mostly noise and most of the variability in GDP occurs through its trend
component, similar to Nelson and Plosser (1982).

Basistha and Nelson (2007) estimate a bivariate model with inflation and GDP as observ-
able variables and the output gap influences inflation in a way resembling the New Keynesian
Phillips curve, allowing for a dense variance-covariance matrix of the shocks. They find that
the GDP trend and cycle innovations are negatively correlated, as obtained by MNZ, albeit
with a smaller correlation. Their estimated cycle is nonetheless conventional. The authors
extend the model to include the unemployment rate as an additional observable and incorpo-
rate an Okun’s law relationship. Results are similar to those when only inflation is included
as an additional observable in the UC model. As noted in the introduction, Basistha (2007)
performed a set of Monte Carlo simulations that showed that while a univariate specification
is not able to identify the correlation coefficient between trend and cycle innovations, a bi-
variate setup similar to Basistha and Nelson (2007) yields an estimated correlation coefficient
that is close on average to the true correlation.

Perron and Wada (2009) estimated a univariate UC model to decompose GDP into trend
and cycle incorporating a break in the drift term of the trend in the year 1973. When the
break is incorporated, the model that assumes a zero correlation between trend and cycle
innovations yields a variance of the trend innovation equal to zero, whereas the model that
allows for correlation between trend and cycle innovations yields a correlation equal to +1.
The authors state that this last result is expected if the true value of the variance of the
trend innovation is zero, since the covariance parameter between the shocks is not identified.
In such cases, as discussed by Watson (1986), the trend-cycle decomposition is well identified
but the fact that the Kalman filter minimizes the mean-squared error of the estimates of
the state vector implies that a perfect correlation will result, since it allows for a perfect
fit to the state vector. That is, when the break is allowed, the trend-cycle decompositions
(including the Beveridge-Nelson decomposition) yield a cycle that is persistent and explains
most of the variations in GDP, as opposed to MNZ’s findings.

Building on the results of Perron and Wada (2009), Wada (2012) noted that a univariate
UC model of the type proposed by MNZ, but for a stationary process, is likely to yield a
correlation coefficient between trend and cycle innovations of -1 when positive definiteness
of the variance-covariance matrix of the trend and cycle innovations is imposed, even when
the innovations are uncorrelated. This occurs because, under no correlation between the
trend and cycle shocks, the likelihood function of the UC model has its global maximum at
somewhere other than the true parameter values.
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3 UC Models for Trend-cycle Decompositions

We first present the basic structure of the unobserved-components trend-cycle decom-
position and then examine three specific bivariate extensions. We explain the mechanism
through which the models estimate the trend and cycle components, and the assumptions
in terms of parameter configurations.

3.1 The basic UC model

yt = τyt + ct (1)

τyt = µy + τy,t−1 + ηyt (2)

ct = φ1ct−1 + φ2ct−2 + εt, (3)

In this setup, {yt} is the log of GDP, {τy,t} is its unobserved trend, assumed to be a random
walk with mean growth rate µy, and {ct} is the unobserved stationary cycle. The roots of
1− φ1z − φ2z

2 = 0 are outside the unit circle, and {ηyt} and {εt} are potentially correlated
disturbances.

In the univariate case, the variance-covariance matrix of the disturbances is:

[

εt
ηyt

]

∼ iid N

(

02×1,

[

σ2

ε ρηyεσηyσε

ρηyεσηyσε σ2

ηy

])

. (4)

In early work with this model, Clark (1987) and Watson (1986) assume that ρηyε = 0—
that is, that trend and cycle were orthogonal. By contrast, MNZ allowed ρηyε to be non-zero,
and found that it was close to -1. As noted above, however, Wada (2012) and Basistha (2007)
have shown that this estimate was spurious, raising questions about the ability of a univariate
approach to estimate correctly ρηyε. We now consider several bivariate models that may allow
trend and cycle to be decomposed even in the presence of nonzero correlation between trend
and cycle disturbances.

3.2 Bivariate UC Model: GDP and the unemployment rate

Clark (1989) proposed extending the univariate UC model of GDP to include the unem-
ployment rate in the following fashion:

ut = τut + θ1ct + θ2ct−1 (5)

τut = τu,t−1 + ηut, (6)

and variance-covariance matrix:




εt
ηyt
ηut



 ∼ iid N



03×1,





σ2

ε ρηyεσηyσε ρηuεσηuσε

ρηyεσηyσε σ2

ηy
ρηyηuσηyσηu

ρηuεσηuσε ρηyηuσηyσηu σ2

ηu







 . (7)
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Here, {ut} is the unemployment rate and {τut} is its unobserved trend, assumed to be a
random walk with zero drift.

In Equation (5), the unemployment rate is decomposed into a trend and a cyclical com-
ponent, with the cycle of output allowed to affect the unemployment rate both contempo-
raneously and with a lag, reflecting the well-known characterization of the unemployment
rate as a lagging indicator (see Stock and Watson, 1998). The model allows the correlations
between the cycle and trend innovations of GDP, ρηyε, and the unemployment rate, ρηuε, to
be nonzero, as well as the correlation between the two trend shocks, ρηyηu .

There are a number of ways to interpret this model. One is that the system of Equations
(1)-(3) and (5)-(7) forms a factor model, with {ct} the common factor, normalized so that
its effect on {yt} is contemporaneous with a coefficient of one. Another interpretation of
Equation (5) is Okun’s Law, with the unemployment gap related to the output gap with a
lag.

3.3 Bivariate UC Model: GDP and the inflation rate

Another alternative introduces inflation:

πt = τπt + δct (8)

τπt = β0 + β1πt−1 + ηπt, (9)

with β1 ∈ [0, 1], β0 = 0 if β1 = 1, and





εt
ηyt
ηπt



 ∼ iid N



03×1,





σ2

ε ρηyεσηyσε ρηπεσηπσε

ρηyεσηyσε σ2

ηy
ρηyηπσηyσηπ

ρηπεσηπσε ρηyηπσηyσηπ σ2

ηπ







 . (10)

Here, {πt} is the inflation rate, {τπt} is its unobserved trend, which may be a stationary
process when β1 < 1, or a random walk without drift when β1 = 1 and β0 = 0.

This model incorporates a Phillips curve relationship (Equation (8)), where the cyclical
component of output helps predict inflation. It also incorporates the notion of inflation expec-
tations in the process {τπt}, where expectations are specified as adaptive, hence, a function
of lagged observed inflation.1 Kuttner (1994) also introduced inflation, with correlations be-
tween innovations set to zero and inflation modeled as an invertible MA(3) process. Basistha
(2007, 2009) assumed that inflation was stationary and allowed for correlated trend-cycle in-
novations, while Roberts (2001) assumed that inflation followed a random walk without drift
and tested for correlations among the innovations.

1Another paper that incorporates a Phillips curve relationship in the estimation of the output gap is
Basistha and Nelson (2007). In place of lagged inflation, these authors included a survey measure of inflation
expectations in Equation (9) and so did not need to confront the question of the stationarity of inflation.
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3.4 Bivariate UC Model: GDP and GDI

A third way to obtain trend-cycle decompositions involves GDP and GDI, as follows:

xt = τxt + ct (11)

τxt = µ+ τx,t−1 + ηxt, (12)

and




εt
ηyt
ηxt



 ∼ iid N



03×1,





σ2

ε ρηyεσηyσε ρηxεσηxσε

ρηyεσηyσε σ2

ηy
ρηyηxσηyσηx

ρηxεσηxσε ρηyηxσηyσηx σ2

ηx







 . (13)

In this specification, {xt} is the log of GDI, {τxt} is its unobserved trend, assumed to be
a random walk with mean growth rate µ, which is assumed to be the same for GDP, and
{ct} is the common unobserved stationary cycle. Fixler and Nalewaik (2007) and Nalewaik
(2010) have been leading proponents of GDI as a measure of aggregate economic activity.
Fleischman and Roberts (2011) include both GDP and GDI along with other indicators in
their trend-cycle model. The correlation coefficient ρηyηx captures the co-movements between
the trends, and the coefficients ρηyε and ρηxε allow for separate trend-cycle correlations for
GDP and GDI.

4 Monte Carlo Exercises

In our Monte Carlo experiments, we simulate each of the three bivariate models intro-
duced in the previous section 3,000 times and estimate them by maximum likelihood using
the Kalman filter. We focus mainly on two characteristics of the estimation: The properties
of the estimated coefficient ρ̂ηy ,ε, and the properties of the cycle, namely the percent of the
variation in GDP growth that is explained by the variance of the cycle, as implied by the
estimated autoregressive coefficients φ̂1 and φ̂2 and the estimated variances σ̂2

ε and σ̂2

η .

4.1 Monte Carlo Exercise: GDP and the unemployment rate

To perform the Monte Carlo experiment, we simulate the model in Equations (1)-(3)
and (5)-(7) using the parametrization shown in Table 1. The central question is whether
standard maximum-likelihood techniques can recover the correct values of the correlations
between trend and cycle—in this case, ρηyε and ρηuε. As emphasized by Wada (2012) and
Basistha (2007), standard univariate techniques can find large estimates of these parameters
even when the true values are zero. In the data generating process, we therefore begin by
assuming that ρηyε and ρηuε are zero. The values of φ1 and φ2 imply that the cycle will
display a hump-shaped pattern; in this case, there are complex roots implying a duration of
the cycle of about 25 periods. Its standard deviation is 2.16 and the variance of the cycle
explains about 90.5 percent of the variation of GDP growth. The calibration chosen for the
process that represents GDP is close to the results obtained by MNZ in the uncorrelated
setup of their paper (labeled UC-0). The calibration for the process that represents the
unemployment rate is consistent with Fleischman and Roberts (2011).
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Table 1: Parameter Values - Bivariate UC model: GDP and the unemploy-
ment rate

Parameter Value

µy 0.8

φ1 1.5

φ2 -0.6

σε 0.6

σηy 0.7

ρηyε 0

θ1 -0.40

θ2 -0.25

σηu 0.1

ρηuε 0

ρηyηu 0

With the data generated by the bivariate specification in Table 1, we repeatedly estimate
the unconstrained UC model using maximum likelihood. Figure 1a shows the distribution of
the estimated correlation coefficient ρ̂ηyε obtained from the simulations for sample sizes n =
50, 100, 200, 1000. The distribution of the maximum likelihood estimator of the correlation
coefficient between the trend and cycle innovations of GDP has a conventional shape, with
the mass of the distribution concentrated around the true coefficient value as the sample
size increases. For typical U.S. quarterly sample sizes or around 200, results are reasonably
precise.

The shape of the distribution of the estimator of the trend-cycle correlation coefficient
under this bivariate setup contrasts sharply with the distribution of the same correlation
coefficient when a univariate estimation that includes GDP only, as in MNZ, is used. In
Figure 1b, results are reported based on data generated with the same parameters as in
Table 1, but omitting the unemployment rate as an observable in the estimation. As can be
seen, the maximum likelihood estimation of the univariate UC model implies an estimated
trend-cycle correlation coefficient that has a distribution with masses close to -1 and +1.
The results in Figures 1a and 1b suggest that estimation of the bivariate UC model that
includes the unemployment rate substantially improves the small sample properties of the
estimator of the trend-cycle correlation coefficient.

We also simulate the bivariate UC model of this section assuming that there is important
correlation between trend and cycle—that is, that the results of MNZ hold. In particular,
we simulate the model with the same parametrization of Table 1, except that we also assume
that ρηyε = −0.9 (MNZ’s case) and that ρηyε = 0.9. Figure 2 reports the results of the
bivariate and univariate UC model estimation. The plot shows that the bivariate model also
does a good job at estimating the model when trend and cycle are correlated. The univariate
model continues to give probability masses at the tails. Thus, if the trend and cycle were
correlated, the bivariate model would be able to detected it.
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Figure 1: Frequency Distribution of ρ̂ηyε

(a) Bivariate UC model:
GDP and the unem-
ployment rate
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(b) Univariate UC model:
GDP
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Figure 2: Frequency Distribution of ρ̂ηyε under Different True Values
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Figure 3: Frequency Distribution of the Estimated Period

(a) Bivariate UC model:
GDP and the unem-
ployment rate
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(b) Univariate UC model:
GDP
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Note: The orange line determines the period implied by the parameters φ1 and φ2, which is 25. The implied ratio
var(ct)/var(yt) is 90.5%.

Bivariate Univariate
Sample Size Median Period % var(ct)/var(yt) Median Period % var(ct)/var(yt)
n = 50 18 82.0% 18 83.0%
n = 100 21 87.4% 20 80.0%
n = 200 23 89.2% 21 82.0%
n = 1, 000 25 90.1% 24 88.0%

Another dimension along which the results of the univariate and multivariate UC models’
results differ significantly concerns the properties of the business cycle. While the univariate
setup in MNZ implies a cycle for the U.S. economy with a period of about 10 quarters when
correlation is allowed between trend and cycle innovations, the periodicity of the cycle is
considerably longer in bivariate specifications that allow for correlation between trend and
cycle. For example, the period of the cycle is estimated to be about 28 quarters in Clark
(1989), about 20 quarters in the trivariate setup of Basistha and Nelson (2007), and infinite
in their bivariate setup that includes GDP and inflation only. Figure 3 reports the frequency
distribution of the periods implied by the simulation results, the median estimated period
and the percent of the variation in GDP growth that is explained by the variance of the
cycle. The results in Figure 3a show that, as the sample size increases in the bivariate setup,
the estimated duration of the cycle approaches the implied true duration of about 25 time
periods and an amplitude very similar to that implied by the true parameters.

Figure 3b reports the results from the univariate estimation of the UC model that includes
GDP data only. The results show that the univariate estimation tends to deliver a shorter
cyclical period. It also underestimates the fraction of the variation of GDP growth explained
by the cycle. In particular, with a sample size of 200, the bivariate model is very close to the
correct cyclical contribution while the univariate model understates the cyclical contribution
by about 10 percent. Thus, the addition of the unemployment rate also helps reduce the
bias in the estimation of the period and the amplitude of the cycle. However, benefits are
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Table 2: Parameter Values - Bivariate UC model: GDP and the inflation rate

Parameter Value

µy 0.8

φ1 1.5

φ2 -0.6

σε 0.6

σηy 0.7

ρηyε 0

δ 0.4

β0 1.5

β1 {0.5,0.75,0.95,1}

σηπ 1

ρηπε 0

ρηyηπ 0

not as great as for the estimates of the correlation between trend and cycle.

4.2 Monte Carlo Exercise: GDP and the inflation rate

We next consider the implications for trend-cycle decomposition of adding a variable that
resembles inflation. Here, the model is that specified in Equations (1)-(3) and Equations
(8)-(10); the parameters are shown in Table 2. Parameters that are common with the
previous model—notably, those associated with the trend and cycle in GDP—are the same
as before. We also start by assuming that the correlations between trends and cycle in the
data generating process are zero. The calibration for the process that represents inflation is
consistent with the Monte Carlo exercise in Basistha (2007). The table shows a variety of
inflation persistence coefficients, β1, in the set {0.5, 0.75, 0.95, 0.99}. We simulate inflation
with each of these values keeping the unconditional variance of inflation constant when
inflation is assumed to be stationary.

Figure 4 reports the frequency distribution of ρ̂ηyε. The results indicate that the distri-
bution of the estimated trend-cycle correlation coefficient has masses close to -1 and +1 even
for low values of the persistence of inflation, although the distortion of the distribution is less
severe when inflation is less persistent. These results suggest that if inflation is even mildly
persistent, it may not be the best variable to disentangle the correlation between trend and
cycle components of GDP in a bivariate setup.2

Figure 5 reports the frequency distribution of the periods implied from the results of
the simulations, the median estimated period, and the percentage of the variation in GDP

2Basistha (2007) also considered a bivariate set-up that included inflation. Basistha’s results appear
to indicate considerably greater success using inflation than in Figure 4. However, Basistha reported the
mean of the distribution of the estimated correlation coefficient only and not the full sampling distribution,
obscuring the large masses at the extremes.
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Figure 4: Frequency Distribution of ρ̂ηyε - Bivariate UC model: GDP and the
inflation rate
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growth that is explained by the variance of the cycle. The results show that the duration of
the cycle declines as the degree of persistence of the inflation process increases. The percent
of the variation in GDP growth that is explained by the variance of the cycle is significantly
below the theoretical percent of 90.5 percent, decreasing to about 38 percent when inflation
is stationary but highly persistent. If inflation has a unit root, the percent of the variance of
GDP explained by variations of the cycle is about 73 percent, still well below the theoretical
value.

4.3 Monte Carlo Exercise: GDP and GDI

In this Monte Carlo experiment, we simulate the model in Equations (1)-(3) and (11)-
(13) using the parametrization shown in Table 3. Parameters that are common with the
previous models—notably, those associated with the trend and cycle in GDP—are the same
as before. The correlations between trends and cycle, as captured by ρηyε and ρηxε, are set
to zero. The calibration for ρηyηx is consistent with Fleischman and Roberts (2011).

Figure 6 reports the frequency distribution of ρ̂ηyε. The results show that the distribu-
tion of the estimated trend-cycle correlation coefficient has masses close to -1 and +1. While
these masses are smaller than in the univariate case, they nonetheless indicate that there is
considerable risk of obtaining biased results in this set-up. Thus, as with inflation, these re-
sults suggest that GDI would not be as successful as the unemployment rate in disentangling
the correlation between trend and cycle components of GDP in a bivariate setup.

We also explore how the inclusion of GDI affects the estimation of the period and am-
plitude of the cycle. Figure 7 reports the frequency distribution of the periods implied from
the results of the simulations, the median estimated period, and the percent of the variance
of GDP growth explained by the variance of the cycle. The results show that the median
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Figure 5: Frequency Distribution of the Estimated Period - Bivariate UC
model: GDP and the inflation rate
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Note: The orange line determines the period implied by the parameters φ1 and φ2, which is 25. The implied ratio
var(ct)/var(yt) is 90.5%.

Persistence Median Period % var(ct)/var(yt)
β1 = 0.5 21 69.7%
β1 = 0.75 20 63.3%
β1 = 0.95 18 38.3%
β1 = 1 17 73.2%

Table 3: Parameter Values - Bivariate UC model: GDP and GDI

Parameter Value

µ 0.8

φ1 1.5

φ2 -0.6

σε 0.6

σηy 0.7

ρηyε 0

σηx 0.7

ρηxε 0

ρηyηx 0.4
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Figure 6: Frequency Distribution of ρ̂ηyε - Bivariate UC model: GDP and GDI

−1 −0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ρ̂ηy ,ǫ

F
re

qu
en

cy

duration of the cycle is below the true period and that the cycle does not account for as
much variation of GDP growth as in the data generating process.

4.4 Understanding The Effect of Incorporating the Unemploy-

ment Rate

In this section, we explore why using a variable that resembles the unemployment rate
in a bivariate model leads to improved GDP trend-cycle decompositions whereas adding
variables that resemble inflation and GDI do not. Our conjecture is that the advantage of the
unemployment rate is in the relatively small variance of its nonstationary component relative
to its cycle. To test this conjecture, we conduct a Monte Carlo exercise in which the standard
deviation of the the unemployment rate trend, σηu , varies in the set {0.01, 0.1, 0.6, 1.2} and
the calibration is otherwise the same as in Table 1. Figure 8 shows the results.

As can be seen, increasing the standard deviation of the trend innovation of the vari-
able that resembles the unemployment rate makes the estimates of ρηyε less accurate, and
pushes them in the direction of the univariate estimates. This result helps explain why the
correlation coefficient is poorly estimated in the GDP-GDI bivariate UC model, where GDP
and GDI have the same standard deviation of the trend innovation, which is much higher
than the standard deviation of the cycle. This also explains why, as inflation becomes more
persistent, the correlation coefficient is imprecisely estimated in the GDP-inflation bivariate
UC model. Thus, adding a variable that has a high trend variability compared with the
variability of the cycle would not help to recover the correlation coefficient ρηyε or to give
accurate estimates of the cycle.3

3We also explored the importance of the lagging-indicator properties of the unemployment rate by
conducting a Monte Carlo exercise. We set θ2 = 0 in the bivariate GDP-unemployment model and boosted
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Figure 7: Frequency Distribution of the Estimated Period - Bivariate UC
model: GDP and GDI
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Note: The orange line determines the period implied by the parameters φ1 and φ2, which is 25. The implied ratio
var(ct)/var(yt) is 90.5%.

Median Period % var(ct)/var(yt)
22 84.8%

Figure 8: Frequency Distribution of ρ̂ηyε under Different Values of σηu
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4.5 Size and Power of the Likelihood Ratio Test of Hypotheses

with Respect to ρηyε

In this subsection, we explore the size and power of hypotheses tests with respect to
ρηyε. The aim of the section is to show that the likelihood ratio (LR) test has the wrong
size and no power in the univariate case, while the size and power improve substantially
in the bivariate case that uses the unemployment rate. This finding supports the view
that likelihood ratio tests conducted to determine the statistical significance of the trend-
cycle correlation coefficient in the estimation of a bivariate UC model that includes the
unemployment rate yield correct inferences.

We first consider the ability of the likelihood-ratio test to reject various false hypothesized
values for ρηyε—that is, the power of the test. Two exercises are performed in which we
simulate the bivariate model 1,000 times. First, we simulate the model according to the
benchmark parameter specification in Table 1, that is, assuming that ρηyε = 0, and set
the null hypotheses in the univariate and bivariate estimations as H0 : ρηyε = ρoηyε, where
ρoηyε ∈ {−0.95,−0.9,−0.8,−0.7, . . . ,−0.1, 0.1, . . . , 0.7, 0.8, 0.9, 0.95}. Second, we simulate
the model setting ρηyε = −0.9 and test the null hypotheses as H0 : ρηyε = ρoηyε, where
ρoηyε ∈ {−0.99,−0.98,−0.975,−0.95,−0.925,−0.85,−0.8,−0.7, . . . ,−0.1, 0, 0.1, . . . , 0.7, 0.8,
0.9, 0.95}.

Figure 9 reports the fraction of times the likelihood ratio test rejects the false hypothesized
value, for the univariate and bivariate models, in the two exercises performed. When the
true value of ρηyε is zero, Figure 9a shows that the test based on univariate estimation
has virtually no power to reject hypothesized values of ρηyε greater than -0.5. The power
increases as the value of the hypothesized correlation coefficient approaches the left tail but
still reaches only 33 percent for the null hypothesis H0 : ρηyε = −0.9. Hence, the test based
on the univariate estimation has very low power to reject the false null hypothesis of negative
correlation between trend and cycle.4 The test based on the bivariate estimation, on the
other hand, has power increasing to almost 100 percent as the hypothesized value moves
away from the true correlation coefficient of zero.

When the true value of ρηyε is -0.9, Figure 9b shows that the univariate estimation lacks
the ability to reject almost any false hypothesized value, whereas the bivariate estimation
rapidly approaches a rejection probability of one as the hypothesized values move above the
true value of the correlation. In particular, the bivariate model would reject with probability
one a hypothesized value of zero for the correlation between trend and cycle innovations if
the true correlation were -0.9.

We next compute the frequency with which the likelihood ratio test incorrectly rejects
a true hypothesized value—that is, the size of the test. We simulate the bivariate model
1,000 times according to the benchmark parameter specification in Table 1, except that we
set ρηyε = ρoηyε for ρ

o
ηyε

∈ {−0.95,−0.9,−0.8, . . . ,−0.1, 0, 0.1, . . . , 0.8, 0.9, 0.95}. We consider

the value of θ1 to keep the sum of the two the same. We found that the results were very little affected by this
change. Thus, we conclude that it is predominatly the low variance of the unit root in the unemployment
rate and not the fact that it is a lagging indicator that mostly accounts for its desirability as a cyclical
indicator.

4A possible explanation for the low power of the univariate test may lie in the finding by Wada (2012)
that the likelihood function peaks at a different value than the true correlation.
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Figure 9: Power of the Likelihood Ratio Test
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Note: The power corresponds to a significance level α = 0.05.

Figure 10: Size of the Likelihood Ratio Test
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Note: The size corresponds to a significance level α = 0.05.
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the null hypotheses in the univariate and bivariate estimations as H0 : ρηyε = ρoηyε. Figure
10 plots the size of the likelihood ratio test for the univariate and bivariate models using
a 5 percent significance level. As can be seen, the univariate estimation delivers very low
size for hypothesized values of the correlation coefficient above -0.5, meaning that the test
will not reject the hypothesized true value often enough. For correlations below -0.5, the
size is too large, meaning that the test of the null hypothesis will be rejected too often.56

The bivariate model, on the other hand, keeps the size between approximately 3 percent and
9 percent, close to the chosen value of 5 percent.

5 Estimation Results of the GDP-Unemployment Bi-

variate Model

We use quarterly GDP and unemployment rate data from the St. Louis FRED databases
as observable variables for the period 1947:1-2013:4 to estimate the unrestricted unobserved
components (UC-UR) model in Equations (1)-(7) to extract the trend and the cycle of GDP.
Results appear in Table 4.

Table 4: GDP and Unemployment Bivariate Model Estimates

Estimate Standard Error Z-statistic

µy 0.83 0.04 21.30

φ1 1.58 0.07 21.98

φ2 -0.66 0.06 -10.47

σε 0.67 0.11 5.89

σηy 0.84 0.07 12.60

ρηyε -0.52 0.14 -3.62

θ1 -0.35 0.07 -5.40

θ2 -0.21 0.05 -4.05

σηu 0.24 0.04 5.42

ρηuε 1.00 0.02 66.20

ρηyηu -0.67 0.06 -11.11

LogL = -320.03, BIC = 701.35

The correlation between the innovations of the cycle and trend components of GDP is
estimated to be -0.52, a lower value than the correlation obtained by MNZ, although still

5Based on their simulations, MNZ argue that the size of the likelihood ratio test of the hypothesis
H0 : ρηyε

= 0 is approximately correct. This interpretation is broadly consistent with our findings because
we find that at H0 : ρηyε

= 0, the null hypothesis will not be rejected often enough, making MNZ’s rejection
of the hypothesis all the more convincing.

6Again, the reason for the incorrect size in the univariate case may lie in the fact that the likelihood
function peaks at a value different from the true correlation coefficient.

17



Table 5: GDP and Unemployment Bivariate Model Estimates Imposing ρηyε =
ρηuε = 0

Estimate Standard Error Z-statistic

µy 0.82 0.04 21.33

φ1 1.60 0.05 13.40

φ2 -0.66 0.06 -10.79

σε 0.53 0.06 8.94

σηy 0.66 0.05 13.40

θ1 -0.26 0.06 -4.02

θ2 -0.29 0.08 -3.84

σηu 0.18 0.01 13.12

ρηyηu -0.35 0.15 -2.32

LogL = -320.54, BIC = 691.23

negative and, according to the z-ratio, statistically significant. The coefficients that relate the
unemployment rate to the cycle have the expected signs, implying that the unemployment
rate is countercyclical and a lagging variable. As expected, the correlation between the GDP
and the unemployment trend innovations is negative.7 However, the correlation between the
innovations of the unemployment trend and of the cycle is estimated to be 1, indicating a
corner solution from the optimizer.

Given the counterintuitive and extreme estimate of the correlation between the cycle
and trend innovations of the unemployment rate, we conduct a likelihood ratio test of the
restriction H0 : ρηuε = 0. The log-likelihood value of the restricted model (shown in Table
A1 of Appendix A) is -320.52, and the Schwarz criterion is 696.76. The LR test does not
reject the null hypothesis, while the Schwarz criterion favors the restricted model. With the
restriction ρηuε = 0 imposed, the estimated correlation between the innovations of the trend
and cycle of GDP is very small, and the z-statistic does not reject the null hypothesis ρηyε = 0.
We therefore estimate the proposed bivariate model imposing the constraints ρηyε = ρηuε = 0.
Table 5 shows results with these restrictions imposed. Again, the log-likelihood value is again
not very different from that in Table 4. The joint restriction is not rejected at the 5 percent
significance level, and the BIC very strongly favors the restricted model. We explored the
size of the likelihood ratio test of the joint hypothesis H0 : ρηyε = ρηuε = 0 for this model via
Monte Carlo experiments. The size under a significance level of 5 percent is 3.6 percent. We
also explored the power of the likelihood ratio test at the 5 percent level of significance for the
joint hypothesis H0 : ρηyε = −0.9, ρηuε = 1 and obtained a 99 percent rejection probability.
As a consequence, the estimates in Table 5 are our preferred results.

The estimates of the autoregressive coefficients of the GDP cycle imply a strong hump-
shaped pattern of the responses to a business-cycle shock, similar to the results of Fleischman

7One reason we would expect a negative correlation between the GDP and unemployment trend inno-
vations is that an increase in the unemployment trend likely corresponds to a reduction in long-term labor
supply, which should, in turn, reduce trend output.

18



Figure 11: Bivariate UC-UR Model - Smoothed GDP Cycle Imposing ρηyε =
ρηuε = 0
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and Roberts (2011) and of MNZ in the estimation of the constrained univariate unobserved
components model (labeled UC-0 in their paper). The estimated parameters imply complex
roots, with a period of 7.8 years. The variance decomposition indicates that about 94 percent
of the variations in GDP growth are explained by variations in the cycle. The estimates of the
coefficients that relate the cycle to the unemployment rate, θ1 and θ2, suggest a conventional
Okun’s law relationship, with the unemployment rate reacting to cyclical shocks with a
lag relative to GDP, and a total effect after two quarters of -0.55, not far from conventional
estimates of -0.5 (see Abel et al., 2013). Again, trend innovations of GDP and unemployment
have the expected negative correlation.

The smoothed cycle obtained from this estimation appears in Figure 11 along with the
CBO-implied cycle. The two cycles behave similarly, although the cycle obtained from
our model shows somewhat less variability than the CBO cycle. At the end of the sample
(2013:Q4), our bivariate model predicts that the output gap is less than 1 percent, while CBO
estimates that output is still about 4 percent below its trend. Mechanically, this difference
occurs because our model predicts smaller increases in the trend component of GDP in the
latter years of the sample. This slowdown in trend growth can be seen in Figure 12, which
shows the observed GDP series and its corresponding estimated trend. The GDP trend rises
only 1 percent per year from 2010 to 2013, compared with 2.2 percent per year from 2007
to 2009 (?) and 1.9 percent per year in the three years before that.

Figure 12 also shows the unemployment rate and its trend. The unemployment rate trend
moves up fairly steadily from the beginning of the sample to the mid-1960s and then again
through the 1970s, reaching as high as 7 percent in the early 1980s. The trend then moves
down over the rest of the 1980s and through the 1990s, reaching as low as 5-1/2 percent.
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Figure 12: Observed GDP and Unemployment Rate and Corresponding
Trends
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There is an upward sloping trend from the early 2000s and a faster increase that starts
at the beginning of the financial crisis and lasts for about two quarters. After that, the
unemployment rate trend edges down a bit, to around 6-1/2 percent at the end of 2013.

6 Conclusions

In this paper, we investigated the performance of different bivariate unobserved compo-
nents models to estimate the trend and cycle of GDP. We found that the best variable to
accompany GDP in the bivariate specification is the unemployment rate, which is superior
in performance to two alternatives, namely inflation and gross domestic income. Our results
suggest that the main reason the unemployment rate is especially helpful is that its unit
root component (trend) has a relatively small variance relative to the cycle component. We
estimated the cycle using GDP and unemployment data and found that there is not evidence
against the assumption of orthogonal trend-cycle innovations of GDP and the unemployment
rate. Moreover, our Monte Carlo experiments suggested that the results of our statistical
tests could be trusted.
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Appendix

A Additional Results

Table A1: Bivariate UC-UR Model Estimates ρηuε = 0

Estimate Standard Error Z-statistic

µy 0.82 0.04 21.03

φ1 1.59 0.06 25.23

φ2 -0.66 0.06 -10.63

σε 0.54 0.11 4.90

σηy 0.67 0.09 7.50

ρηyε -0.06 0.36 -0.17

θ1 -0.23 0.15 -1.53

θ2 -0.30 0.09 -3.23

σηu 0.18 0.02 10.68

ρηyηu -0.37 0.17 -2.19

LogL = -320.52, BIC = 696.76
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