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Abstract

This document discusses an estimator for counterfactual distributions when the

variable of interest is censored, which is a characteristic of variables that measure

duration. Under a semiparametric approach, we discuss the validity of the estima-

tion procedure and its finite sample properties. Finally, a decomposition exercise of

the unemployment duration in Spain for the period 2004-2011 suggests that both

variations in socioeconomic characteristics and labor market circumstances play im-

portant roles, but the latter is more relevant to explain the long term unemployment.
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1 Introduction

The central idea in economic analysis is to quantify whether a particular change in the

economic enviroment affects some economic variables of interest. However, in some cir-

cumstances this analysis involves a kind of what if... questions based on hypothetical

situations whose economic consequences are not directly observed in available data. In

economics, experimental data are scarce since designing and running social experiments is

costly in terms of funding and time, and depending on the objective, might be infeasible.

As a consequence, policy analysis literature has been dedicated to estimate potential out-

comes using information from observational studies. There are many ways of estimating

potential outcomes when available data are completely observed, however the case of cen-

sored outcomes has received less attention. In this document, we deal with the estimation

of counterfactual distributions when the variable of interest is censored, which is a usual

feature of micro data related to duration or time-to-event.

From the seminal contributions of Rubin (1974) in causal inference, and Oaxaca (1973)

and Blinder (1973) in decomposition analysis, a number of methodological approaches

implicitly have considered the identification and estimation of counterfactual outcomes1

(for a comprehensive discussion of different decomposition methods and policy evalua-

tion issues see Fortin et al., 2011, and, Imbens and Wooldridge, 2009). Intuitively, a

conterfactual outcome is the hypothetical (or synthetic) outcome resulting of changes in

the economic environment (e.g. the introduction of a economic policy or social program)

which is not directly observed. For instance, to contrast the gender wage discrimination

hypothesis, we would like to compare men and women wages under equivalent circum-

stances. For that, we are interested in estimating the potential outcome defined as the

prevailing women’s wage if this population faces the men’s wage schedule.

The first statistical approaches to estimate counterfactual outcomes focused on study-

ing the average effect by following regression analysis framework2. To have a broader

understanding of the economic policy effects, statistical inference has focused on func-

tionals beyond the mean. Specifically, more general approaches have been concerned
1These techniques have been extensively applied in the context of microdata, e.g. in labor economics

to study the gender discrimination hypothesis or the causal effect of human capital on labor outcomes.
But some macro applications have been also addressed by using quasi-experimental data (see, Card and
Krueger, 1993; Acemoglu et al., 2001; Pesaran and Smith, 2012).

2For a nonparametric approach see for instance Stock (1989).
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about the effect over whole distribution as well as different features of the potential out-

comes’ distributions (DiNardo et al., 1995; Machado and Mata, 2005; Rothe, 2010; Firpo

and Pinto, 2011; Rothe, 2012; Chernozhukov et al., 2013). By modelling the entire dis-

tribution allows to compute distributional effects and quantile effects, and makes feasible

the estimation of a large class of related functionals such as order statistics or Gini index,

and even function-valued statistics as the Lorenz curve.

In observational studies is usual to find that the available data is incomplete. Depend-

ing of the context, incompleteness might be due to different sources such that truncation,

censoring or sample selection. In general, the implementation of the classical statistical

methods might induce to misleading conclusions. Among these types of incomplete data,

right censoring is particularly important mainly when the variable of interest represents

time to event or duration. Right censoring (referred as censoring hereafter) appears in the

context of follow-up studies when durations are partially observed for some individuals

either because the event of interest has not occurred at the ending point or in the case

that they have withdrawn during the study. Many examples of this situation can be found

in economics, namely: unemployment spell, firm’s lifetime, bank failure, school desertion,

among others.

Therefore, our goal is to study a semiparametric estimator of the counterfactual dis-

tribution under censoring. To do so, we take into account a convenient representation of

the marginal distribution as function of the conditional distribution of the outcome given

some covariates (see for instance Rothe, 2010, and, Chernozhukov et al., 2013, CFM

hereafter) as well as the Cox hazard model as natural estimator of the latter one. The

contribution of this paper is twofold. First, under standard ignorability conditions, the

proposed estimator is a flexible procedure to compute treatment effects when the variable

of interest denotes duration, as well as to perform decomposition exercises in the spirit of

Oaxaca-Blinder3.

And secondly, we check the high level requirements studied by CFM under which the

estimator of the counterfactual distribution with censoring is consistent and the inference

through resampling methods is valid. Additionally, we provide evidence about the finite
3Some studies have considered the case of censored variables. For instance, using duration models,

Powers and Yun (2009) extend the Blinder-Oaxaca decomposition to estimate the difference in the average
hazard rate, but they do not focus in the estimation of the whole counterfactual distribution; and instead,
due to the non-linearity of the hazard function, they implement Taylor approximations to express the
difference in hazard rate as a weighted sum of observable quantities.
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sample properties of the counterfactual operator with censoring in two scenarios: in the

case that the censoring mechanism is purely random and when censoring is informative.

CFM proposed the Distribution Regression (DR) method to estimate the conditional

distribution. This method encompasses the discrete transformation of the Cox model

as link function; however, the presence of censoring requires a particular treatment. In

specific, in the discrete version of the Cox model, the dichotomous dependent variable

represents whether an observation is censored, while in the DR, this variable is the relative

location of the observation across distribution function. In this manner, the Cox model

is convenient to control the presence of censoring and, in comparison with DR procedure,

provides some additional practical advantages. First, the distribution function is easily

mapped from the hazard function. Second, the shape is estimated nonparametrically and

all properties of the distribution function, including monotonicity, are naturally obtained.

And lastly, the estimation procedure based on Cox model accommodates to the asymptotic

results recently developed by CFM.

Our results suggest that this estimator covers more general situations than pure ran-

dom censoring. In particular, it is useful not only to estimate counterfactual outcomes

but also to estimate observable outcomes when the independence assumption of duration

and censoring times fails. And also, the estimation procedure is well behaved for differ-

ent levels and patterns of censoring, and for different data generating process. Lastly,

considering a two sample problem to decompose differences in the mean lifetime and the

quartiles, the results are favorable for inference based on bootstrapping techniques.

By performing a decomposition exercise of the unemployment duration distribution

using data from Spain for the period 2004-2011, we obtain that both variations in so-

cioeconomic characteristics and labor market structure play important roles. A detailed

exercise to decompose the structure effect between factors associated to common risk of

being unemployed and effect of the covariates on the probability of leaving from unem-

ployment suggests that the former is quantitatively more relevant, mainly for explaining

the particular transition from unemployment to employment. Moreover, by analyzing sep-

arately the transition from unemployment to employment or being out of the labor force,

we found that structure effect explain the most of the variation of the target statistics,

and factors associated to the common of being unemployment have particular importance

to explain the transition unemployment-to-employment.
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Besides this introduction, the rest of the document is organized as follows. The second

section briefly presents a general framework for decomposition analysis as well as the

basic idea of counterfactual distribution estimation. In turn, the third section discusses

the identification assumptions needed when data are subject to be censored and briefly

presents the Cox model. Some asymptotic results that guarantee validity of the estimation

and inference procedures are checked in the fourth section , while the simulation results

are presented in the fifth section. Finally, the decomposition exercise using data from

Spain for the period 2004-2011 and some final remarks are exposed in the sixth and the

seventh sections, respectively.

2 Conterfactual Distribution: A General Framework

2.1 Counterfactual Outcomes and Counterfactual Distributions

In sake of simplicity, to define what a counterfactual outcome is, we can revisit the orig-

inal idea of Oaxaca-Blinder (OB hereafter) decomposition. Suppose we are interested in

comparing the average wage, YD, between two groups denoting by D, where D ∈ {0, 1}

(e.g. population might be defined by gender, 1 men and 0 women , or for a particular

treatment). By assuming linear relation between the outcome and a set of covariates, and

conditional independence between observables and unobservables, the average difference

across groups can be written as follows:

∆̂Y = X
′
1

(
β̂1 − β̂0

)
+
(
X1 −X0

)′
β̂0 (1)

where XD is the set of observable factors of the underlying population including human

capital variables and socioeconomic characteristics, β̂D’s are the human capital returns

estimated through a Mincer equation for each group. The first term in Equation (1) is

associated to the difference in the human capital returns, while the second refers to the

difference in human capital accumulation. In general, these components are known as

structure effect and composition effect, respectively.

Despite its simplicity, OB decomposition shows the role of counterfactual outcomes

and reveals some identification assumptions that rest behind. In particular, X ′1β̂0 repre-
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sents the counterfactual average wage; that is, the prevailing average wage of propulation

1 if it was paid like population 04. Intuitively, this term is obtained by applying to pop-

ulation 1 the structural form of the outcome for population 0. Such interpretation is

only feasible if the structural form does not vary respect to the covariates, i.e., under the

invariability of the conditional mean to variation in factors distribution and separability

between observables and unobservables. A deep debate on the identifiability assumptions

of the counterfactual outcome in a general framework is addressed by Fortin et al. (2011),

which is summarized in Assumption 1.

Assumption 1. a. Populations 0 and 1 are mutually exclusive groups.

b. The observable outcomes Y0 = m0(X0, ε0) and Y1 = m1(X1, ε1) are properly defined

in terms of observables X and unobservables ε.

c. Overlapping support: if X × E denotes the support of observables and unobservable

characteristics of the underlying population, then (X0, ε0) ∪ (X1, ε1) ∈ X × E.

d. Simple counterfactual treatment.

e. Conditional independe of treatment and unobservables: D ⊥ ε|X.

f. Invariance of conditional distribution

In short, a. allows to interpret Y0 and Y1 as potential outcomes; that is, by keeping

X and ε unaltered, an individual will get Y0 if D = 0 and Y1 if D = 1, but only one

is observed. Part b. guarantees that mD (.) is a correctly specified structural form as

function of observables and unobservables. In turn, c. implies that it is possible to

identify (match) each profile defined by the set of covariates in both population with

positive probability, which ensure the comparability across groups5. Meanwhile, d. rules

out the possibility of getting a different outcome schedules rather other m0 (.) and m1 (.),

and if e. holds, the effects of observable and unobservable are separable (unconfounded),

.

Finally, f. enables to keep constant all the other components when covariates distribu-

tion varies, which validates the estimation of the counterfactual outcome by extrapolating
4Similarly, it can be also interpreted as the average wage that individuals population 0 would have if

they have the characteristics of population 1.
5There are alternative methodologies to decompose the wage gap to the case where the populations

do not have common support. See Nopo (2008).
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the distribution of the covariates. Moreover, part e. also allows to establish a natural link

between policy evaluation literature and decomposition analysis. Under this assumption,

also known as ignorability condition, the distribution of unobservable is not informative

about treatment assignment, implying that conditional distribution of unobservables is

the same across groups. Therefore, as it is pointed out in Fortin et al. (2011, Section 2)

and CFM (lemma 2), the second component in Equation (1) can be interpreted as causal

effect.

There are many ways of making inference on counterfactual outcomes and, in the

most of the cases, literature has focused on the average effect (RIF,QUANTILE TREAT-

MENT). In that sense, instead of focusing on particular feature of the counterfactual

outcome such as the mean or the variance, a appealing approach proposes to estimate the

counterfactual distribution (Rothe, 2010, and Chernozhukov et al., 2013). According to

this approach, the distribution of potential outcomes is estimated as the average of a con-

ditional distribution over the probability measure of the covariates set. Lets denote the

potential outcomes as Y 〈i, j〉 and FY 〈i,j〉 its corresponding distribution function, where j

refers to the set of the characteristics and i is the schedule (payment structure) that such

population faces. So, if i = j, the outcome is directly observed in the data, for instance,

according to the OB decomposition, Y 〈0, 0〉 represents the wage of women.

In such context, we consider two information sets denoted by ΩD which are composed

of nD replicates of the vector (YD, XD), where X is a p-dimentional vector of economic

factors or covariates. A convenient form to write the marginal distribution of the outcome

for D = i, is given by:

FY 〈i,i〉 (y) = E
[
FYi|Xi

(y|Xi)
]

=

ˆ
Xi

FYi|Xi
(y|x) dFXi

(x) (2)

that means that the distribution function can be obtained by integrating the conditional

distribution from Ωi over the support Xi ⊆ Rp.

Equation (2) provides an intuitive way for calculating the distribution of a counter-

factual outcome. Since FYi|Xi
contains all the information related with the structure or

relationship between outcome and factors, it can be integrated over the factors distribu-

tion of the population j in order to obtain the potential outcome of population i if the

economic environment defined by Xi, varies to Xj. Therefore, FY 〈i,j〉, is constructed by
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integrating the conditional distribution of the outcome for the information set Ωi with

respect to the distribution of the covariates under the information set Ωj, which is given

by:

FY 〈i,j〉 (y) =

ˆ
Xj

FYi|Xi
(y|x) dFXj

(x) (3)

The counterfactual operator, given by Equation (3), is well defined as long as X1 ⊆ X0

(Assumption 1. c.). Moreover, this representation accommodates to the presence of

covariates of different type including binary factors and facilitates to consider the case

when censoring is present since all of the censoring mechanism is control trough modelling

FYi|Xi
.

2.2 General Decomposition

In economic analysis, one might be interested in making comparisons between observed

outcomes and counterfactual outcomes. In that sense, setting i = 0 and j = 1, the

distributional effect ∆ can be decomposed as follows:

∆ (y) = FY 〈1,1〉 (y)− FY 〈0,1〉 (y) + FY 〈0,1〉 (y)− FY 〈0,0〉 (y) (4)

= ∆S (y) + ∆X (y)

where ∆X is the composition effect while ∆S is the structure effect at a fixed y. Rather

than focusing on the average effect, one might be curious about other features of the

distribution such as quantiles, higher moments or more general functionals of the data.

Once observed and counterfactual distributions are estimated, the target parameters of

the potential outcome Y 〈i, j〉 can be estimated by empirical integrals or simply inverting

the distribution function for the case of quantiles.

To do so, we consider the following general statistics:

QY (t) = inf {y ∈ R : FY (y) ≥ t} , θ (FY ) =

ˆ
ϕ (y)F (dy) (5)

whereQY is the quantile function, θ is a large class of functionals covering higher moments,

variance, among others; and, ϕ is an integrable function of the outcome. So, quantile effect

and θ-effect can also be defined according to Equation (4). For instance for the case of
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the quantile, we can write:

∆Q (t) = QY 〈1,1〉 (t)−QY 〈0,1〉 (t) +QY 〈0,1〉 (t)−QY 〈0,0〉 (t) (6)

= ∆Q
S (t) + ∆Q

X (t)

2.3 Estimation of Counterfactual Distributions

The crucial issue to compute these decompositions is how to estimate FY 〈0,1〉. According to

Equation (3), by plug-in principle, estimation procedure requires proper estimators of the

covariates and conditional distributions. With respect to the covariates distribution, the

natural estimator of the covariates distribution is the multivariate empirical distribution.

For instance, for X1 we have:

F̂X1 (x) = n−1
1

n1∑
i=1

1{X1≤x} (7)

To deal with censored outcomes, the key point is the estimation of the conditional

distribution. To estimate FY |X , CFM propose two methods: quantile regression and

distribution regression. The former refers to the classical approach by Koenker and Basset

(1978) where the conditional quantile is specified as a linear combination of the covariates.

While Distribution Regression (DR) is a generalization of Foresi and Peracchi (1995) who

model the conditional distribution through a serie of binary choice models defined by the

location of a set of cut offs over the support of the outcome. Specifically, the conditional

distribution at a fixed y can be written as:

FY |X (y|x) = Ψ
(
P (X)′ β (y)

)
(8)

where P is a vector of transformations of X, including non-linear relation between co-

variates, and Ψ (.) is a link function such logit, probit or cloglog6. We adopt a similar

approach by modelling the conditional distribution, instead of the quantiles, through the

hazard function, as it will be presented in detail later.
6By comparing these approaches, CFM point out that distribution regression presents some advantages

respect to quantile regression since it does not involve either inverting function, fine mesh approximation
and/or trimming around the tails of the distribution, and also, it does not require smoothness (more
details about asymptotic properties are obtained by Koenker et al., 2013).
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So, the estimator of the counterfactual distribution is found by plugging-in the empiri-

cal counterparts of the covariates distribution and the conditional distribution in Equation

(3):

F̂Y 〈0,1〉 (y) =

ˆ
X1

F̂Y0|X0 (y|x) dF̂X1 (x) =
1

n1

n1∑
i=1

F̂Y0|X0 (y|xi) (9)

Once the counterfactual distribution is estimated, the same logic applies for distri-

bution effect, quantile effect and θ-effect. CFM develop asymptotics properties of the

counterfactual operator given by (9) and provide the conditions under which bootstrap

methods are valid to perform statistical inference. Their asymptotic results require to

estimate the conditional and covariate distribution at parametric rates and that such es-

timators satisfy a central limit theorem. Regarding the inferential procedure, it is needed

the validity of the bootstrap procedure for estimating limit laws for both conditional

distribution and covariate distribution.

Under certain considerations on the estimation of the conditional distribution and ad-

ditional identification assumptions, the counterfactual operator can be naturally extended

to the case when the variable of interest is subject to be censored. Essentially, quantile

regression and distribution regression do not self-adjust to this feature of the data, but

Cox hazard model turns out in a flexible alternative since censoring is automatically set

and the hazard function is an identifier of the distribution function.

Additionally, the derived conditional distribution satisfies all properties of a distribu-

tion function and does not need any monotonicity arrangement. And, as it will be discuss

later in the fourth section, by applying well known asymptotic results of Cox model, it is

possible to extrapolate the asymptotic properties and inferential procedure of F̂Y 〈i,j〉 to

the case where censoring is present.

3 Notation and Set Up

3.1 Inference based on Censored Variables

In duration (or survival) analysis, the variable of interest represents the number of periods

until an event occurs, e.g., the number of months (or quarters) that an individual is
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unemployed until get a new job or the number of periods that a firm stays operating

before bankruptcy. This variable, denoted by Y , is a non-negative variable described

by the distribution function FY and density function given by fY . Time-to-event is a

dynamic variable that requires to collect information by following the units of analysis by

a fixed period of time.

Due to the sampling scheme or large costs of conducting follow-up studies for long

period of time, it is common that the time to event for some individuals is not available

at the ending point. For instance, in the case unemployment duration, either some workers

might be unemployed in the last follow-up period or they could withdraw during the study

period. As consequence, complete unemployment spells are not directly observable. This

feature is commonly known as right censoring.

In that context, inference is usually focused on the hazard function which is defined

as the instantaneous probability of transition at y given that the duration in the current

state is at least y, that is:

hY (y) =
fY (y)

SY (y)
= −∂ lnSY (y)

∂y
(10)

where SY (y) denotes the survival distribution, that is SY (y) = 1−FY (y). The key point

of the hazard function lies in that it allows to split the role of censored and uncensored

observations such that censored observations only contribute to the survival function.

It is noticeable that survival analysis, in order to facilitate the interpretation of the

results, inference is based on the survival function instead distribution function. Other

function of interest that clarifies the link between the hazard function and survival dis-

tribution is through the cumulative hazard function, which is:

ΛY (y) =

ˆ y

0

hY (s) ds =

ˆ y

0

FY (ds)

1− FY (s−)
(11)

where F (s−) = lim
y↑s
F (y).

To compute all of the aforementioned functions, information about the actual survival

times is required. However, Y is not completely observed. In particular, what we observe

is a set of iid replications from the random vector (T, δ), where T = Y ∧ C are the

observed times which follow the distribution function H, C represents the censoring times
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with distribution function G, and δ = 1{Y≤C} is an indicator function taking value 1 if

Y is observed7. Hence, in order to estimate these quantities additional identifiability

assumptions are needed (Tsiatis, 1975).

For instance, in the univariate analysis it is assume that the censoring mechanism

is purely random, i.e. Y and C are independent8. In that case, the cumulative hazard

function can be identified from the sub-distributions H (y) = Pr (T ≤ y) and H1 (y) =

Pr (T ≤ y, δ = 1). Specifically, if F and G do not have common jumps (see Peterson,

1977, for details) Equation (11) is equivalent to:

ΛY (y) =

ˆ y

0

H1 (ds)

1−H (s−)
(12)

A natural estimator of the cumulative hazard function is given by plugging-in the

empirical analogs of H and H1. This estimator, widely known in the literature as Nelson-

Aalen estimator (Nelson, 1969; Aalen, 1978). Therefore, the survival function is obtained

following Equations (10) and (11), SY = exp (−ΛY ). This estimator of the survival

function is equivalent to the product-limit representation (see Gill, 1980, for details)

provided by Kaplan and Meier (1958), which is given by:

SKMY (y) =
∏
Ti:n≤y

(
n− i

n− i+ 1

)δ[i:n]

, y < Tn:n (13)

where the subindex i : n denotes the i-th order statistic, and [i : n] is the concomitant

associated to Ti:n9. This estimator assigns zero mass whenever an observation is censored,

δ = 0, and self-adjusts the missing mass to the right. In absence of censorship, it is

equivalent to the estimator of the empirical distribution where each observation has mass

1/n.

As it is recognized in survival analysis literature, one difficulty of dealing with censored

data is the identification of the upper tail because it is not possible to make inference
7"∧" represents the minimum operator.
8That imples 1−H = (1− F ) (1−G).
9Kaplan and Meier (1958) show that SKMY is the nonparametric maximum likelihood estimator under

random censoring. In turn, Efron (1967) makes a pedagogical explanation of the Kaplan-Meier estimator
which is denominated redistribute-to-the-right estimator. According to this explanation, it is assigned a
mass of 1/n to all observations. By following each order statistics until getting the first censored, a mass
of 1/n is missed and re-assigned uniformly to the remaining individuals. And the process is repeated with
the subsequent censored observations based on the updated weights.
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on Y beyond the least upper bound τH of the support of H 10. If τH = τF < τG

consistency holds, otherwise relevant information about F on (τG, τF ] will be cut off (Stute

and Wang, 1993). Therefore, in the case when τH = τG < τF , the inference is restricted to(
0, T̃

]
, T̃ ≤ Tn:n < τH . One intuitive solution is to δ[n:n] = 1 (Efron, 1967). In practice,

this correction does not affect the other properties of the distribution function estimator

such as being nonnegative, nonincreasing and right continuous, and reduces the downward

bias inherent to this kind of estimators (see Gill, 1980, and Mauro, 1985). Finally, another

feature of duration variables is the prevalence of ties in the reported survival times. Both

Nelson-Aalen and Kaplan-Meier estimators are conventionally adjust to the presence ties

by ordering such that uncensored observations precede the censored observations, and ties

within survival times or within censoring times are ordered arbitrarily.

3.2 Identification Assumptions and Survival Counterfactual Op-

erator

Our populations of interest are described by the vector (YD, XD, CD). But, we observe

(TD, XD, δD), for each D ∈ {0, 1}. By using the available information, the goal is to es-

timate FY 〈i,j〉. Because Y 〈0, 0〉 and Y 〈1, 1〉 are directly observed, one might be tempted

to estimate their distribution function through the empirical analog which is given by the

Kaplan-Meier estimator in the case of censored data. However, the presence of covari-

ates requires to describe the relation between X and C. By keeping the independence

assumption between Y and C, it is possible to admit relation between economic factors

and censoring mechanism. To do so, we adopt the identification assumption proposed by

Stute (1993).

Assumption 2.
a. YD and CD are independent, and FD and GD have not common jumps.

b. Pr (δD = 1|YD, XD) = Pr (δD = 1|YD).

Assumption 2. a. is the classical independence assumption. In turn, 2. b. describes

the relation of the set of covariates and censoring mechanism. It implies that all relation

between covariates and censoring times is through the survival times; that is, given the
10τH = inf {y : H (y) = 1} ≤ ∞. Similar definitions can be used with respect to F and G.
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actual survival times, there is not information in X affecting C11. In this manner, Kaplan-

Meier estimator is valid for FY 〈0,0〉, FY 〈1,1〉.

But, this approach restricts other channel whereby the covariates affect the censoring

mechanism. Particularly, covariates might contain information about the probability of

withdrew that is not in the actual survival times. For instance, the censoring produced

by reaching to the ending point of the follow-up period might be considered independent

of the occurrence of the event of interest, but it must not be the case if the withdrawal

is consequence of outside options; e.g. in unemployment duration studies, the probability

of going out from the workforce to inactivity or migrate can be influenced by individuals

characteristics. In such case, a feasible assumption, introduced by Beran (1981)12, is given

by:

Assumption 3. YD ⊥ CD | XD

Under Assumption 3, inference based on Kaplan-Meier estimator is not valid; however,

the conditional hazard function is identified. Once the conditional survival distribution

is mapped, marginal survival distribution can be estimated as:

ŜY 〈i,i〉 (y) = E
[
ŜYi|Xi

(y|Xi)
]

=
1

ni

ni∑
j=1

ŜYi|Xi
(y|xj) (14)

This is nothing but the empirical analog of Equation (2) for the survival distribution.

The intuition behind is that the effects of informative censoring is adjusted by estimating

the conditional survival for individuals with similar characteristics since they are facing

the same censoring risk13. Hsu and Taylor (2010) study a similar estimator finding out

that it provides efficiency gains respect to alternative methods and that is robustness

to misspecification with respect to both distributional forms and ommitted covariates.

Morover, Malani (1995) argues that even if the censoring mechanism is random, efficiency

gains are derived of using covariates.

In this manner, under Assumption 3, the survival counterfactual operator allows to
11Stute (1999); Uña álvarez (2004); Sanchez-Sellero et al. (2005). Assumption 2 is also satisfied when

CD is independent of the vector (YD, XD).
12It has been widely implemented in the discussion of numerous estimators of marginal and joint dis-

tributions based on (T, δ,X). See for instance Dabrowska (1987, 1989); Gonzalez-Manteiga and Cadarso-
Suarez (1994); Akritas (1994); Leconte et al. (2002); Lopez (2011).

13Another class of estimators for the survival distribution base on the product-limit representation
using covariates to recover the lost of information can be found in Satten et al. (2001).
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estimate both observed and counterfactual outcomes in the case of informative censoring.

Therefore, in general the counterfactual operator respect to the survival distribution is

given by:

ŜY 〈i,j〉 (y) =

ˆ
Xj

ŜYi|Xi
(y|x) dF̂Xj

(x) =
1

nj

nj∑
l=1

ŜYi|Xi
(y|xl) (15)

3.3 Conditional Survival Distribution

The key ingredient of the counterfactual operator is how to estimate the conditional

distribution. For this, we consider the semiparamtric model by Cox (1975), which has

been widely used in economic analysis and requires minimal distribution assumptions14.

In particular, we implement the following specification for the conditional hazard function:

hY |X (y|x, β) = h (x, β) = h0 (y)φ (x, β) (16)

where h0 is the baseline hazard that depends only on y and φ is a positive function

representing the effect of the covariates on conditional hazard function. It is commonly

specified as φ (x, β) = ex
′β.

Cox (1975) propose to estimate hY |X using the partial likelihood method, which does

not require to specify h0. To do so, denoting r (y) the pool of individuals who are at risk

of failing at period y. The contribution of each observation to the likelihood function, or

the same the probability that an individual change of state at y given that it is in the set

r (y), will not depend on the nuisance parameter, that is:

Pr (Ti = y|r (y) , x) =
hi (x, β)∑

j∈r(y) hj (x, β)
=

ex
′
iβ∑

j∈r(y) e
x′jβ

It is noticeable that here the censoring is properly adapted since censored observations

only contribute to the risk pool (the denominator of the conditional probability). Once β

is estimated, the survival distribution can be computed as follows:

ŜY |X

(
y|x, β̂

)
= Ŝ0 (y) exp(x′β̂) Ŝ0 (y) = exp

(
−Λ̂0 (y)

)
(17)

14Despite the tractability of parametric models, they are at risk of distorting the information in the
data by forcing inappropriate functional forms, and also, carrying out inconsistent estimates whenever
some of these components are misspecified.
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where S0 is the baseline hazard.

Lastly, to estimate Λ0 (y), there are two popular estimator in the literature. The first

and the most commonly used, Λ̂0
B , was proposed by Breslow (1974). While the second

estimator, Λ̂0
KP proposed by Kalbfleisch and Prentice (1973), inspired in the cumulative

hazard of discrete times, is estimated as the sum of the empirical hazard probability

that satisfies the first order condition (or score) of the partial likelihood function. Such

estimators are given by:

Λ̂0
B (y) =

y∑
i=1

1∑
j∈r(yi) e

x′jβ
Λ̂0
KP (y) =

n∑
i=1

(1− α̂i) 1{yi≤y} (18)

where the hazard probabilities, α̂i, solve:

∑
j∈d(yi)

ex
′
jβ

[
1− α̂exp(x′j β̂)

i

]−1

=
∑
l∈r(yi)

ex
′
lβ

and di is the set of individuals changing state at period yi.

Both Λ̂0
B and Λ̂0

KP self-adjust to the presence of ties in the failure time. And also,

as result of their implementation, the conditional survival distribution given by Equation

(17) is consistent and asymptotically normal (for details see Tsiatis, 1975; Andersen and

Gill, 1982; Naes, 1982; Bailey, 1983, 1984, and Gill, 1984).

4 Estimation and Inference

4.1 Validity of the Counterfactual Operator based on Cox model

In order to establish validity of the estimation and inference procedure of the counter-

factual operator given by Equation (15), we verified the fulfillment of the two high-level

requirements studies in CFM, namely: i. the estimator of both conditional distribution

and covariates distribution converge at parametric rate and satisfy a functional central

limit theorem; and ii. bootstrapping methods are valid for estimating the limit laws of

the conditional and the covariates distributions. To do so, we invoke well known results

of he Cox estimator for the conditional survival distribution. As consequence, under

requirement i., the counterfactual operator satisfies a functional central limit theorem,
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while requirements i. and ii. guarantee that bootstrap techniques are valid for making

inference of the counterfactual operator and its smooth related functionals. The latter

result is pertinent since the limit process of the counterfactual operator is nonpivotal.

In addition to the high-level requirements, the following regularity conditions are

needed:

Condition 1. Condition c. in Assumption 1 holds, the sample size nj is nondecreasing

in n, and n/nj → sj as n→∞.

Condition 2. Let F be a class of bounded measurable functions under the metric λj

defined as:

λj =

[ˆ (
f − f̃

)2

dFXj

]1/2

The following regularities hold:

• Define the empirical processes:

Ẑj (y, x) =
√
nj

(
F̂Yj |Xj

(y|x)− FYj |Xj
(y|x)

)
and Ĝj (f) =

√
nj

ˆ
fd
(
F̂Xj
− FXj

)
with f ∈ F . Then:

(
Ẑj (y, x) , Ĝj (f)

)
⇒ (Zj (y, x) , Gj (f))

where (Zj (y, x) , Gj (f)) is a zero mean tight Gaussian process, Zj has uniformly

continuous paths with respect to a standard metric on R1+p and Gj has uniformly

continuous paths with respect to the metric λj on F .

• The map y 7→ FYj |Xj
(y|.) is uniformly continuous with respect to the metric λj.

For the case of the Cox model, Condition 2 is verified following result from Tsiatis (1981)

and Andersen and Gill (1982).

As discussed, under Assumption 3, hY |X and SY |X are identified (see Cox, 1975, for

details). Consequently, by applying the survival counterfactual operator, SY 〈i,i〉 can be

identified. Hence, jointly with Assumption 1 the counterfactual survival distribution

SY 〈i,j〉 is also identified. The crucial point to establish the validity of the proposed pro-

cedure lies in the properties of the conditional distribution estimator. In similar way to
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DR, the conditional distribution based on Cox model depends on the set of parameters β

and on the functional parameter Λ0 (y) which leads the shape of the distribution.

In this regard, Tsiatis (1981) shows that β and Λ0 (.) are consistently estimated at

parametric rate and satisfy a central limit theorem. In particular,
√
n
(
β̂ − β

)
converges

in distribution to a normal random variable with zero mean, while the random function
√
n
(

Λ̂0 (y)− Λ0 (y)
)

converges weakly to a Gaussian process15 (Theorems 3.2 and 6.1,

respectively). As result, in Lemma 6.2, Tsiatis (1981) states that:

√
n
(

Λ̂0 (y) exp
(
x′β̂
)
− Λ0 (y) exp (x′β)

)
⇒ Vx (y)

√
n
{

exp−
(

Λ̂0 (y) exp
(
x′β̂
))
− SY |X (y|x)

}
⇒ Sx (y)

where Sx (y) is a Gaussian process with zero mean and covariance structure given bySY 〈i,i〉

Cov (Sx (y) ,Sx (z)) = SY |X (y|x)SY |X (z|x) Cov (Vx (y) ,Vx (z)) , 0 ≤ y ≤ z ≤ τH

These results guarantee the achievement of requirement i. That implies that the

survival counterfactual operator based on the Cox estimator (ACox, hereafter) satisfies

a functional central limit theorem (that follows from CFM -Theorem 4.1-). In addition,

since SY |X given by Equation (17) is Hadamard differentiable with respect to β and Λ0 (.)

(see for details Freitag and Munk, 2005; McLain and Ghosh, 2009; Chen et al., 2010, and

Hirose, 2011), by the chain rule of Hadamard differentiable maps (der Vaart and Wellner,

2004, Lemma 3.9.3), the counterfactual operator if Hadamard differentiable respect its

arguments. Hence, the related smooth functionals also obey a central limit theorem (see

Corollary 4.2 in CFM for details).

With respect to the inferential procedure, Cheng and Huang (2010) justify the va-

lidity of exchangeable resampling methods for general semiparametric M-estimators16,

which includes the Cox model as particular case (BE SPECIFIC). This verifies the sec-

ond high-level requirement. As Corollaries 5.3 and 5.4 in CFM, this shows that bootstrap

consistently estimates the limit laws of the counterfactual operator for distributions of

observable outcomes and counterfactual outcomes. Using the aforementioned argument,
15Analogous results using counting processes are discussed by Andersen and Gill (1982). Bailey (1983)

shows that, for a fixed β, Λ̂0
B (y) is asymptotically equivalent to the maximum likelihood estimator of the

cumulative hazard function.
16The result holds even when the nuisance parameter is not estimated at

√
n .
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by Hadamard differentiability, this result holds for their smooth functionals.

4.2 Bootstraping Methods with Censored Data

Bootstrapping methods turn out in a practical alternative to perform inference in very

general settings. In addition to the complicated forms of the variance for the real-valued

and specially function-valued parameters (such as the survival distribution), the function-

als based on counterfactual distributions have non-pivotal limit processes. To implement

bootstrap methods, two ingredients have to be taken into account: the method of drawing

the bootstrap sample and the method of forming the confidence intervals.

In the context of censored data, Efron (1981) presents two alternative resampling

schemes that have been recognised in the literature as simple bootstrap method and ob-

vious bootstrap method17. In short, in absence of covariates, simple method consists on

drawing bootstrap samples (T ∗, δ∗) by independent sampling of size n with replacement

and assigning equal mass 1/n at each selected observation; while the obvious method re-

quires to estimate the distribution of the survival times and censoring time18, and then

draw Y ∗ ∼ F̂ , C∗ ∼ Ĝ, and define T ∗ = Y ∗ ∧ C∗ and δ∗ = 1{Y ∗≤C∗} . In absence of

factor and under independence between Y and C, simple method and obvious method

are equivalent19.

To implement obvious method requires the estimation of distribution functions for

survival and censoring times. Thus, simple method has important practical advantages

because it does not require to impose any assumption on structure of the data when the

usual assumptions about the censoring mechanism fail (Efron and Tibshirani, 1986). In

such manner, the implementation of the simple method consists in drawing a random
17Many other resampling methods have been proposed in the censored data literature; however, by

simplicity and asymptotic behavior, Efron’s methods are the most used. For instance, in a comparative
analysis, Akritas (1986) finds out that the alternative method proposed by Reid (1981), which is based
on sampling the weights of uncersored observations, does not produce asymptotically correct confidence
bands.

18For instance, using the Kaplan-Meier estimator. The Kaplan-Meier estimator of the censoring times
can be computed exchanging the role of censored and uncensored observations in Equation (13).

19These resampling methods have been modified in order to consider other characteristics of the cen-
sored data. van Keilegom and Veraverbeke (1997) extend the obvious method including covariates to the
case of forming confidence bands for a nonparametric estimator of the conditional distribution function.
In turn, Wang (1991) generalizes the obvious method when data is also left truncated which in this
context is not equivalent to the simple method. In this regard, Gross and Lai (1996); Bilker and Wang
(1997); Iglesias-Pérez and Gonzalez-Manteiga (2003) indicate that the independence assumptions play a
cricual role for validity and equivalence of the resampling methods.
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sample of (T ∗i , δ
∗
i , X

∗
i ) for i = 1, . . . , n by sampling with replacement and by assigning

mass 1/n at each triplet.

In turn, for the construction of confidence bands, we consider classical methods such

as percentile and hybrid20,21 (see Hall (1988); Efron (1992) for a detailed comparison of

coverage bands construction methods). There is not a general rule to select the proper

method. For the particular case of censored data, considering real-valued and function-

valued parameters estimated through the Cox model, Burr (1994) makes comparative

analysis of bootstrap confidence intervals computed combining both resampling and bands

construction methods. The results reveal that there is no single winner and the pertinence

of each method depends on the target parameter.

5 Monte Carlo Exercises

In order to assess the finite samples properties of the ACOX estimator, we carry out Monte

Carlo exercises. Our target is to determine whether there is an effect of the censoring

level on estimation procedure and how Cox model performs under different data generator

process. To do so, we follow the standard procedures to generate survival times under

censoring in the literature (see for instance Stute, 1993, and Uña álvarez, 2004). For

that, the set of covariates, survival times and censoring times are simulated to define

the observed vector (T, δ,X) under two different Data Generating Processes (DGP). In

particular, we generate durations following the proportional hazard assumption by using

the Weibull distribution and normal times as in Stute (1993). In terms of the censoring

mechanism, we consider situations where censoring variable is independent of (Y,X), and

where censoring is independent conditional to covariates.
20Describing briefly the pivotal quantities, suppose we are interested in forming 100 (1− 2α) % confi-

dence bands for the target parameter θ. Denote the estimated parameter from a bootstrap sample as θ̂∗
and its distribution given by K. The percentile method sets the confidence interval as:(

K−1 (α) , K−1 (1− α)
)

Instead of approximating the distribution of θ̂∗, the hybrid method approximates the distribution of
θ̂ − θ through the distribution of θ̂∗ − θ̂, and define the coverage band as follows:(

2θ̂ −K−1 (1− α) , 2θ̂ −K−1 (α)
)

One important advantage of these methods is that estimation of variances is not needed.
21To the case of function-valued parameters, uniform bands built on Kolmogorov-Smirnov maximal

t-statistic can be applied as well.
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To control censoring levels, scale and shape parameters of censoring times are shifted

to generate censoring levels of 5%, 20% and 50%. Regarding the simulation parameters,

we consider sample sizes of 50, 500 and 2500, and the number of draws is set in 1000.

Finally, by simplicity it is assumed a single covariate following an uniforme distribution

in the (0, 1) interval. The information about the benchmark Monte Carlo exercises is

summarized in Table 1.

Table 1: General Simulation Parameters
Assumption DGP

Y ⊥ C

Weibull
Y ∼WB

(
e2−x, 5

)
C ∼WB

(
e2+υ, 5

)
υ = (0.25,−0.2,−0.5)

Normal
Y = 5 +X + εY , εY ∼ N (0, 1)
C = 5 + εC , εC ∼ N (υ, 1)

υ = (3, 1.5, 0.5)

Y ⊥ C|X

Weibull
Y ∼WB

(
e2−x, 5

)
C ∼WB

(
e2−x+υ, 7

)
υ = (0.45, 0.2,−0.02)

Normal
Y = 5 +X + εY , εY ∼ N (0, 1)
C = 5 +X + εC , εC ∼ N (υ, 1)

υ = (2.5, 1, 0)

Once data is generated, we estimate the the empirical survival distribution of Y ,

denoted by S̃Y . This will be the benchmark for comparison purposes. The global per-

formance is analyzed through three indicators based on the distance between the ACOX

estimator and the empirical survival distribution. To be specific:

MD = max
y∈Ωy

∣∣∣S̃Y (y)− ŜY (y)
∣∣∣ , AD =

1

n

n∑
i=1

∣∣∣S̃Y (y)− ŜY (y)
∣∣∣

MSE =
1

n

n∑
i=1

(
S̃Y (y)− ŜY (y)

)2

where Ω is the information set used in the estimation. First, MD is the maximum

distance. The average distance AD measures the accuracy over all distribution, and,

MSE computes the mean squared error. As results, we report all of the indicators

multiplied by 1000 to facilitate comparisons. ForMD and AD we report the average over

the total draws, while for the latter, it is reported the squared root of the mean value.
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5.1 Lack of Independence

The estimator given by Equation (14) exploits the relation between survival times and co-

variates to estimate properly the survival distribution when the independence assumption

fails. To check the pertinence of implementing the ACOX estimator instead the Kaplan-

Meier estimator when independence assumption is not held, our first simulation exercise

consists on comparing the performance of these estimators. To do so, survival times and

censoring times are assumed to follow Weibull distribution as in Table 1. We compute

the conditional survival distribution according to Equation (17) and the baseline hazard

quantitites using the Breslow’s estimator. In the next section, particular simulations are

performed in order to evaluate finite sample properties of Kalbfleisch-Prentice’s estimator.

As expected, results reported in Table 5 suggest that, under independence assumption,

Kaplan-Meier estimator outperforms the ACOX estimator in absence of censoring and

even when censorship level is slight. But, with medium or heavy censoring levels there

is not important differences between these competing estimators. Moreover, with heavy

censoring level, the performance indicator are marginally smaller for the ACOX estimator.

When conditional independence respect to the factors is considered, it is noticeable

that the bias of the Kaplan-Meier estimator clearly increases as censoring becomes more

substantial and does not decrease importantly with the sample size. In contrast, ACOX

estimator improves as sample size increases. Consequently, ACOX estimator is well be-

haved under multiple variations of the simulation setup.

5.2 Estimation Effect of Censoring

Because the performance of the ACOX estimator can be influenced by the features of

the DGP, as a second stage, to provide some aditional evidence of the estimation effect

of censoring, we implementing different estimators of the baseline hazard function and

different DGP. In particular, we study finite sample properties of the classical estimators of

the baseline hazard function proposed by Breslow (1974) -B- and Kalbfleisch and Prentice

(1973) -KP-. And also, to explore flexibility the Cox model, we follow the underlying

model in Stute (1993) by generating normal times. In these simulation exercises, we keep

the two scenarios of dependence structure between Y and C and implement the DGP

22



described in Table 1.

Table 6 presents the results for the three performance indicators for the case where

survival times and censoring times are assumed independent. Three general results can be

pointed out: i. the implementation Breslow’s or Kalbfleisch-Prentice’s estimators has no

effect when sample is big enough, ii. censorship has effect but it is attenuated by increasing

the sample size iii. ACOX estimator has an aceptable performance as estimator of the

marginal survival distribution even when the proportional hazard assumption fails. The

latter is also reported by Hsu and Taylor (2010).

Respect to the estimation of the baseline hazard, the KP estimator outperforms the B

estimator, mainly in small samples. It is explained by the nature of this estimator since

it is proposed in the context of discrete survival times. However, Such difference vanishes

rapidly as sample size increases. It is importante to note that Breslow’s estimator has

some practical advantages in terms of implementability given that it does not require to

solve complicated non-linear equations as KP estimator.

The performance of the estimator is affected by the censoring level even for large

samples. But, considering loss of information in 50% of the observations, ACOX estimator

shows good accurancy for estimating the unconditional survival distribution. All of these

results also arise for the case of conditional independence (see Table 7).

5.3 Censoring Patterns

One peculiar result from the previous simulation exercise emerges by comparing the eval-

uation indicators across DGPs. In particular, it is observed a relative higher accurancy

when data is generate from a Normal distribution. A quick reasoning leads to identify

that censoring patterns might turn out in a relevant factor. A priori, one might think

that a situation when the most of the lost information is located in the upper part of

the distribution (long durations), affects much more the estimation respect to the case

when the censored observations are uniformly located over durations distribution. That

may depend on how long the follow up time is or on the reasons of withdrawal. Hence,

censoring patterns may vary case to case.

To understand the role of censoring patterns, we take as reference data from Spanish

23



labor market transitions collected by the Survey of Income and Living Conditions (SILC)

which is carried on by European Commission. This survey allows to follow monthly the

individual occupational status for a period of 4 years. We consider the cohorts 2004-2007

and 2008-2011 to contruct the unemployment durations. A particular fact to highlight is

that during this period Spain suffered a deep depression inducing a rise in the unemploy-

ment rate from 11% in 2004 to 21.8% in 2011.

By using information of 1746 and 2454 observations with censoring levels of 17% and

27.3% respectively, we compute the cumulative proportion of censored observation as

function of the quantiles of the observed times. That is, it is constructed a function

representing the percentage of censored observation located below a given quantile of T .

This function is also calculated for two typical draws of the DGPs under Weibull and

Normal distributions. As reference we consider the case when Y and C are independent

and the baseline survival distribution is estimated through Breslow’s estimator. The

resulting functions are presented in Figure 1.

Panels a and b show the patterns observed in SILC and in simulated data at cen-

sorship levels of 20% and 50% respectively. As result, according to SILC data, there is

concentration of censored observations in the upper tail of the distribution. Below the

median, only 26% of the total censored data are located. Respect to the simulated data,

it is observed that both Weilbull and Normal distributed times generate similar patterns

at 20% of censorship level, but differ specially for the case of Normal distribution for data

heavily censored. Therefore, it is appealing to study the role of censoring patterns.

To do so, simulation parameters are re-configured to replicate censoring patterns in

SILC data with levels around 30% (see Table 2). The resulting censoring patterns are

presented in Panel c of Figure 1. In turn, Table 8 reproduces the previous results when

censoring levels are 20% and 50%, and reports the results of simulating SILC censoring

pattern at 30% of censoring level.

These results suggest that the concentration of censored observations affects the es-

timation of the distribution function. It is noticeable that for the case of Normal times,

the improvement of the performance of the ACOX estimator as sample size increases, is

significantly lower when censored observation are concentrated as SILC. It seems natural

given that the estimation of the upper tail is highly inefficient, and that fact is exacer-

bated by the amount of missing mass at the least upper bound of the observable survival
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times.

Table 2: Simulation Parameters: Censoring Patterns

Weibull Y ∼WB
(
e2−x, 5

)
C ∼WB

(
e1.6, 6

)
Normal Y = 15 +X + εY , εY ∼ N (0, 4)

C = 15 + εC , εC ∼ N (1.5, 2)

5.4 Decomposition Exercise of Target Parameters

Since bootstrap techniques are valid to make inference on the survival counterfactual

distribution and its functionals, we run a simulation exercise in order to study the fi-

nite sample performance of decomposing the mean lifetime and the quartiles. Since the

misidentification problem in the upper tail, we truncate in the case of the mean lifetime.

In sake of simplicity, DGP is set such that all difference between the two populations is

due to the covariates distribution. To do so, we consider a covariate X1 generated as uni-

form (0, 1), while X0 is the convolution of three independent uniform distributions in the

interval (0, 1/3). It is assumed that both survival times and censoring times follow Weibull

distribution and are conditionally independent. The distribution of censoring times is

shifted to achieve censoring levels of 30%. In this manner, we define YD ∼ WB (e3−xD , 5)

and CD ∼ WB (e3.17−xD , 5) for samples of 500 observations.

Once the vectors (TD, δD, XD) are computed, we estimate the unconditional survival

distribution for each sample according to Equation (14), and the counterfactual distri-

bution SY 〈0,1〉 which corresponds to the the survival distribution we would observe if

population 0 has the same covariates profile as population 1. The conditional survival

distribution is modelled by using the Breslow estimator. Because all the difference be-

tween the observed populations is given by different covariates profiles, we should observe

no differences between ŜY 〈1,1〉 and ŜY 〈0,1〉 as Figure 2 illustrates (see Appendix).

In order to decompose the target parameters θ we follow the spitrit of the OB decom-

position (see Equations -4- and -6-). That is:

θY 〈1,1〉 − θY 〈0,0〉 = θY 〈1,1〉 − θY 〈0,1〉 + θY 〈0,1〉 − θY 〈0,0〉 (19)

= ∆θ
S + ∆θ

X
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Under the aforementioned parameterization, it is expected that composition effect be

statistically significant and the structure effect equal to zero. In order to check these

hypotheses we compute the coverage rate for the structure effect at zero. For that, we

consider 1000 bootstrap repetitions and 1000 draws of the exercise. In turn, resampling

is executed using the simple method, and coverage bands (at 95% and 90% of confidence

level) are constructed according to percentile and hybrid methods.

In Table 9 we report the results. First, it is noticeable that percentile method tends

to outperform the hybrid method, although the difference is quite small. In the case of

no censoring, results are similar to those reported in CFM. In turn, when censoring is

present no only the level is important but also the difference respect to the censoring level

of the other population. Particularly, the coverage rate is close to its nominal value if the

two populations exhibit similar censoring levels. This is explained by the lost of accuracy

in the upper tail induced by the missing probability mass. In general, the performance of

the ACOX estimator for decomposition exercises is satisfactory.

6 Decomposition Exercise of the Unemployment Dura-

tion in Spain

The recent Great Recession experienced in the most of the developed countries between

the second half of 2008 and 2009 has left tremendous negative numbers, mainly expressed

in the labor markets imbalances. In the US, Greece, Portugal, and specially, Spain, un-

employment rate increased rapidly. In the case of Spain, unemployment rate doubled

from 11% in 2004 to 21.8% in 2011 and reached 25% one year later, the highest levels

in all European Union. This situation was even more dramatic for some subgroups, for

instance, the unemployment rate of young population had more dramatic variations by

changing from 22% up to 53.2% in the same period. This overreaction in the labor market

performance has been attributed to the particular structure of the labor market in Spain

which in the preceding years to the economic downturn , compared with other European

developed countries, was characterized by high immigration and rigid labor markets in-

stitutions (see Aiginger et al., 2011, and, Aceleanu, 2013). That scenario motivates to

quantify the which factors accounting the variation of the main labor markets indicators

(see Elsby et al., 2011; Anderton et al., 2012; Bertola, 2013; Kroft et al., 2013; Tridico,
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2013, and, Junankar, 2014 as reference of some related literature, mainly studying the

case of the US).

To understand the dynamics in the labor market, search-matching theory provides a

pertinent framework (Diamond, 1982; Pissarides, 1979, and, Mortensen, 1986). Accord-

ing to this theory, probability at which a workers escapes unemployment depends on the

arrival offer rate and the probability of accepting that offer. Consequently, this process

involves factors associated to characteristics of the unemployed workers such as human

capital accumulation and reservation wage as well as the labor market situation. For

instance, if a negative economic shock occurs, the pool of unemployed workers increases,

among other reasons, due to the acceleration of the job displacement rate and the reduc-

tion of job creation rate. Moreover, there are new job searchers motivated by reduction

of household income enter to unemployment situation (added worker effect). Therefore,

the stagnation of the leaving rate from unemployment is exacerbated by variations in the

average unemployed profile, which turns out in unemployment situations more persistent

and prolonged.

In view of that complex puzzle, to study the variation in the unemployment profiles,

we take into account changes in unemployed population composition and variations of

factors associated to the labor market structure. In such way, using information from

two cohorts of the SILC, 2004-2007 and 2008-2011, we perform decomposition exercises

in order to study the relative role of individuals characteristics and labor market factors

in the total variation of the unemployment duration profile. In particular, we examine

variations of the average duration of unemployment and variations of the probability of

being a long term unemployed. This analysis allows to identify whether the changes in

unemployment duration profile are heterogeneous across the distribution.

To do so, we take into account a set of explanatory variables commonly use in unem-

ployment duration studies such as gender, age, educational level, tenure, marital status,

whether individual is head of the household and the number of unemployed (see for in-

stance Foley, 1997; Addison and Portugal, 2003; Kuhn and Skuterud, 2004; Biewen and

Wilke, 2004, and, Tansel and Tasci, 2010). While the first three variables control by

human capital characteristics, the rest gives information about the opportunity cost of

being unemployed and the reservation wage. In addition, we include city size and region
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to control by specific labor market characteristics22.

As exploratory analysis, Table 10 presents the mean and standard deviation of the

covariates for each cohort and the results of classical test for differences in the mean. These

tests report differences statistically significant for all of the covariates but age, suggesting

that variation in the population composition might be an important ingredient to explain

changes in the unemployment duration distribution. In particular, it is worth mentioning

that the more important difference is reported in tenure, which provides evidence in favor

of added worker effect.

Taking into account this set of covariates, marginal distribution of unemployment du-

ration is estimated for each cohort as well as the distribution prevailing if individuals

from the cohort 2008-2011 would face the schedule of the cohort 2004-2007, which is esti-

mated by implementing the counterfactual operator ŜY 〈0,1〉. Once marginal distributions

of the potential outcomes are estimated, we focus the analysis on the mean lifetime at 48

months and the probability of surviving as unemployment for long time; particularly, the

probability of being unemployed longer than 12, 24 and 36 months.

Table 3 presents the estimates for the mean life time and the survival distribution

at 12, 24 and 36 months. As general result, it is noticeable that both average duration

and probability of long unemployment spells have increased. In comparison to the period

2004-2007, unemployment duration turns out around 4 months higher at average while

the probability of being unemployed more than 12, 24 and 36 months increases by 8.2,

10.3 and 10.2 percentage points.

In practice, sometimes in unemployment duration studies, or in general about variables

that are censored, statistical inference is made based on a subsample containing only

uncensored observations. To illustrate the kind of misleading inference that this solution

to censoring can induce, the bottom part in Table 3 presents the same estimates when only

uncensored observations are considered. In this case, as expected, lower magnitudes are

obtained because censoring observation tend to happen for longer durations. Moreover,

by comparing across cohorts, it is concluded that the average duration and the probability

of being unemployed for a long period are reduced, which contradicts the aforementioned

results.
22These variables except age and tenure are dummy variables. The reference categories are female,

primary school, other than married, other than household’s head and village, respectively.
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Table 3: Average Duration of Unemployment and Probability of being Long
Term Unemployed

Mean lifetime S(12) S(24) S(36)

Full Sample
2004-2007 10.738 0.227 0.092 0.051
2008-2011 14.699 0.309 0.195 0.153

Counterfactual 12.654 0.285 0.132 0.079

Only Uncensored
2004-2007 7.764 0.135 0.029 0.004
2008-2011 7.166 0.107 0.021 0.002

Counterfactual 8.558 0.166 0.041 0.007

Authors’ calculations.

6.1 Aggregate Decomposition

As first exercise, following Equation (19), we perform an aggregate decomposition to

quantify the contribution of the labor market factors and composition factors in the

variation of the unemployment duration profile. Estimates of this decomposition for the

target statistics are contained in Table 4, which also presents confidence intervals at 90%

built through 1000 bootstrap repetitions by using the percentile method.

Table 4: Aggregate Decomposition. Unemployment Duration in Spain
2004-2011.
Total Structure effect Composition effect

Mean lifetime Difference 3.9610 2.0440 1.9169
CI 90% [3.1958 , 4.7201] [1.0394 , 2.8857] [1.3350 , 2.5337]

S(12) Difference 0.0811 0.0235 0.0575
CI 90% [0.0575 , 0.1073] [-0.006 , 0.0509] [0.0411 , 0.0745]

S(24) Difference 0.1034 0.0636 0.0397
CI 90% [0.0830 , 0.1233] [0.0373 , 0.0878] [0.0263 , 0.0534]

S(36) Difference 0.1018 0.0739 0.0279
CI 90% [0.0829 , 0.1205] [0.0495 , 0.0958] [0.0179 , 0.0392]

Authors’ calculations.

Results reveal that both structure effect and composition effect, in general, play rele-

vant role to explain the variation in the unemployment duration profile. In particular, it

is found that around one half of the variation in the average duration of unemployment is

due to changes in the individual characteristics of the unemployed workers. That implies

that the entrance of less experienced workers, for whom the exit of unemployment takes

longer time, increases the average duration of unemployment in almost two months. With

respect to the structure effect, which can be associated to labor market circumstances such

as labor market tightness and job destruction, turns out significant explaining the other

half of the total variation.

Regarding the probability of having long duration unemployment, evidence is mixed.

In the probability of being unemployed longer than 12 months, composition effect is

approximately 70% of the total variation, while for the probabilities of having 24 and
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36 months, structure effect dominates explaining 61% and 72% of the total variation,

respectively. This is indicating that there is no a monotonic effect across unemployment

duration distribution and that long term unemployed are more severely affected. This

relevance of the duration dependence and less significant role of the composition effect

to explain the recent variation of the unemployment indicators was also documented by

Kroft et al. (2013) in the case of the U.S. in a similar period.

6.2 Decomposing Structure Effect

The convenient representation of the survival distribution under the Cox model admits a

more detailed decomposition of the structure effect. As it was discussed, the conditional

distribution is function of the baseline survival and a set of parameters. Such decompo-

sition allow to separate the effect of the labor market conditions common for all workers

and the structure effect due to the the marginal effect of the characteristics.

In other words, everything else constant, variations in the baseline survival represents

changes in labor market circumstances that are independent of the individuals charac-

teristics, e.g. labor market tightness. In turn, changes in the parameters are related to

individual job search processes. That is, marginal effects show how much labor market

appraises workers’ characteristics and, given these characteristics, how they take decisions

about offers and potential outside options. For instance, because the increasing number of

candidates with low tenure, the relative value of having an additional year of experience

varies, which also modifies the perception of the unemployed about different offers.

In this manner, the detailed decomposition of the structure affect follows the next

representation:

SY 〈1,1,1〉 − SY 〈0,0,0〉 = SY 〈1,1,1〉 − SY 〈0,1,1〉 + SY 〈0,1,1〉 − SY 〈0,0,1〉 + SY 〈0,0,1〉 − SY 〈0,0,0〉

= ∆SCR + ∆SR + ∆X

where SY 〈i,j,k〉 is the survival distribution of the potential outcome considering the baseline

quantity i with set of parameters j and the covariates set k. Therefore, using the same

logic than in the aggregate decomposition, the difference between the underlying survival

distributions can be summed up in three quantities, named: the composition effect, and
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the structure effect is splitted into common risk effect ∆SCR and residual structure effect

∆SR.

The results of the detailed decomposition of the structure effect presented in Table 11

shows the expected signs for common risk effect and residual effect, however, the latter

turns out statistically non significant. This result implies that the economic downturn

increases unemployment duration through macroeconomic channels, but it reduces by

a sort selection effect because unemployed workers might be less selective (Groot and

van der Klaauw, 2013).

Since intuitively the common risk effect can be interpreted as the net variation of

the unemployment duration once all the effects associated to idiosyncratic variations are

discounted, its relative importance states that the structure effect is mainly driven by

aggregate (macroeconomic) factors affecting simultaneously all unemployed workers. In

such way, rather than market selection according to individuals profile, the probability of

leaving from unemployment is guided by a general downturn in the labor market perfor-

mance. Lastly, with respect to the previous results, in the case of the probability of being

long term unemployed, it is found that the common risk effect follows a similar increasing

pattern across unemployment duration distribution.

6.3 Multiple transition Options: Competing Risk Approach

We have studied the unemployment duration taking as reference the time until leaving

from unemployment with no distinction between possible destinations. This limits the

posibility of exploring differences across potential transitions, e.g., the time until getting a

job or the time until be out of labor force (OLF). Such distinction is specially important

for assessing labor policies or studying the behavior of job searchers. For instance, in

order to evaluate the impact of a labor intermediation program whose goal is find a

job, to consider the two type of transitions as the same event might induce misleading

conclusions.

Furthermore, there is a large literature supporting the evidence of spikes in the job

finding rate (Boone and van Ours, 2012; Mortensen, 1977; Katz and Meyer, 1990, and,

Groot and van der Klaauw, 2013, among others), which indicates that individuals have

different considerations to choice between employment and being OLF. Therefore, the
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presence of particular patterns of leaving from unemployment might be identified by

separating the possible transitions as different events.

In order to consider this double nature of the unemployment duration, we use a com-

peting risk model (following the approach of Addison and Portugal, 2003 and Farber and

Valletta, 2013) and compute the aggregate decomposition and detailed decomposition of

the structure effect for each type of unemployment duration. According to the aggregate

decomposition (see Table 12), the total difference follows the same qualitative results than

the previous exercises. In particular, there is a increasing variation in the probability of

being long term unemployed over duration level. Nevertheless, comparing the two pos-

sible transitions, contrasting results are found. While in the transition to employment,

the composition effect plays a relevant role, the structure effect explains the most of the

variation of the target statistics in the transition from unemployment to OLF.

In such context, one might argue that in the unemployment-to-employment transition,

all the variation in the unemployment duration is consequence of the composition effect,

or the same, of the adjustment in the pool of unemployed workers. But with respect to the

detailed decomposition of the structure effect (see Table 13), it is noticeable that, rather

than negligible, structure effect is the sum of two opposite forces where both the common

risk effect and the residual structure effect are significant with similar magnitudes.

Although no significant the two components are positive to the case unemployment-

to-OLF. And the common risk effect tends to be quantitative more important. Besides,

and the common risk effect tends to be quantitative more important, which means that,

during economic slump, unemployed workers delayed the decision of being out of the labor

force as result of a higher opportunity cost.

7 Concluding Remarks

Many fields in economics have focused on studying the effect of policy interventions.

The most recent statistical approaches allow for estimating the distribution of potential

outcomes and computing distributional effects. There are many means for estimating

distributional effects of policy where the related variable is always observable, however

is usual to find that data is not completely observed. Considering the estimation of
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counterfactual outcomes based the classical Cox model, random censoring can be adapted.

It allows for addressing questions related with economic outcomes denoting duration such

as unemployment duration and firms’ bankrupcy.

By combining decomposition analysis literature and identifiability conditions in the

context of censored data, it is found out that the proposed estimator of the counterfactual

distribution is robust to the independence structure between survival times and censoring

times. Taking into account classical assumptions in decomposition analysis and asymp-

totic results of the Cox model, uniform convergence and validity of statistical inference

based on bootstrap techniques are guaranteed for the survival counterfactual distribution

and its functionals.

To assess the global performance in finite sample of this estimator, Monte Carlo ex-

ercises are conducted under for different scenarios of the distribution of survival times

and independence structure respect to the censoring variable. In general, the estimator

of the unconditional survival distribution performs properly. Simulation exercises reveal

that not only censoring level has an estimation effect of the outcome distribution but

also censoring pattern matters. In particular, when simulated data are configured to

replicate observable censoring patterns, the performance of the estimator for the outcome

distribution is favorable.

Lastly, we perform a decomposition exercise using unemployment data from Spain in

order to analyze the variation of the average duration of unemployment and the probability

of being unemployed long term. As result, structure effect explains a half of the variation

of the average duration of unemployment and drives the the variation in the probability of

long term unemployment. A detailed exercise to decompose the structure effect between

factors associated to common risk of being unemployed and effect of the covariates on the

probability of leaving from unemployment suggests that the former plays a more relevant

role mainly for explaining the particular transition from unemployment to employment.
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Appendix

Table 5: Comparison between Kaplan-Meier and ACOX Estimators
Y ⊥ C

Censoring Level Sample Size Kaplan-Meier ACOX

MD AD MSE MD AD MSE

0
50 0.00 0.00 0.00 26.81 9.20 0.39
500 0.00 0.00 0.00 7.61 2.29 0.11
2500 0.00 0.00 0.00 2.39 0.62 0.03

0.05
50 23.54 5.54 0.32 34.92 11.75 0.50
500 7.82 1.81 0.09 10.36 3.00 0.13
2500 2.52 0.53 0.03 3.23 0.83 0.04

0.2
50 94.91 22.99 1.13 97.53 24.43 1.16
500 40.91 7.62 0.39 41.05 7.69 0.39
2500 17.62 2.69 0.15 17.72 2.69 0.14

0.5
50 226.17 54.30 2.62 226.79 53.66 2.61
500 147.41 24.28 1.34 147.06 23.52 1.32
2500 101.99 12.53 0.79 101.98 12.21 0.78

Y ⊥ C|X

Censoring Level Sample Size Kaplan-Meier ACOX

MD AD MSE MD AD MSE

0
50 0.00 0.00 0.00 26.77 9.20 0.39
500 0.00 0.00 0.00 7.62 2.29 0.11
2500 0.00 0.00 0.00 2.39 0.62 0.03

0.05
50 24.75 7.10 0.37 32.71 10.69 0.46
500 14.06 4.52 0.20 9.72 2.64 0.12
2500 11.21 3.80 0.17 3.04 0.72 0.03

0.2
50 80.70 29.71 1.30 54.24 15.98 0.70
500 57.23 21.80 0.92 15.67 4.01 0.18
2500 51.56 18.81 0.84 4.93 1.14 0.05

0.5
50 212.58 82.98 3.50 114.75 32.68 1.48
500 162.56 65.64 2.78 36.54 8.68 0.39
2500 150.83 57.97 2.56 12.86 2.72 0.13
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Table 6: Global Performance ACOX Estimator: Y ⊥ C
Weibull Times

Censoring Level Sample Size MD AD MSE

B KP B KP B KP

0
50 26.75 22.52 9.18 8.22 0.63 0.60
500 7.61 7.48 2.30 2.23 0.32 0.32
2500 2.39 2.38 0.62 0.61 0.17 0.17

0.05
50 34.84 31.29 11.71 10.51 0.71 0.68
500 10.34 10.18 3.00 2.91 0.36 0.36
2500 3.22 3.21 0.83 0.82 0.20 0.19

0.2
50 98.03 93.86 24.46 23.39 1.08 1.05
500 41.18 40.45 7.69 7.59 0.62 0.62
2500 17.73 17.46 2.68 2.66 0.38 0.38

0.5
50 227.41 225.05 53.73 53.09 1.62 1.61
500 147.01 146.76 23.51 23.51 1.15 1.15
2500 101.68 101.59 12.19 12.23 0.89 0.89

Normal Times

Censoring Level Sample Size MD AD MSE

B KP B KP B KP

0
50 14.62 7.46 4.99 2.59 0.22 0.13
500 3.87 4.28 1.40 1.30 0.06 0.06
2500 3.85 3.91 1.08 1.06 0.05 0.05

0.05
50 28.25 23.46 6.97 5.40 0.36 0.29
500 8.61 8.18 2.01 1.99 0.10 0.09
2500 4.17 4.20 1.17 1.15 0.05 0.05

0.2
50 82.44 78.41 18.64 17.79 0.96 0.90
500 27.45 26.66 5.07 4.92 0.27 0.26
2500 9.74 9.50 1.84 1.78 0.10 0.09

0.5
50 162.23 157.60 36.83 36.07 1.83 1.78
500 62.71 61.33 10.87 10.63 0.59 0.57
2500 23.91 23.18 3.66 3.53 0.21 0.20

Table 7: Global Performance ACOX Estimator: Y ⊥ C|X
Weibull Times

Censoring Level Sample Size MD AD MSE

B KP B KP B KP

0
50 26.79 22.55 9.20 8.22 0.39 0.36
500 7.61 7.48 2.29 2.22 0.11 0.10
2500 2.39 2.39 0.62 0.61 0.03 0.03

0.05
50 32.76 29.80 10.69 9.55 0.46 0.41
500 9.70 9.54 2.63 2.54 0.12 0.12
2500 3.04 3.04 0.72 0.72 0.03 0.03

0.2
50 54.32 51.78 16.02 14.85 0.70 0.65
500 15.68 15.43 4.01 3.92 0.18 0.17
2500 4.94 4.93 1.14 1.13 0.05 0.05

0.5
50 115.32 111.99 32.76 31.71 1.49 1.43
500 36.56 36.08 8.69 8.61 0.39 0.39
2500 12.87 12.75 2.72 2.71 0.13 0.13

Normal Times

Censoring Level Sample Size MD AD MSE

B KP B KP B KP

0
50 14.61 7.46 4.98 2.59 0.22 0.13
500 3.88 4.28 1.40 1.31 0.06 0.06
2500 3.85 3.91 1.08 1.06 0.05 0.05

0.05
50 26.56 21.89 6.78 5.11 0.34 0.27
500 7.72 7.52 1.87 1.88 0.09 0.09
2500 4.17 4.23 1.09 1.08 0.05 0.05

0.2
50 75.22 72.44 17.62 16.96 0.88 0.84
500 24.07 23.83 4.70 4.65 0.24 0.24
2500 8.30 8.30 1.65 1.64 0.08 0.08

0.5
50 149.78 146.90 35.71 35.27 1.74 1.70
500 52.93 52.52 9.88 9.82 0.51 0.51
2500 18.81 18.75 3.20 3.19 0.17 0.17
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Table 8: Global Performance ACOX Estimator: Censoring Patterns
Weibull Times

Censoring Level Sample Size MD AD MSE

0.2
50 98.03 24.46 1.08
500 41.18 7.69 0.62
2500 17.73 2.68 0.38

0.5
50 227.41 53.73 1.62
500 147.01 23.51 1.15
2500 101.68 12.19 0.89

SILC (0.3)
50 231.78 42.79 2.36
500 131.57 16.42 1.03
2500 77.20 7.19 0.52

Normal Times

Censoring Level Sample Size MD AD MSE

0.2
50 82.44 18.64 0.96
500 27.45 5.07 0.27
2500 9.74 1.84 0.10

0.5
50 162.23 36.83 1.83
500 62.71 10.87 0.59
2500 23.91 3.66 0.21

SILC (0.3)
50 183.07 32.75 1.84
500 97.32 11.99 0.76
2500 54.03 5.07 0.36

Table 9: Decomposition Exercise: Mean Lifetime and Quartiles
Confidence Level Censoring Levels Truncated Mean Q(0.50)

Pr (δ0 = 0) Pr (δ1 = 0) Percentile Hybrid Percentile Hybrid

95

0.0 0.0 0.961 0.962 0.958 0.953
0.0 0.3 0.954 0.963 0.952 0.940
0.3 0.0 0.963 0.972 0.958 0.944
0.3 0.3 0.952 0.966 0.968 0.944

90

0.0 0.0 0.907 0.913 0.917 0.911
0.0 0.3 0.902 0.911 0.915 0.903
0.3 0.0 0.915 0.923 0.915 0.897
0.3 0.3 0.912 0.917 0.907 0.895

Confidence Level Censoring Levels Q(0.25) Q(0.75)

Pr (δ0 = 0) Pr (δ1 = 0) Percentile Hybrid Percentile Hybrid

95

0.0 0.0 0.946 0.928 0.957 0.935
0.0 0.3 0.965 0.945 0.958 0.940
0.3 0.0 0.968 0.942 0.964 0.931
0.3 0.3 0.963 0.933 0.958 0.930

90

0.0 0.0 0.907 0.882 0.909 0.869
0.0 0.3 0.926 0.897 0.920 0.896
0.3 0.0 0.925 0.897 0.920 0.884
0.3 0.3 0.916 0.886 0.909 0.884

Table 10: Descriptive Statistics. Determinants of Unemployment Duration

Variable 2004-2007 2008-2011 Diff.
Mean Stand. Dev. Mean Stand. Dev.

Gender (male) 0.363 0.012 0.448 0.010 ***
Age 39.837 0.298 39.917 0.253
Primary 0.285 0.011 0.250 0.009 **
Secondary 0.506 0.012 0.517 0.010
University or higher 0.181 0.009 0.200 0.008
Tenure 13.549 0.301 6.841 0.227 ***
Marital staus (married) 0.641 0.011 0.559 0.010 ***
Head of household 0.321 0.011 0.347 0.010 *
Number unemployed 0.133 0.011 0.160 0.008 **

n 1746 2454

Authors’ calculations. *** p<0.01, ** p<0.05, * p<0.1.
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Table 11: Decomposition Structure Effect. Unemployment Duration in Spain
2004-2011.

Structure effect Common risk effect Residual structure effect

Mean lifetime Difference 2.0440 3.8504 -1.806
CI 90% [1.0394 , 2.8857] [0.1629 , 6.7847] [-4.865 , 1.8458]

S(12) Difference 0.0235 0.0793 -0.055
CI 90% [-0.006 , 0.0509] [-0.025 , 0.1689] [-0.144 , 0.0482]

S(24) Difference 0.0636 0.0950 -0.031
CI 90% [0.0373 , 0.0878] [0.0171 , 0.1505] [-0.086 , 0.0449]

S(36) Difference 0.0739 0.0942 -0.020
CI 90% [0.0495 , 0.0958] [0.0339 , 0.1317] [-0.058 , 0.0363]

Authors’ calculations.

Table 12: Competing Risk and Aggregate Decomposition. Unemployment
Duration in Spain 2004-2011.
From unemployment to employment

Total Structure effect Composition effect

Mean lifetime Difference 3.6870 -0.701 4.3883
CI 90% [2.7042 , 4.7945] [-1.812 , 0.6925] [3.5388 , 5.1940]

S(12) Difference 0.0569 -0.047 0.1046
CI 90% [0.0312 , 0.0828] [-0.074 , -0.017] [0.0854 , 0.1228]

S(24) Difference 0.0814 -0.020 0.1016
CI 90% [0.0533 , 0.1104] [-0.051 , 0.0164] [0.0817 , 0.1208]

S(36) Difference 0.1114 0.0201 0.0912
CI 90% [0.0821 , 0.1458] [-0.013 , 0.0602] [0.0711 , 0.1097]

From unemployment to OLF

Total Structure effect Composition effect

Mean lifetime Difference 5.5787 6.4541 -0.875
CI 90% [3.6466 , 7.3021] [4.5196 , 8.4363] [-1.997 , 0.2572]

S(12) Difference 0.0564 0.0748 -0.018
CI 90% [0.0202 , 0.0927] [0.0361 , 0.1169] [-0.043 , 0.0039]

S(24) Difference 0.1765 0.2014 -0.024
CI 90% [0.1214 , 0.2308] [0.1425 , 0.2592] [-0.056 , 0.0076]

S(36) Difference 0.1892 0.2143 -0.025
CI 90% [0.1065 , 0.2617] [0.1361 , 0.2908] [-0.055 , 0.0087]

Authors’ calculations.

Table 13: Competing Risk and Decomposition Structure Effect.
Unemployment Duration in Spain 2004-2011.

From unemployment to employment

Structure effect Common risk effect Residual structure effect

Mean lifetime Difference -0.701 6.0383 -6.739
CI 90% [-1.812 , 0.6925] [1.6904 , 10.142] [-10.94 , -2.027]

S(12) Difference -0.047 0.1201 -0.167
CI 90% [-0.074 , -0.017] [0.0044 , 0.2320] [-0.281 , -0.047]

S(24) Difference -0.020 0.1295 -0.149
CI 90% [-0.051 , 0.0164] [0.0340 , 0.2140] [-0.234 , -0.046]

S(36) Difference 0.0201 0.1495 -0.129
CI 90% [-0.013 , 0.0602] [0.0699 , 0.2160] [-0.198 , -0.041]

From unemployment to OLF

Structure effect Common risk effect Residual structure effect

Mean lifetime Difference 6.4541 5.2269 1.2272
CI 90% [4.5196 , 8.4363] [-2.359 , 13.773] [-7.393 , 8.3034]

S(12) Difference 0.0748 0.0502 0.0245
CI 90% [0.0361 , 0.1169] [-0.084 , 0.2634] [-0.182 , 0.1548]

S(24) Difference 0.2014 0.1666 0.0348
CI 90% [0.1425 , 0.2592] [-0.041 , 0.4075] [-0.207 , 0.2355]

S(36) Difference 0.2143 0.1781 0.0361
CI 90% [0.1361 , 0.2908] [-0.066 , 0.4120] [-0.194 , 0.2529]

Authors’ calculations.
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Figure 1: Censoring Patterns in SILC and Simulated Data
a. Censoring Level 20%
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b. Censoring Level 50%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

%
 C

en
so

re
d 

O
bs

er
va

ti
on

s

Quantile of T

2004-2007 2008-2011 Normal Weibull

c. Censoring Level 30% and SILC Pattern
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Figure 2: Decomposition Exercise: Simulated Survival Distributions
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