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Abstract

This paper investigates the role of genetic distance and data revisions for knowl-

edge spillovers. The basic framework is a model developed by Ertur and Koch

(2007), which accounts for technological interdependence among countries through

spatial externalities and models interdependence via an interaction matrix based

on geographic distance. In contrast, in this paper, data on genetic distance from

Spolaore and Wacziarg (2009) is used for the interaction matrix. It is found that,

whereas in the original model spatial knowledge spillovers from capital investment

were insignificant, with genetic distance, these indirect impact estimates now have

a significant effect on steady-state income per worker. However, the estimation

results imply an implausibly large capital share of income. Finally, the original

version relies on data from PWT 6.1. This data has been extensively revised in

more recent versions of the PWT (Johnson et al., 2013). It is shown that results

for both distance measures are not robust across different versions of the PWT.
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1 Introduction

Countries do not develop in isolation from each other, but are connected and interact

in many different ways. A key aspect of this interdependence concerns technology, in

particular technological knowledge spillovers. Accounting for this technological interde-

pendence both on an empirical and theoretical level requires a notion on how to model

the interaction between countries. Empirical evidence suggests that knowledge spillovers

decline with the geographic distance between countries (Keller, 2002, 136). This insight

has, for instance, been picked up by Ertur and Koch (2007), who develop a theoretical

model of economic growth that incorporates technological knowledge spillovers between

countries. In the empirical part of their paper, they employ a specification which quali-

tatively replicates the effect identified by Keller (2002). However, geographic distance is

only one possible measure to model interaction between countries. The concept is more

general and encompasses “any kind of network structure” (Ertur and Koch, 2011, 236).

For example, data on genetic distance, which is defined as the time, since two populations

have shared a common ancestor (Spolaore and Wacziarg, 2009, 470), can be used to build

this structure. Ertur and Koch (2007) acknowledge this possibility.

This paper contributes to the cross-country growth literature by using the data set on

genetic distance from Spolaore and Wacziarg (2009) to assess the robustness of the em-

pirical results in Ertur and Koch (2007). Spolaore and Wacziarg (2009) demonstrate

that genetic distance has an effect on cross-country income differences. They propose

the following mechanism and also provide empirical evidence consistent with it: Within

populations, characteristics (e.g. habits, implicit beliefs or conventions) are transmitted

across generations biologically and culturally, and genetic distance can be viewed as a

summary statistic that measures a divergence across populations in characteristics that

are slowly changing over time. In the next step, they assume that these differences in

characteristics between populations hinder the diffusion of technology.

Apart from the general feasibility of utilizing genetic distance to assess robustness of the
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results in Ertur and Koch (2007), a second motivation for employing data on genetic

distance is that via this approach interactions between economies might be captured that

geographic distance is missing. For instance, Lindner and Strulik (2014, 18) note (without

any reference to genetic distance) that it might be the case that knowledge exchange

between the United States and Great Britain is higher than between the United States

and Guatemala even though geographic distance would suggest otherwise. By modeling

interaction through genetic distance instead of geographic distance however, stronger

knowledge spillovers between the United States and Great Britain compared to between

the United States and Guatemala would be in line with the data on genetic distance,

as the United States and Great Britain populations are genetically closer to each other

than the ones in the United States and Guatemala. Geographic distance would imply

the strength of the knowledge spillovers to be reversed.

A second contribution of this paper is the assessment of the robustness of the results in

Ertur and Koch (2007) to data revisions. In their econometric analysis, they rely on data

from Penn World Table (PWT) Version 6.1 (Heston et al., 2002). Since the publication

of their article, newer versions of the PWT have become available, and in each update

the data has been revised. Ideally, empirical results should be robust to different versions

of the PWT. However, this is not a foregone conclusion, and Ponomareva and Katayama

(2010) find that conclusions from cross-country growth studies might change, even for

the same period and units of observation, depending on the version of the PWT. More

recently, Johnson et al. (2013) have also investigated this issue. They find that some

data revisions have been relatively minor. For instance, the average growth rate of GDP

over the period 1975-1999 for Morocco was 1.6% when calculating it using PWT 6.1 and

1.7% when basing the calculations on PWT 6.2 (Johnson et al., 2013, Table 1). Other

revisions were drastic, showing high variability in the estimates, as exemplified by the case

of Equatorial Guinea. Taking the data from PWT 6.1, its average GDP growth rate in

the period 1975-1999 was −2.7%, making it the worst performing of 40 African countries

that are covered in both PWT 6.1 and 6.2. On the other hand, for the data from PWT
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6.2, its average GDP growth rate over the same period was 4%, thereby becoming the

second-best performer in the list of 40 African countries after Botswana (Johnson et al.,

2013, 255-256). Hence, the fact that robustness to different versions is an issue for some

studies is not too surprising. However, they also argue, based on the results of a series

of replication exercises for prominent articles investigating economic growth that results

from cross-sectional estimations tend to be robust to changing the version of the PWT.

This paper investigates whether this is also the case for the results in Ertur and Koch

(2007) by estimating the model for the same set of countries and the same time period

(1960-1995), but with data also taken from PWT Versions 6.2 and 7.1. The importance

of checking the robustness of a study’s results to data revisions has been highlighted,

for example, in the debate on the relationship between public debt levels and economic

growth (see Reinhart and Rogoff (2010) and Herndon et al. (2014)).

The third contribution of this paper lies in the quantification of the strength of the indirect

(spillover) effects from e.g. physical capital investment on steady-state per worker income

in the model by Ertur and Koch (2007) through the method suggested by LeSage and

Pace (2009). In the original study, only the magnitude of the direct effects is presented.

The paper is organized as follows: Section 2 introduces the concept of genetic distance,

and Section 3 presents the main building blocks of the model by Ertur and Koch (2007).

In Section 4, the empirical specification and estimation strategy are derived and Section

5 presents and discusses the estimation results. Section 6 concludes.

2 Genetic Distance

Genetic data is increasingly used in economic studies.1 Nonetheless, a brief summary of

relevant concepts might be helpful in order to better understand what genetic distance

actually measures. A gene, i.e. a string of DNA encoding a protein, can exist in numer-
1See, for instance, Spolaore and Wacziarg (2009), Giuliano et al. (2014), Desmet et al. (2011) or

Ashraf and Galor (2013).
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ous forms, and a particular form of this gene is called an allele (Giuliano et al., 2014,

182). Individuals with different alleles may have different observable (phenotypic) traits,

for instance, eye color; although different alleles between individuals need not result in

different observable characteristics (ibid.). It is important to note that the frequency

of alleles is not constant across populations, as this is the information used to calculate

measures of genetic distance between populations (Spolaore and Wacziarg, 2009, 480). In

principle, on which particular genes’ allelic frequency2 this computation is based would

not matter. In practice, however, it is based on neutral genes. These are genes that do

not endow an individual with a selective advantage (Giuliano et al., 2014, 182). This

implies that the measure of genetic distance provides no information about specific genes

that have a direct impact on fitness and survival or income and productivity (Spolaore

and Wacziarg, 2009, 470).

The particular index of genetic distance mainly considered in this paper, FST distance,

measures the probability that the alleles for a gene, selected at random from two popu-

lations, will be different (Spolaore and Wacziarg, 2009, 481).3 For identical allele distri-

butions, this index equals zero, and it increases with differences in the distributions.4 As

Spolaore and Wacziarg (2009) argue, these allele differences increase due to the presence

of random (or genetic) drift. When populations become separated, and for constant drift

rates, genetic distance can be used to measure the time that has passed, since populations

have become separated (or in other words their degree of genealogical relatedness). It is

in this sense that genetic distance can be understood as the time that has elapsed, since

populations have shared a common ancestor. Spolaore and Wacziarg (2009, 470-471)

furthermore hypothesize that genetically more distant populations, have diverged more

strongly in characteristics that are variably transmitted across generations, like habits or

implicit beliefs, and that this divergence hinders, for instance, communication and under-

2A database on allele frequencies is available under: http://alfred.med.yale.edu.
3Data from Spolaore and Wacziarg (2009) on an index with different theoretical properties (Nei’s

distance), which is highly correlated with FST distance, will serve to assess robustness.
4This index from Cavalli-Sforza et al. (1994) uses the frequency of 128 alleles related to 45 genes,

fulfilling the conditions that they are selectively neutral and easy to collect (Giuliano et al., 2014, 183).
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standing and thereby creates barriers to the diffusion of development or technology. They

illustrate this with the example that one learns easier from siblings than from cousins,

but in turn also easier from cousins than from strangers. Applying this line of thought

to the example mentioned in the introduction: The United States are genetically closer

to Great Britain than to Guatemala (the respective pairwise genetic distances are 0.033

and 0.091, respectively) so that with regard to this concept fewer barriers to knowledge

diffusion should exist between the United States and Great Britain than between the

United States and Guatemala.5 Note that the stated genetic distances in this example

are weighted FST genetic distances, taking into account that some countries (e.g. the US),

consist of genetically distant subpopulations (see Spolaore and Wacziarg, 2009, 484-485).

3 Model Setup

The aggregate production for each country i = 1, . . . , N at time t in the model developed

by Ertur and Koch (2007) is described by the Cobb-Douglas production

Yit = AitK
α
itL

1−α
it with 0 < α < 1 (3.1)

where output, Yit, is produced with the three input factors labor, Lit, physical capital,

Kit, and technology, Ait. This function is linearly homogenous in capital and labor. The

aggregate level of technology in region i at time t is described by

Ait = Ωtk
φ
it

N∏
j 6=i

A
γwij
jt . (3.2)

5Considering the geographic distances between the country capitals would suggest otherwise, as
Washington, D.C. is closer to Guatemala City (distance: 3, 007km) than to London (distance: 5, 909km).
The distances are calculated with the spherical law of cosines and R⊕ = 6378.1km as the earth’s equa-
torial radius

dij = R⊕ × arccos[cos lati cos latj cos(longi − longj) + sin lati sin latj ].
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Basically, overall technological progress is assumed to be due to three different factors

in equation (3.2) which are (imperfect) substitutes. The first factor, Ωt, reflects exoge-

nous (neutral) technological progress as modeled in the original contribution by Solow

(1956, 85). In formal terms, this is captured by Ωt = Ω0e
µt, with µ the constant rate of

technological progress and Ω0 the initial level.

The second term models the influence of physical capital per worker, kit = Kit
Lit

, on aggre-

gate technology in country i. The level of technology increases with the level of capital

per worker kit, modeling the assumption that physical capital externalities exist. Their

strength is governed by the parameter φ for which 0 ≤ φ < 1 holds so that perfect knowl-

edge spillovers from capital investment in a given firm in country i to the remaining firms

in this country are ruled out, as some knowledge is “lost in transmission”. Modeling

the assumption that all firms in a region gain a higher level of technology, if one firm

increases its physical capital per worker is due to Arrow (1962) and Romer (1986). The

assumption that these knowledge spillovers should be constrained within a single country

is however tenuous. Why should knowledge diffuse only within a country, but not across

countries? The strength of the spillovers might be dampened (see e.g. Keller (2002) for

empirical evidence), but they should be present nonetheless.

The third factor in equation (3.2) picks this up. From a formal perspective, this factor is a

weighted geometric mean of the level of technology in all countries j = 1, . . . , N connected

to country i. The strength of these cross-border spillovers or spatial externalities is

governed by two factors. The parameter γ, for which 0 ≤ γ < 1 holds, gauges which

fraction of knowledge generated in, for example, country j′ spills over into country i. This

value is the same for all units of observation. The second factor concerns the weights

wij. In general, these are allowed to differ across countries, and they specify the way in

which countries are connected to each other. It is important to note that how strong

country i benefits from knowledge spillovers depends on the way it is connected to all

other countries under consideration. This implies that the net effect on a country’s level

of technology due to spatial spillovers will differ across countries. For a given degree of
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spillovers, relatively isolated countries will benefit less than more integrated countries.

With respect to the spatial weights, it is assumed that these are non-negative, reflecting

that countries might not be connected to each other so that spatial exteranalities are

absent, non-stochastic, implying that the weights are fixed over time, and finite. In

addition, the weights wij lie in the interval [0, 1] and for i = j, wij = 0 holds, excluding

the case of self-influence. Finally, the weights sum to one.6 In sum, the spatial weight

matrix or, more generally, interaction matrix, W, is thus row-stochastic (LeSage and

Pace, 2009, 9-10).

Taking logs of (3.2) leads to

lnAit = ln Ωt + φ ln kit + γ
N∑
j 6=i

wij lnAjt

or written in matrix form for all countries (at time t)

A = Ω + φk + γWA ⇐⇒ A = (I − γW )−1Ω + φ(I − γW )−1k. (3.3)

The equivalence follows, given that spatial dependence is positive γ 6= 0 and that the

inverse (I − γW )−1 exists.7 Using the result (I − γW )−1 = ∑∞
r=0 γ

rW r, the level of

technology for a given country i can be written as

Ait = Ω
1

1−γ
t kφit

N∏
j=1

k
φ
∑∞

r=1 γ
r(W r)ij

jt (3.4)

where (W r)ij are the individual entries in row i and column j of the matrixW , taken to

the power of r. The production function can be written in per-capita terms as yit = Aitk
α
it,

where yit = Yit
Lit

. Inserting the level of technology in (3.4) into this equation leads to

yit = Ω
1

1−γ
t · kuiiit ·

N∏
j 6=i

k
uij
jt , (3.5)

6On these assumptions, see Ertur and Koch (2007, 1036) or Fischer and Wang (2011, 20).
7This inverse exists, if 1

γ is not an eigenvalue of the spatial weight matrix. An application of Gersch-
gorin’s Circle Theorem demonstrates this (Gerschgorin, 1931).
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where uii ≡ α + φ

(
1 +

∞∑
r=1

γr(W r)ii
)

and uij ≡ φ
∞∑
r=1

γr(W r)ij.

From equation 3.5 it can be seen that in contrast to the standard Solow model, the model

presented here implies heterogeneity in the social elasticities of income per worker with

respect to capital per worker. If, for instance, region i increases its own stock of physical

capital per worker, the social return (elasticity) is

∂yit
∂kit

kit
yit

= uii.

If, however, all regions i = 1, . . . , N jointly increase their stocks of physical capital per

worker, then the elasticity is

∂yit
∂kit

kit
yit

+
N∑
j 6=i

∂yit
∂kjt

kjt
yit

= uii +
N∑
j 6=i

uij = α + φ

1− γ < 1. (3.6)

The inequality is assumed by Ertur and Koch (2007, 1037) to avoid endogenous growth.

Capital accumulates according to k̇it = siyit − (ni + δ)kit, where k̇it = dkit/dt denotes

a time derivative, si is the country specific constant saving rate (the fraction of output

invested in physical capital), ni is the constant growth rate of labor for country i, and δ

is the depreciation rate, which is identical for all countries.

Due to the decreasing returns to capital per worker, kit converges monotonically to its

steady-state value or value on the balanced growth path, k∗it. When this value is reached,

capital (and by implication output) per worker grow at the balanced growth rate g.8

Calculating the steady-state value for y∗it, using the expression for the the capital-output

ratio on the balanced growth path and taking logs, leads to the result

ln y∗it = 1
1− α− φ ln Ωt + α + φ

1− α− φ ln si −
α + φ

1− α− φ ln(ni + g + δ)

− αγ

1− α− φ

N∑
j 6=i

wij ln sj + αγ

1− α− φ

N∑
j 6=i

wij ln(nj + g + δ) + γ(1− α)
1− α− φ

N∑
j 6=i

wij ln y∗jt.

8The balanced growth rate is given by g = µ [(1− α)(1− γ)− φ]−1.
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4 Empirical Specification, Estimation Strategy, and

Model Interpretation

4.1 Econometric Specification of the Model

The last equation in the previous section has the empirical counterpart at t = 0

ln y∗i =β0 + β1 ln si + β2 ln(ni + g + δ) + θ1

N∑
j 6=i

wij ln sj

+ θ2

N∑
j 6=i

wij ln(nj + g + δ) + ρ
N∑
j 6=i

wij ln y∗j + εi

(4.1)

where 1
1−α−φ ln Ω(0) = β0 +εi for i = 1, . . . , N , β0 is a constant and εi is a country-specific

shock. The empirical specification above implies the following theoretic constraints on

the coefficients: β1 + β2 = 0 and θ1 + θ2 = 0. In matrix form, (4.1) is equivalent to9

y = ιNβ0 +Xβ +WXθ + ρWy + ε. (4.2)

Here y is an N × 1 vector of real income per worker in logarithms, ιN is an N × 1 vector

of ones, and β0 is a scalar. X is an N×2 matrix of the explanatory variables (investment

rate and population growth rate) in logarithms, β is a 2× 1 vector [β = (β1, β2)′] of the

regression parameters for the investment rate and population growth rate,W is theN×N

interaction matrix in row-standardized form,WX is the N × 2 matrix of the spatial lag

of X. θ is a 2 × 1 vector [θ = (θ1, θ2)′] of the regression parameters for the spatially

lagged explanatory variables, ρ is the spatial autoregressive coefficient, ρ = γ(1−α)
1−α−φ , and,

finally, ε is an N × 1 vector of errors with ε ∼ N (0, σ2I).

Equation (4.2) includes spatial lags of both the endogenous variable and the explanatory

variables on the right-hand side. This specification is called a Spatial Durbin Model
9The notation here follows Fischer (2011) and thus differs slightly from the one in Ertur and Koch

(2007). The reason for this is to be precise and clear in the notation. In particular, by using the notation
in Fischer (2011), having X denote two different matrices depending on context, is avoided.
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(SDM) (Anselin, 1988, 111). By redefining Z = [ιNXWX] and δ = [β0,β,θ]′, it can

be rewritten as (see LeSage and Pace, 2009, 46) y = ρWy +Zδ + ε, which is a spatial

autoregressive (SAR) model.10 In reduced form, the specification can be expressed as

y = (I − ρW )−1Zδ + (I − ρW )−1ε (4.3)

and implies that the spatial lag of the endogenous variable and the error term are corre-

lated so that the OLS parameter estimators are biased and inconsistent (Davidson and

MacKinnon, 2004) and an alternative estimation strategy is thus necessary.

4.2 Estimation Strategy

Given these problems a different estimation strategy is necessary, and LeSage and Pace

(2009, 45) note, with reference to Lee (2004), that maximum likelihood is a viable alter-

native.11 Assuming that the errors are normally distributed, the specification the SAR

model has the following log-likelihood function.

lnL(y; δ,ρ, σ2) =− N

2 ln(2π)− N

2 ln(σ2) + ln |I − ρW |

− 1
2σ2 [(I − ρW )y −Zδ]′ [(I − ρW )y −Zδ] .

Finding the maximum for this function, requires calculating the partial derivatives with

respect to all parameters, setting these necessary conditions equal to zero, and solving

the system for the parameters. Instead, yielding identical results, this multivariate opti-

mization problem can be reduced to a univariate optimization problem by concentrating

the log-likelihood function with respect to the parameters δ and σ2 (LeSage and Pace,

2009, 47). This concentrated log-likelihood function depends, in addition to the sample

10The SAR model is nested in the SDM model and so, with the above rewriting, their likelihood
functions coincide (LeSage and Pace, 2009, 46). Using the SAR model here is done to save on notation.

11Other approaches like instrumental variables (IV), generalized methods of moments (GMM) or
Bayesian Markov Chain Monte Carlo (MCMC) might be alternatives (see Elhorst, 2010, 15).

10



data, only on the single parameter ρ and is given by

lnL(y; ρ) = −N2 ln(2π) + ln |I − ρW | − 1
2 ln(êO − ρêL)′(êO − ρêL) (4.4)

where êO are the estimated residuals from a regression of y on Z and êL those from a

regression of Wy on Z (see Fischer, 2011, 427). Maximizing (4.4) yields a ML estimate

ρ̂, which can then be used to compute the ML estimates δ̂ and σ̂2.

4.3 Model Interpretation

Due to the presence of the spatial lagsWX andWy in equation (4.2), the interpretation

of the parameters is a bit more complicated than in standard linear regression models,

since feedback effects need to be taken into account. The partial derivatives of equation

(4.2) with respect to e.g. the investment rate, are given by

∂y

∂X ′
1

= (I − ρW )−1 (Iβ1 +W θ1) . (4.5)

This expression is an N ×N matrix, representing the non-linear impacts on all countries

resulting from a change in the investment rate in any country (Fischer, 2011). As LeSage

and Pace (2009, 36) point out, in general, the impact of a change in an explanatory

variable will not be identical across all observations. Therefore, they suggest a summary

measure of these impacts. The row sums in the matrix in (4.5) represent the total impact

to an observation, i.e. the impact of a change in the investment rate in all countries on

steady-state income in region i = 1 . . . N . The average of these row sums is then the

average total impact to an observation. On the main diagonal of the matrix are the own

partial derivatives or direct impacts from a change in the explanatory variable. These

derivatives capture the effect of a change in, for example, the investment rate in country

i on steady-state income in country i, and these impacts are summarized via averaging

the entries on the diagonal of the matrix. LeSage and Pace (2009, 37) note that this
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corresponds, at least to a certain extent, to the typical interpretation of regression coef-

ficients. Finally, the off-diagonal elements in the matrix are the cross-partial derivatives

and represent the indirect (or spillover) impacts, which are again summarized by averag-

ing the row sums of the respective matrix elements. In other words, this measure records

the effect on the steady-state level income in country i resulting from a change in the

investment rate in all countries except country i. Hence, the average indirect impact is

given by the difference between the average total impact and the average direct impact.

5 Data, Estimation Results, and Robustness Checks

5.1 Data

The main data source for the replication exercise is PWT 6.1, while for the robustness

checks PWT 6.2 and 7.1 are used.12 As in Ertur and Koch (2007, 1042), the initial sample

covers the 91 countries of the non-oil sample used by Mankiw et al. (1992), for which data

is available over the period 1960-1995. In contrast to the theoretical model, empirically

GDP per capita and GDP per worker are not, in fact, identical. Hence, the dependent

variable, y, is real GDP per worker (variable rgdpwok in PWT). The investment rate,

s, is the real share of investment in real GDP (variable ki in PWT), averaged over the

respective years. For the average growth rate of workers, n, no directly corresponding

variable is available in PWT. A number for the size of the working-age population can be

recovered by noting that series for real GDP per capita and population are available so

that the number of workers can be calculated by multiplying real GDP per capita (rgdch

in PWT) by the size of the population (pop in PWT) and dividing the result by the value

of real GDP per worker. The average growth rate of the working-age population is then

calculated as an approximation (though this is not stated explicitly in Ertur and Koch

12A more recent version (8.0) of the Penn World Table is also available. This data will however not
be used in this analysis, as it lacks data on the real share of investment in real GDP. See Table A3 in
the file “variable correspondence” under http://www.rug.nl/research/ggdc/data/pwt/pwt-8.0.
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(2007)) by taking the natural logarithm of the difference between the number of workers

in 1995 and 1960 divided by 35.

For the construction of the interaction matrices, the general assumptions made in Sub-

section 3 are valid. An additional important point is that the weights in these matrices

should be exogenous (Ertur and Koch, 2007, 1042), making geographic and genetic dis-

tance ideal candidates.13 The matrices that are based on spatial distances use as weights

the great circle distances, dij, between country capitals i and j. There is however some

scope in pinning down the latitude and longitude of a capital, and Ertur and Koch pro-

vide no information for their source of this data. In this paper, in all calculations that

rely on latitude and longitude, the coordinates are taken from the CIA’s World Factbook

(Central Intelligence Agency, 2013). As a final step, the weights for the interaction ma-

trices are given by wij(1) = w∗ij(1)/∑j w
∗
ij(1) as well as wij(2) = w∗ij(2)/∑j w

∗
ij(2), and

are based on the following functional forms

w∗ij(1) =


0 if i = j

d−2
ij otherwise

and w∗ij(2) =


0 if i = j

e−2dij otherwise
. (5.1)

Considering the inverse of the squared distance in equation (5.1) reflects a gravity function

(Ertur and Koch, 2007, 1042), implying that the effect of the spatial externalities weakens

more than proportionally with distance (see e.g. Keller, 2002). The spatial weight matrix

based on the first set of weights in equation (5.1) is called W1 and the one based on the

second set, which Ertur and Koch (2007) employ as a robustness check, is W2.

The data on genetic distance is taken from the data set of Spolaore and Wacziarg (2009),

who rely on data assembled by Cavalli-Sforza et al. (1994). Following the construction of

the original weight matrices based on geographic distance, the functional form in equation

(5.1) has been chosen for the interaction matrixW3 based on FST genetic distances, too.

13Another interesting variable on which to base the weights would be, for example, a measure of
technological proximity between countries. However, this measure could not be considered exogenous to
the model for the sample period considered in this paper.
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5.2 Results – Interaction Matrix Based on Geographic Distance

Estimation results are presented in Table 5.1.14 The first two columns replicate the results

from Table 1 in Ertur and Koch (2007) and serve as a benchmark.15 Column 1 shows in

the upper half estimates of the standard Solow model by ordinary least squares (OLS).

The estimated coefficients on the investment rate and on the population growth rate have

the signs expected from the theoretic model and in addition are highly significant. In

the lower half, this model is estimated with the restriction β1 = −β2 imposed, which

is rejected by a Wald test (p = 0.038). Also, the implied value for the capital share,

α = 0.58, is too high compared to empirical estimates (Gollin, 2002), and Moran’s I test

indicates spatial autocorrelation in the error term. Based on these results, Ertur and

Koch (2007, 1046) conclude that the standard model is misspecified, as it fails to account

for physical capital externalities and technological interdependence between countries.

Column 2 shows that the estimation results support the implications of the spatially

augmented model. All coefficients have the signs predicted from theory (see equation

(4.1)), even though, for instance, the estimated coefficient associated with the spatial

lag of the population growth rate is insignificant (p = 0.479). The likelihood ratio test

does not reject the joint theoretical restriction β1 + β2 = 0 and θ1 + θ2 = 0, as p =

0.419, which supports the validity of the spatially augmented model. In addition, the

(significant) implied value for the capital share of income is α = 0.284 and thus much

closer to empirical estimates. Furthermore, the parameter φ, reflecting physical capital

externalities, is positive and significant at the 10%-level. Also, the implied value for

γ, which gauges the degree of technological interdependence among countries is positive

and highly significant, implying that this characteristic indeed needs to be taken into
14All estimations have been carried out in Matlab using the Spatial Econometrics Toolbox by LeSage,

which is publicly available under: http://www.spatial-econometrics.com/.
15Note that since the analysis here is based on the geographic coordinates from the World Factbook,

which differ in some cases slightly from the coordinates used by Ertur and Koch (2007), the values for the
Morans’s I test in the unrestricted and restricted versions of the standard Solow model in column 1 as well
as the values for the spatially augmented Solow model in column 2 are slightly different. Qualitatively
the results are not affected. Also, there is a slight mistake in Ertur and Koch’s Table I, as the values for
the Moran’s I test in the unrestricted Solow model belongs to the restricted Solow model and vice versa.

14
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account in growth models, as economies cannot be considered as independent observations

(Fischer, 2011, 432). Finally, the value of α + φ/(1 − γ) is below 1, implying that the

externalities are not strong enough to lead to endogenous growth (Ertur and Koch, 2007,

1048). In sum, the estimation results provide rather strong support for the model.

The next columns assess the sensitivity of these results, when moving from PWT 6.1

to version 6.2 and 7.1. Due to missing data in PWT 6.2, the sample size needs to be

reduced to 83 countries in the estimations based on this data source. In order to obtain

estimation results for a balanced sample across all three versions of the PWT considered

in this paper, columns 3 and 4 first show estimation results for the 83-country sample

with data from PWT 6.1. For the standard model, the results are virtually identical

(column 3) to those from the full sample. However, dropping these 8 observations from

the sample affects the results in the spatial model. The implied values for α and φ are

comparable in size to the full sample with 91 countries, but they are now insignificant.

Columns 5 and 6 change the data source to PWT 6.2. In column 5, the estimation results

are in line with those from columns 1 and 3. The only exception is that, for this data

source, the restriction β1 = −β2 is not rejected, suggesting a good fit between the model

and the data, except that the implied value for α is still too high. For the unconstrained

estimation of the spatial model, column 6 shows that, compared to columns 1 and 3,

the coefficient for the population growth rate still has the sign implied by theory, but is

now insignificant (p = 0.347). The results from the estimation with the joint parameter

restriction applied, indicate that, as for the results for the 83-country sample with data

from PWT 6.1, the implied share of capital income and the parameter for the physical

capital externalities are insignificant (p-values of 0.403 and 0.213, respectively). Hence,

changing the data source from PWT 6.1 to 6.2, suggests that, while many results (e.g. the

implied value of γ or the test of the joint restriction) are not sensitive to this change, the

original results by Ertur and Koch (2007) concerning α and φ are not robust.

More drastic changes to the benchmark results are visible when moving to PWT 7.1 in
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Table 5.1: Estimation Results for the Standard and Spatially Augmented Solow Model According
to Three Different Versions of the PWT Based on Interaction Matrix W1 (Geographic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Model Stand. Spatial Stand. Spatial Stand. Spatial Stand. Spatial
Number of observations 91 91 83 83 83 83 83 83

Unconstrained estimation:
Constant 4.651 0.886 4.609 0.518 7.130 2.780 2.976 1.828

(0.010) (0.635) (0.017) (0.796) (0.000) (0.181) (0.189) (0.399)
ln si 1.276 0.836 1.234 0.789 1.319 0.876 1.697 0.944

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ln(ni + 0.05) −2.709 −1.538 −2.701 −1.449 −1.835 −0.689 −3.428 −1.441

(0.000) (0.006) (0.000) (0.021) (0.008) (0.347) (0.000) (0.081)
W ln sj — −0.347 — −0.314 — −0.160 — 0.710

(0.057) (0.137) (0.514) (0.110)
W ln(nj + 0.05) — 0.591 — 0.343 — −0.191 — −0.298

(0.479) (0.705) (0.843) (0.793)
W ln yj — 0.742 — 0.732 — 0.608 — 0.595

(0.000) (0.000) (0.000) (0.000)
Moran’s I (LM) test 0.432 — 0.397 — 0.346 — 0.389 —

(0.000) (0.000) (0.000) (0.000)

Constrained estimation:
Constant 8.375 2.118 8.407 2.220 8.465 3.158 7.321 1.939

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.004)
ln si − lnni 1.379 0.855 1.354 0.813 1.356 0.871 1.904 0.958

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
W [ln sj − ln(nj + 0.05)] — −0.292 — −0.230 — −0.149 — 0.692

(0.098) (0.270) (0.527) (0.109)
W ln yj — 0.735 — 0.721 — 0.613 — 0.608

(0.000) (0.000) (0.000) (0.000)
Moran’s I (LM) test 0.415 — 0.4397 — 0.342 — 0.377 —

(0.000) (0.000) (0.000) (0.000)
Test of restriction 4.427 1.738 4.066 1.474 0.514 0.127 3.805 0.358

(0.038) (0.419) (0.047) (0.479) (0.476) (0.938) (0.055) (0.836)
Implied α 0.580 0.284 0.575 0.242 0.576 0.196 0.656 8.261

(0.000) (0.012) (0.000) (0.120) (0.000) (0.403) (0.000) (0.852)
Implied φ — 0.177 — 0.206 — 0.270 — −7.772

(0.082) (0.139) (0.213) (0.861)
Implied γ — 0.554 — 0.525 — 0.408 — −0.043

(0.000) (0.000) (0.009) (0.868)
α+ φ

1−γ — 0.680 — 0.676 — 0.651 — 0.808
(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. For the standard Solow model the restriction is tested with
the Wald test and for the spatially augmented model with the likelihood ratio (LR) test.

columns 7 and 8. For the standard model, the signs of the coefficient estimates have

the expected signs, and Moran’s I test indicates misspecification with respect to spatial

correlation in the error term. As for results for the PWT 6.1 sample, the parameter

restriction β1 = −β2 is rejected. However, in the spatially augmented model in column
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8, the constrained estimation implies an implausibly large share of capital income with

an estimated value for α of 8.261 (although this value is not significant with p = 0.852).

Moreover, the value for the physical capital externalities is now negative, but also not

significant (p = 0.861). The same holds for the parameter measuring technological inter-

dependence. These estimates imply that using a more recent data source leads to drastic

changes in the empirical results compared to the benchmark results.16

It needs to be kept in mind though that,in addition to the results in Table 5.1, the model’s

interpretation relies on the calculation of the direct and indirect effects. The results for

these impacts are presented in Table 5.2 for all four samples considered in this paper. In

the paper by Ertur and Koch only the direct effects are reported (though without any

reference to the significance of these estimates). Here, a richer analysis is presented by

also reporting estimates for the indirect and total impacts of changes in the exogenous

variables. Concerning the direct impacts, the results show that across all four samples

an increase in the investment rate in physical capital is approximately comparable in

size and significance. The estimated coefficients are highly significant and imply, due

to the log-specification of the model, that a 10% increase in the investment rate would

result in an increase in per-capita income between 8.6% and 11.6%. The results for the

indirect impacts of changes in the investment rate, resulting from spatial spillovers, differ

however across the samples. Whereas these impacts are comparable in size for the first

three samples, the impact is only significant for the PWT 6.2 sample at the 10%-level.

For the PWT 7.1 sample, this effect has tripled in size compared to the other estimates

and is significant at the 1%-level. These findings indicate again that the results in Ertur

and Koch are not robust with respect to changing to more recent versions of the PWT.

It is however interesting to note that, at least for the first three samples, the direct and

16That changing the data source from e.g. PWT version 6.1 or 6.2 to 7.1 can lead to different results in
models similar to the one considered here, has also been pointed out by Johnson et al. (2013, 270). They
find that in the Solow model augmented with human capital by Mankiw et al. (1992), the coefficient
on the investment share is reduced in size close to zero, when the estimation is based on a more recent
version of the PWT (7.0 in their case). This finding is attributed to the investment series being more
variable in this version of the PWT due to unclear reasons (Johnson et al., 2013, 270).
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Table 5.2: Estimation Results for the Direct, Indirect and Total Impacts According to Three
Different Versions of the PWT Based on Interaction Matrix W1 (Geographic Distance).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:
ln si 0.916 0.859 0.941 1.158

(0.000) (0.000) (0.000) (0.000)
ln(ni + 0.05) −1.693 −1.636 −0.793 −1.635

(0.005) (0.013) (0.269) (0.043)

Indirect impacts:
W ln sj 1.030 0.960 0.915 3.012

(0.118) (0.198) (0.057) (0.004)
W ln(nj + 0.05) −2.008 −2.559 −1.458 −2.709

(0.484) (0.423) (0.476) (0.218)

Total impacts:
ln si + W ln sj 1.945 1.820 1.856 4.170

(0.007) (0.023) (0.000) (0.000)
ln(ni + 0.05) + W ln(nj + 0.05) −3.701 −4.196 −2.251 −4.343

(0.230) (0.220) (0.294) (0.054)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.

indirect impacts from the investment rate contribute both approximately 50% to the total

impact of this variable. Table 5.2 also shows that the results concerning the impacts of

the population growth rate are not robust across samples.

Before turning to the estimation results for the interaction matrix based on genetic dis-

tance, it should be remembered that Ertur and Koch have also employed an interaction

matrix based on the second specification in (5.1) to assess the sensitivity of their re-

sults. Also in this case, the original results, in general, are not robust across the different

samples.17,18

17Detailed results are available on request from the author.
18Concerning interaction matrix W2, a comment needs to be made. This matrix does not seem to

correspond exactly to the specification Ertur and Koch (2007) actually use in their analysis. From the
Matlab code on the article’s website, it is clear that their estimation results are obtained by dividing the
geographic distances dij by 1, 000. A reason for this transformation is not given however, and it turns
out that the estimation results are highly sensitive to this alternative specification. For instance, not
dividing the distances by 1, 000, the estimation results imply highly significant negative values for the
parameters φ and γ, and α increases to an unreasonably, but highly significant value of 90% (p = 0.000).
With respect to the impact estimates, the values for the direct and total impacts are approximately
comparable across both specifications, the indirect effects, however, turn from being not significant in
the specification as implemented by Ertur and Koch to being strongly significant in the specification as
claimed in the article. Again, detailed results are available on request.
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5.3 Results – Interaction Matrix Based on Genetic Distance

This subsection presents the estimation results when the interaction matrix is based on

genetic distance. The general specification of the weights is given by the first specification

in (5.1), and the analyses use FST distance.19 As the results for the standard model do not

depend on the interaction matrix, Table 5.3 shows only the results from the estimation

of the spatial Durbin model.20 Column 1 provides the results for the full sample of 91

countries for data taken from PWT 6.1. In contrast to the benchmark, i.e. the original

results in Ertur and Koch, the estimates based on genetic distance show, for instance,

that the coefficient associated with the spatial lag of the investment rate is now positive

and highly significant. The results for the constrained estimation also differ from the

ones with an interaction matrix using geographic distance, as the implied value for α

is now implausibly large and highly significant. Moreover, γ, measuring the degree of

technological interdependence is now negative and marginally significant at the 10%-

level, which seems implausible.21 Similar results are also obtained for the other samples:

When using data from PWT 7.1 for instance, the implied value for the capital share of

income in column 4 actually turns negative (although the p-value is 0.803). In neither

sample, based on a likelihood ratio test, the joint parameter restriction β1 + β2 = 0 and

θ1+θ2 = 0 is rejected though. Despite these results from the estimation of the constrained

model across the four samples, the impact estimates in Table 5.4, which are calculated

from the unconstrained estimation results, will be briefly discussed. Across all samples,

the estimates for the direct impact of a change in the investment rate on steady-state per

capita income are comparable to the results for the model with interaction matrix W1.

One important difference to the results in Table 5.2 concerns the spillovers from a change

in the investment rate for the full sample of 91 countries. The estimated effects are now
19The estimation results based on Nei’s distance are comparable to the ones in Tables 5.3 and 5.4.

Detailed results are available from the author on request.
20It is worth pointing out however, that in all samples the standard model continues to be misspecified,

based on the values for Moran’s I with matrix W3 (p-values are 0.000 in all four tests).
21The implied values for α, φ, and γ are of approximately similar size in the estimation based on Nei’s

distance for this sample, though neither value is significant at the 10%-level. This is the exception from
the claim about comparable results for both measures of genetic distance made in Footnote 19.
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Table 5.3: Estimation Results for the Spatial Durbin Model According to Three Different Versions
of the PWT based on Interaction Matrix W3 (Genetic Distance FST).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Unconstrained estimation:
Constant 8.654 8.246 5.941 −1.932

(0.001) (0.000) (0.011) (0.423)
ln si 0.820 0.945 0.888 0.972

(0.000) (0.000) (0.000) (0.000)
ln(ni + 0.05) −1.034 −0.871 −0.148 −0.930

(0.054) (0.099) (0.790) (0.153)
W ln sj 0.901 0.665 0.725 −0.009

(0.000) (0.001) (0.002) (0.983)
W ln(nj + 0.05) 0.651 0.431 −1.625 −1.912

(0.500) (0.632) (0.096) (0.078)
W ln yj 0.322 0.327 0.198 0.556

(0.006) (0.002) (0.128) (0.000)

Constrained estimation:
Constant 5.520 5.452 6.013 2.452

(0.000) (0.000) (0.000) (0.000)
ln si − lnni 0.785 0.856 0.870 0.996

(0.000) (0.000) (0.000) (0.000)
W [ln sj − ln(nj + 0.05)] 0.850 0.653 0.655 0.130

(0.000) (0.001) (0.003) (0.743)
W ln yj 0.280 0.296 0.245 0.605

(0.019) (0.005) (0.045) (0.000)
Test of restriction 2.450 1.949 1.862 3.708

(0.294) (0.377) (0.394) (0.157)
Implied α 1.491 1.830 1.598 −0.273

(0.003) (0.052) (0.038) (0.803)
Implied φ −1.052 −1.360 −1.133 0.772

(0.039) (0.155) (0.147) (0.474)
Implied γ −0.319 −0.189 −0.219 0.238

(0.098) (0.196) (0.212) (0.288)
α+ φ

1−γ 0.694 0.686 0.669 0.740
(0.000) (0.000) (0.000) (0.000)

Note: p-values are given in parentheses. The restriction is tested with the likelihood ratio (LR) test.

highly significant and imply that a change of 1% in the investment rate in all countries

except country i would result in an increase of approximately 1.7% in per-capita income

in country i. Another interesting result is that these spillovers are not significant in the

sample for PWT 7.1, whereas the reverse holds for this sample in the estimation with

geographic distance. There this estimate is not only highly significant, but also large in

size. Table 5.4 furthermore clearly shows that the impacts with respect to the population

growth rate are highly sensitive to the particular version of the PWT.
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Table 5.4: Estimation Results for the Direct, Indirect and Total Impacts According to Three
Different Versions of the PWT Based on Interaction Matrix W3 (Genetic Distance FST).

Data set PWT 6.1 PWT 6.2 PWT 7.1

Number of observations 91 83 83 83

Direct impacts:
ln si 0.887 1.004 0.918 1.035

(0.000) (0.000) (0.011) (0.000)
ln(ni + 0.05) −1.009 −0.856 −0.198 −1.229

(0.058) (0.101) (0.722) (0.060)

Indirect impacts:
W ln sj 1.673 1.401 1.098 1.116

(0.000) (0.000) (0.000) (0.156)
W ln(nj + 0.05) 0.506 0.260 −1.996 −5.246

(0.701) (0.830) (0.062) (0.001)

Total impacts:
ln si + W ln sj 2.560 2.405 2.015 2.151

(0.000) (0.000) (0.000) (0.012)
ln(ni + 0.05) + W ln(nj + 0.05) −0.503 −0.560 −2.193 −6.475

(0.707) (0.627) (0.035) (0.003)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.

6 Conclusion

This paper has presented the growth model with technological interdependence among

countries developed by Ertur and Koch (2007) and subjected their empirical results to a

series of robustness checks. In contrast to the original specification with an interaction

matrix based on geographic distance, this paper has used data on genetic distance from

Spolaore and Wacziarg (2009) to construct an alternative interaction matrix. Further-

more, additional robustness checks have been conducted to assess the sensitivity of the

original results across different versions of the Penn World Table for the same period and

the same set of countries. The analyses show that the original results by Ertur and Koch

are highly sensitive to the version of the PWT. They estimate, for instance, an implied

capital share of income slightly below 30%, but this result is not robust, when estimating

the model for PWT 6.2 and 7.1. Furthermore, whereas Ertur and Koch only provide

estimates of the direct impacts associated with changes in the exogenous variables, in

this article values for the indirect and total impacts have been calculated as well. The
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results again indicate non-robustness across different versions of the PWT, as, for exam-

ple, the indirect impact (or spillover) associated with changes in the investment rate on

per capita income is not significant in the PWT 6.1 sample, but significant in PWT 6.2

and 7.1. Results have also been shown to be highly sensitive to the precise specification

of the weights in the interaction matrix based on geographical distance.

Concerning genetic distance, this paper finds that, whereas in the original model indirect

spillovers from capital investment were insignificant in the PWT 6.1 sample, with genetic

distance, these spillovers now have a significant effect on steady-state income per worker.

However, the model with an interaction matrix based on genetic distance implies an

implausibly large capital share of income. It can thus be stated that the empirical results

in Ertur and Koch are sensitive to the measure on which the weights in the interaction

matrix are based (geographic or genetic distance) as well as to the concrete specification

of the weights in the interaction matrix.

In this paper, as in Fischer (2011), only level regressions have been addressed. Future

work will also investigate the sensitivity of the estimates for the growth regressions in

Ertur and Koch (2007), as well as the impact of human capital. Results from Ertur

and Koch (2006) suggest that this factor is not related to growth within this framework.

However, as the results in this paper clearly demonstrate, that this holds across different

versions of the PWT is not necessarily the case. It should be pointed out that an en-

dogenous version of the model framework exists as well (Ertur and Koch, 2011), which,

for a different set of countries, a different time period, and different interaction matri-

ces, provides empirical support, based in part on data from PWT 6.2, in favor of the

endogenous version. But again, this is no guarantee that this necessarily needs to hold

across different versions of the PWT. Robustness should be assessed for this finding as

well. As this paper has also demonstrated the sensitivity of the results to the choice of

interaction matrix, further research will be devoted to this issue. In particular, Bayesian

Model Averaging will be used to address the uncertainty concerning the specification of

the interaction matrix in this model.
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