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Abstract

We generalize White’s Reality Check (RC) to the case when there is

more than one benchmark. This amounts to test the null that the best in

a class of models is at least as good as all the models in a second class.

This can be of interest, for example, to test Granger-causality without

specifying a particular model. We analyze the asymptotic properties of

the two variants of the test and propose a Bootstrap to obtain critical

values.

Then, we revisit the out-of-sample evidence of predictability of the

commodity prices using exchange rates of Chen, Rogoff and Rossi (2010).

Univariate models of commodity prices are compared to bivariate models

in which exchange rates are included and the null is rejected for some

comparisons but not for others. The multi-benchmark RC indicates that

there is not evidence of predictability.
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Spain. Tel: 34 913987215. E-mail: mmatilla@cee.uned.es. Corresponding author.

1



1 Introduction

In forecasting literature, we often find comparisons in which a number of models

are pitted against a benchmark. We can encounter this when the theory dictates

an optimal model. For example, if our premises entail that the returns of a

certain asset are unpredictable, we have a geometric random walk model for

the price. Thus, the theory can be empirically refuted if the benchmark is

actually outperformed by other model. Of course, if we perform comparisons

between the benchmark and many alternative models with a sample, there is

some probability that the benchmark is beaten just by chance. The RC was

proposed byWhite (2000) as a means to deal with such situations in a systematic

way. Specifically, he provided a test for the null hypothesis that the benchmark

is optimal. More recently, others (Hansen, 2005; Clark and McCracken, 2012)

have developed new tests for this null.

However, there are situations in which there is not a unique benchmark

but rather a bunch of them. In the example we present later, we want to

determine whether in forecasting a given variable, univariate models can be

outperformed by bivariate ones that include lags of a certain covariate. This

boils down to a Granger-causality test, but without committing to any specific

model in advance. In fact, some applications of RC tests can be described this

way (for example Hansen, 2005), but they assume that the matter of choosing

one specific univariate benchmark is settled in advance. We could in fact go all

the way and dispense with models altogether, using the nonparametric test of

Matilla-Garćıa, Ruiz Maŕın and Dore (2014), especially if we are interested in

nonlinear predictability.

An RC with several benchmarks can be regarded as a comparison between

two sets of models. Then, the null is that the best model of the first set (the one

containing the benchmarks) is at least as good as all the models in the second

set. Besides the Granger-causality example, we can encounter this situations for

example, when assessing whether a new class of models outperforms older, well-

known ones. It may be of interest as well to determine if a more complex and
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costly class of models has actual advantages in terms of forecasting error that

compensate for their computational burden (for example, linear vs nonlinear).

In section 2 we present two statistics that can be used to test the generalized

null that the best benchmark is as good as the best alternative and discuss their

properties, whereas in section 3 we assess the performance of the test by means of

Monte Carlo simulations. In section 4 we present an application to the problem

of whether the exchange rates help forecasting commodity prices. In particular,

we use the data and approach of Chen, Rogoff and Rossi (2010) and show how

the multi-benchmark RC can help determine a Granger-causality problem. We

conclude in section 5 with some comments.

2 The tests

Subsection 2.1 briefly reviews the most relevant literature on RC tests. Subsec-

tion 2.2 introduces the notation and those of the assumptions that are necessary

to express precisely the null hypothesis. We will draw heavily on Clark and Mc-

Cracken (2012 and 2014) so we will adhere as much as possible to their notation

and we will refer collectively to both articles as CMC. In 2.3, we will propose

the statistics of the test (two variants) and show their asymptotic behavior in

2.4. In 2.5, a procedure to obtain critical values of the test is described.

2.1 Reality checks

White (2000) proposed a test for the null that the benchmark model is as good

as any one among a set of alternative models. The test statistic is constructed

by taking the following steps: (i) evaluate the out-of-sample forecasting errors

with a certain loss function, (ii) calculate the differences between the mean

of the benchmark and the means of all the alternative models, and (iii) take

the maximum of these differences. Asymptotically (West, 1996), the statistic

is approximately distributed as the maximum of correlated normals for large

samples. White also showed how to obtain critical values of the test using a
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version of the stationary bootstrap of Politis and Romano (1994). The Superior

Predictive Ability test (Hansen, 2005) is a modification of White’s RC in which

greater power is obtained by normalizing the mean differences by estimates of

their standard deviations.

A problem of these two tests is that they do not work well in a scenario that

is of particular interest, namely, when the benchmark is nested in the alternative

models (unless the benchmark has no estimated parameters). The asymptotic

normality that is a requisite for White’s and Hansen’s tests can be achieved

only by some devices in the nested case. For example, Hansen (2005) uses the

approach by Giacomini and White (2006) setting the length of the estimation

window constant, so that the variance of the estimated parameters does not

vanish asymptotically. This asymptotic theory has some drawbacks, such as the

requisite of a small rolling estimation window.

On the other hand, we have a well-developed theory of nested comparisons.

The asymptotic theory of these tests for the nested, one-step forecast case was

developed in Clark and McCracken (2001) and McCracken (2004). In Clark

and McCracken (2005), the theory is adapted to the case of direct multistep

forecasts. They also show that the critical values can be obtained by means of

a parametric bootstrap.

The theory of nested models comparison and the RC converges in Clark

and McCracken (2012), where a test is proposed for the same null hypothesis

of the RC, but when the benchmark is nested in all the alternative models.

Here, the asymptotic distribution of the test is the maximum of non-standard

distributions with nuisance parameters. However, the critical values can be

obtained by means of a semi-parametric wild bootstrap.

2.2 Environment and null hypothesis

We enumerate from 1 to n the elements of a set of regressors, that we observe

from t = 1 to t = T . With them, we build different linear models to forecast

yt+τ , using information up to time t. Each model can thus be identified with a
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subset ℓ of {1, . . . , n}, so xℓ,t is a nℓ × 1 vector that comprises the values of the

predictors that belong to the set ℓ at time t. The vector that includes all the

n predictors is denoted by xt. We split the time span into an initial estimation

window of length R and an out-of-sample span of length P , so that T = R+P .

Assumption 1. For any ℓ, and t = R, . . . , R + P − τ we estimate the vector

of parameters β̂ℓ,t by least squares, that is

β̂ℓ,t = argminβ

t
∑

s

|ys+τ − x′ℓ,sβ|2,

where the s ranges from 1 to t in the ’recursive’ scheme and from t− R+ 1 to

t in the ’rolling’ scheme.

With the estimated parameters, we build forecasts ŷi,t+τ = x′i,tβ̂i,t for t =

R, . . . , T − τ . The forecast errors are ûi,t+τ = yt+τ − ŷi,t+τ . Among the 2n

possible models, we will restrict the analysis to the elements of two particular

classes, I and J , that is, the class of the benchmarks and the class of the

alternatives. Generally, i and j will denote models in I and J respectively,

whereas ℓ indicates models that may belong either to I or to J .

The performance of each model is measured in terms of Mean Squared Fore-

casting Error (MSFE). Let σ2
τ (ℓ) be the population MSFE of model ℓ, that

is, E(uℓ,t+τ )
2, where uℓ,t+τ = yt+τ − x′ℓ,tβ

∗
ℓ and β∗

ℓ is the population param-

eter vector of model ℓ. The population forecasts errors of the full model are

ut = yt+τ − x′tβ
∗ and the MSFE is Eu2t+τ = σ2

τ .

Now, we can state the null hypothesis as

H0 : min
i∈I

σ2
τ (i) ≤ min

j∈J
σ2
τ (j),

that is, no model in J beats the best model in I.

2.3 Test statistics

The condition mini σ
2
τ (i) ≤ minj σ

2
τ (j) is equivalent to either minimaxj(σ

2
τ (i)−

σ2
τ (j)) ≤ 0 or maxj mini(σ

2
τ (i)− σ2

τ (j)) ≤ 0. This way, we express H0 in terms
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of pairwise comparisons. Since we have tests for these comparisons, we may

combine them into a statistic for the whole multiple comparison.

In order to specify the statistics we need to introduce some further notation.

Let d̂ij,t = û2i,t+τ − û2j,t+τ , d̄ij = (P − τ +1)−1
∑R+P−τ

t=R d̂ij,t and γ̂dij
(l) = (P −

τ+1)−1
∑R+P−τ

t=R+l (d̂ij,t− d̄ij)(d̂ij,t−l− d̄ij). We can use the covariances γ̂dij
(l) to

estimate the long-run covariance of d̄ij as (P−τ+1)−1/2Ŝdij,dij
, where Ŝdij ,dij

=
∑l̄

l=−l̄K(l/L)γ̂dij
(l), K(·) is a certain kernel, L is a truncation parameter and

γ̂dij
(−l) = γ̂dij

(l). We also write σ̂2
τ (ℓ) = (P − τ + 1)−1

∑R+P−τ
t=R û2ℓ,t+τ .

We build our test from pairwise comparison statistics. However, note that

when comparing i ∈ I and j ∈ J , we will have both cases where the models

nested and nonnested. Then, the pairwise comparison statistics will be either

∆ij = MSE-tij = (P − τ + 1)1/2d̄ij/
√

Ŝdij ,dij
for nonnested models or ∆ij =

ENC-Fij = (P − τ +1)d̄ij/σ̂
2
τ (j) when i is nested in j. We use MSE-t when the

models are nonnested because is symmetric and ENC-F when the models are

nested because it is apparently the most powerful according to the simulations

reported in Clark and McCracken (2012). Finally, the test statistics are

∆-mM = min
i∈I

max
j∈J

∆ij (1)

∆-Mm = max
j∈J

min
i∈I

∆ij . (2)

When there is only one element in I, both statistics collapse to the maxj ENC-F

test of Clark and McCracken (2012).

2.4 Asymptotic properties

To determine the asymptotic properties of the test requires to make some as-

sumptions. A possibility that requires relatively mild assumptions is to invoke

the conditional approach of Giacomini and White (2006), as Hansen (2005)

does for his RC. Under this framework, the asymptotic distribution of the pair-

wise statistics ∆ij is normal. However, one has to pay the price of assuming

a fixed-length estimation window R. There is an argument that suggests that

in practice R should be quite small. Suppose you applied the test in the past,
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when the series were short. Then, necessarily R had to be small. Later, with

more observations, you should not take advantage of the greater length of the

series, because R is assumed fixed.

This inconvenience notwithstanding, we intend to explore this possibility

in other article. Here we will adapt instead the asymptotic theory and the

bootstrap of Clark and McCracken (2012, 2014). Although this requires to

impose some restrictions on which kind of models can be compared and other

assumptions, there are still many applications that satisfy the requirements.

We will make two kinds of assumptions. First, we will impose some restric-

tions on the set-theoretical relationship between I and J . In the RC by CMC,

the restriction is very simple: the benchmark is nested in every alternative.

Here, the assumption has to be more involved. The second set of assumptions is

directly taken from CMC are relate to the statistic properties of the processes.

We want to preserve one idea of the single-benchmark RC, namely, that the

benchmark is a simpler model that is compared to more complex ones. However,

the assumption that all i ∈ I are nested in all j ∈ J would be too strong. For

example, when testing causality of a variable zt on yt, I contains models with

only lags of yt, whereas the models in J use as well lags of zt. In this case, in

order that i is nested in j for all i ∈ I, j ∈ J , it would be necessary to force that

all bivariate models include as many lags of yt as the largest univariate model,

which is not necessarily what we intend. However, it is necessary to introduce

a restriction, so that we can simplify the asymptotic distribution.

In plain words, we will require that there is a model k0 that nests all bench-

marks, but not any alternative; that all benchmarks are nested in at least one

alternative (so the test is one-sided); that there alternatives enough to check

the predictive ability of all regressors in kc0; and conversely that the predictive

gains of the alternatives are due only to the regressors in kc0. We state this in

mathematical terms.

Assumption 2. There is a k0 ( {1, . . . , n} that contains every i ∈ I and such

that (a) ∀i ∈ I, a ∈ kc0, ∃j ∈ J such that i ∪ {a} ⊆ j and (b) ∀j ∈ J, ∃i ∈ I such
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that j ∩ k0 ⊂ i.

In the case of Granger causality, k0 is the set of the lags of the predictand

and kc0 has lags of another variable. Assumption 2 is satisfied, for example, when

I is any set of autoregressive models and J includes models that have the same

lags of yt than some of I, plus a certain number of lags of the regressor zt. This

restriction gives space, for example, for: (i) univariate models vs multivariate

(or in general, p−variate vs q−variate, with p < q); (ii) linear vs nonlinear

(not any nonlinear model, but polynomial models can be accommodated); (iii)

forecasting with aggregate data vs aggregating forecasts.

We define I0 and J0 as the sets of models that minimize σ2
τ (ℓ) in I and J

respectively. That is, I0 comprises the ”good” models of I and J0 the ”good”

models of J . Under the null, all of the models in I0∪J0 have the same population

MSFE, whereas the remaining ones –the ”bad” ones– that belong to (I \ I0) ∪
(J \ J0) have greater MSFE.

We need some additional notation for the asymptotic analysis: Jℓ is the

nℓ×n selection matrix such that xℓ,t = Jℓxt; B = (Extx
′
t)

−1, Bℓ = (Exℓ,tx
′
ℓ,t)

−1;

B(t) = (t−1
∑t−τ

s=1 xsx
′
s)

−1, Bℓ(t) = (t−1
∑t−τ

s=1 xℓ,sx
′
ℓ,s)

−1.

Let ht = xtut, H(t) = t−1
∑t−τ

s=1 ht. Let Ãij be a n × n matrix with

rank ni + nj − 2ni∩j such that Ã′
ijÃij = B−1/2(−JiBiJ

′
i + JjBjJ

′
j)B

−1/2 and

h̃ij,t = σ−1
τ ÃijB

1/2ht. Let Shh be equal to
∑τ−1

k=−τ+1 Γhh(k), and Γhh(k) is the

autocovariance function of ht. Finally, Sij = σ−2
τ S

1/2
hh B

1/2Ã′
ijÃijB

1/2S
1/2
hh

Further technical assumptions required are the following.

Assumption 3. (a) Ut+τ = [h′t+τ , vec(xtx
′
t−Extx

′
t)

′]′ is covariance stationary.

(b) EUt+τ = 0. (c) For all l > τ − 1,Eht+τh
′
t+τ−l = 0. (d) Extx

′
t < ∞ and is

positive definite. (e) for some r > 8, Ut+τ is uniformly bounded in Lr. (f) For

some r > d > 2, Ut+τ is strong mixing with coefficients of size −rd/(r − d). (g)

limRR
−1E(

∑R−τ
s=1 Us+τ )(

∑R−τ
s=1 Us+τ )

′ = Ω <∞ is positive definite.

Assumption 4. (a) let K(x) be a continuous kernel such that for all real scalars

x, |K(x)| ≤ 1,K(x) = K(−x) and K(0) = 1. (b) For some bandwidth L and

8



constant i ∈ (0, 0.5), L = O(P i). (c) The number of covariance terms l̄ used to

estimate the long-run covariances Sdij ,dij
satisfies τ − 1 ≤ l̄ <∞.

Assumption 5. limP,R P/R = λP ∈ (0,∞).

These assumptions, as many in the literature of this area, are variations

around the initial setting of West (1996).

The first difficulty that arises when analyzing the asymptotic behavior of

these tests is that they involve one-to-one comparisons of very different kind:

(A) σ2
τ (i) < σ2

τ (j).

(B) σ2
τ (i) > σ2

τ (j).

(C) σ2
τ (i) = σ2

τ (j) and,

(C1) i is nested in j (the reverse case is possible only in case that I∩J 6= ∅,
which can be discarded without loss of generality).

(C2) i and j are overlapping in the sense of Vuong (1989), that is, both

contain the true model plus terms that vanish for the population

value of the parameters.

(C3) i and j are nonnested.

When we compare one of the ”good” models to one of the ”bad” ones, the

corresponding MSE-tij statistic diverges to either −∞ or +∞. A consequence of

this is that in (1) and (2), only the ∆ij with i ∈ I0 and j ∈ J0 are asymptotically

relevant.

Proposition 1. Under H0, ∆-mM = mini∈I0 maxj∈J0
∆ij+op(1) and ∆-Mm =

maxj∈J0
mini∈I0 ∆ij + op(1).

In other words, only the good models matter asymptotically and thus, under

the null, cases A and B can be disregarded. Moreover, the same happens with

case C3.

We need the following auxiliary lemma, whose proof is left to the reader.
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Lemma 1. For z ∈ R, let [z]+ be equal to max{0, z}. If [−xt]+ = Op(1) and

yt
p→ −∞, then max{xt, yt} − xt = op(1).

Proposition 2. If i and j are in case C3, then i /∈ I0, j /∈ J0.

These propositions entail that we can focus on the asymptotic behavior of

∆ij with (i, j) ∈ I0 × J0, and that this is given by the following results1:

(a) When i and j are nested, the asymptotic distribution of ∆ij = ENC-F is

given by theorem 3.2 in Clark and McCracken (2012).

(b) When i and j are overlapping, the asymptotic distribution of ∆ij = MSE-t

is given by theorem 2.1 in Clark and McCracken (2014).

We just need to adapt these results to our framework.

Proposition 3. The asymptotic distributions of the tests are given by

∆-mM
d→ min

i∈I0
max
j∈J0

gij , (3)

∆-Mm
d→ max

j∈J0

min
i∈I0

gij , (4)

where gij ∼ (Γ1,ij − 0.5Γ2,ij)/Γ
1/2
3,ij,

Γ1,ij =

∫ 1

λ

ω−1W (ω)′SijdW (ω)

Γ2,ij =

∫ 1

λ

ω−2W (ω)′SijW (ω)dω

Γ3,ij =

∫ 1

λ

ω−2W (ω)′S2
ijW (ω)dω,

W (ω) is a n × 1 standard Brownian motion and the Sij are matrices defined

below.

When the null does not hold, both statistics diverge to +∞.

Proposition 4. If the null does not hold, plim∆-Mm = plim∆-mM = +∞.

1The theoretical results are developed only for the recursive window, as in CMC. However,

there is substantial evidence that the bootstrap works with a rolling window as well. This

evidence comes both from our simulations and from CMC, which report a similar behaviour

with the two windows.
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2.5 The bootstrap

The asymptotic distributions of proposition 3 are impractical to obtain critical

values or p-values. Therefore, we will use a bootstrap that is adapted from

CMC. They generate artificial samples according to a model,

y∗t+τ = β̂0x0,t + v̂∗t ,

where the vector x0,t contains either the predictors that are common to the two

models compared (in the overlapping models test) or the predictors of the bench-

mark (in the RC). The v̂∗t terms are simulated by a wild bootstrap designed to

retain some features of the true prediction errors such as the heteroskedasticity

and when τ > 1 also the autocorrelation. We will take advantage of the fact

that under the null, all coefficients of β∗ outside k0 are zero, so we will generate

our artificial samples according to y∗t+τ = β̂k0
xk0,t + v̂∗t .

To be more specific, the following steps are taken.

1 We fit the model with all n regressors and obtain the forecast errors v̂t,

with t = 1, . . . , R+ P − τ .

2 We estimate a MA(τ − 1) model vt = εt + θ1εt−1 + . . . + θτ−1εt−τ+1,

obtaining the residuals ε̂t.

3 We simulate i.i.d variables ηt and calculate v̂∗t = ηtε̂t + θ̂1ηt−1ε̂t−1 + . . .+

θ̂τ−1ηt−τ+1ε̂t−τ+1.

4 We estimate the parameter βk0
of the model with xk0,t and build the

bootstrapped data y∗t+τ = β̂k0
xk0,t + v̂∗t .

5 With the sample y∗1 , . . . , y
∗
R+P−τ , calculate the statistics ∆-mM∗ and ∆-

Mm∗.

In step 3 we depart from CMC in one respect. We replace the normal dis-

tribution used to generate ηt by one among two discrete distributions that take

either the values (−(
√
5−1)/2, (

√
5+1)/2) with probabilities p = (

√
5+1)/(2

√
5)
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and 1 − p respectively or (−1, 1) with probabilities (0.5, 0.5). The first distri-

bution satisfies Eη3 = 1 and the second Eη3 = 0,Eη4 = 1, so they preserve

the third and fourth-order moments of ε̂t respectively. These distributions are

discussed, for example, in Davidson and Flachaire (2008). In our Monte Carlo

experiment, we have observed that for finite samples, the empirical sizes ob-

tained with the second distribution were more approximate to their theoretical

values. This is consistent with the fact that we simulate the innovations of the

prediction error with a symmetric distribution, so the third-order moment pre-

served even when Eη3 = 0. If one has reasons to believe that the innovations are

skewed, the distribution with the unitary third-order moment should be chosen

instead.

In order to prove the validity of the bootstrap under the null hypothesis, we

have to prove that with the bootstrap-induced probability distribution, P ∗, the

matrix {∆ij}(i,j)∈I0×J0
and its bootstrapped counterpart {∆∗

ij}(i,j)∈I0×J0
have

the same asymptotic distribution, conditional to the sample. We indicate this

convergence by
d∗

→. For this, we have to consider the consequences of generating

the artificial sample y∗t with the full set of regressors k0 instead of either i for

the nested case, or i∩j for the overlapping case. In proposition 5 below we show

that this effect is asymptotically negligible. Here we only outline the argument:

under the null, if (i, j) ∈ I0×J0, then the regressors with nonzero coefficients are

all included in i and j. This means that the excess parameters in β∗
k0

compared

to β∗
i in the nested case or to β∗

i∩j in the overlapping case are zero. Since the

bootstrap distributions obtained with the regressors i or i ∩ j are correct for

each case, then so are those obtained with k0.

In order to prove the validity of the bootstrap we need strengthened versions

of assumptions 2 and 3.

Assumption 2′. There is a k0 ( {1, . . . , n} that contains every i ∈ I and such

that (a) ∀i ∈ I, a ∈ kc0, ∃j ∈ J such that i∪{a} ⊆ j, (b) ∀j ∈ J, ∃i ∈ I such that

j ∩ k0 ⊂ i and (c) k0 ∈ I.

The new condition (c) ensures that the models in I0 contain all the relevant
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regressors. This makes the proof of the validity of the bootstrap much simpler,

but it is likely not necessary. We have simulated a scenario in which k0 /∈ I and

the tests work properly, which reinforces this conjecture.

Assumption 3′. (a) Ut+τ = [h′t+τ , vec(xtx
′
t − Extx

′
t)

′]′ is covariance station-

ary. (b) E[εt+τ |εt+τ−j, xs−j : j ≥ 0] = 0. (c) Let γ = (β′, θ1, . . . , θτ−1)
′, γ̂ =

(β̂′, θ̂1, . . . , θ̂τ−1)
′ and define the function ε̂s+τ = ε̂s+τ (γ̂) such that ε̂s+τ (γ) =

εs+τ . In an open neighborhood N around γ, there exists r > 8 such that

supl≤s≤R ‖ supγ∈N ε̂s+τ (γ),∇ε̂′s+τ (γ), xs)
′‖r ≤ c. (d) Extx

′
t < ∞ and is posi-

tive definite. (e) For some r > d > 2, Ut+τ is strong mixing with coefficients

of size −rd/(r − d). (f) limRR
−1E(

∑R−τ
s=1 Us+τ )(

∑R−τ
s=1 Us+τ )

′ = Ω < ∞ is

positive definite.

Assumption 3’ is intended to ensure that the process of generating the boot-

strap errors v̂∗t reproduce the behavior of the true errors ut to the extent required

for the asymptotic results.

Proposition 5. Under H0,

(i) ∆-mM∗ = mini∈I0 maxj∈J0
∆∗

ij + op(1).

(ii) ∆-Mm∗ = maxj∈J0
mini∈I0 ∆

∗
ij + op(1).

(iii) {∆∗
ij}(i,j)∈I0×J0

d∗

→ {g∗ij}(i,j)∈I0×J0
, where {g∗ij}(i,j)∈I0×J0

is distributed as

{gij}(i,j)∈I0×J0
.

When H0 does not hold, ∆ij
d∗

→ g∗ij , where g∗ij is distributed as the gij

corresponding to ỹt+τ = x′k0,t
βk0

+ut. With ỹt, the sets I and J satisfy the null

hypothesis because of assumption 2(b). Hence, when the null does not hold,

P [∆-Mm > ξ∗Mm,α], P [∆-mM > ξ∗mM,α] → 1,

where ξ∗Mm,α and ξ∗mM,α are the Bootstrap critical values.
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3 Monte Carlo

The purpose of our simulations is twofold. In the first place, we want to check

that the empirical size of the test is near enough to the theoretical one. On

the other hand, we want to compare its power with some other procedures.

Instead of our test, one could pick one model from each set and apply a pairwise

comparison. For this purpose, we have used both the AIC and BIC criteria. A

rather empirical method we included in our experiment is as follows: pick the

largest model in I and apply an RC of all models in J against this unique

benchmark.

Summarizing, we have the following tests:

(1a, 1b) Select the benchmark with AIC (1a) or BIC (1b).

(2) Select the largest benchmark. For example if we consider the univariate

models RW, RWD, AR(1), we use AR(1) as benchmark.

(3a, 3b) Use one of two tests based on

min
i

max
j

∆ij and max
j

min
i

∆ij ,

where ∆ij is for each univariate model i and bivariate model j, either

Clark and McCracken’s (2001) ENC-F or MSE-T depending on whether

i is nested in j or not.

We have run simulations in which bivariate data are generated according

to a VAR(3) model. Depending on a parameter b, we make one component to

Granger-Cause the other one. We used both the rolling and recursive schemes.

The model has the form

xt = 0.6xt−1 − 0.3xt−2 + 0.2xt−3+ ε1t (5)

yt = 0.4yt−1 + 0.2yt−2 + 0.1yt−3 + bxt−1+ ε2t. (6)

When b = 0, the null holds and the p-values should be uniformly distributed

in [0, 1]. We test the lack of Granger-Causality using as benchmarks univariate

AR(p) and the alternatives are VAR(p) with p = 1, . . . , 5.
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In figure I, we see that the empirical cumulative distribution function of the

AIC and BIC methods are much above the diagonal, which means that actually

they tend to reject too often. On the other hand, the maximin and minimax

tests are very close to the diagonal.
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Figure I: Case b = 0, null hypothesis, T=160. We represent the empirical distri-

bution functions of the p-values from top to bottom as: method 1a=thick contin-

uous curve; method 1b=dashed curve; minimax=dotted curve; maximin=dash-

dot curve. For reference, we draw the diagonal as a thin continuous line. Rolling

scheme.

We could expect method 2 to have excessive size sometimes, in situations

when the largest benchmark has many parameters and most of them are null in

population terms. Then, the estimation variability would increase the forecast-

ing error and make the alternatives look better. However, in our experimenta-

tion, we have found this effect to be small. We have designed experiments to

discard this method (and thus, to make more appealing our new tests ∆-Mm
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and ∆-mM), but to no avail.

One of the experiments we have tried is based on the data generating process

yt+1 = 0.3yt + b′x1t + εt+1,

where b = 0, 0.2, Xt = (x1t, . . . , x8t)
′ is a multivariate normal vector with a

symmetric Toeplitz covariance matrix with first row (1, 0.9, . . . , 0.3) and εt+1 is

an independent standard normal. We consider all the 28 = 512 combinations

of regressors. We want to test whether any xit with i = 1, . . . 4 has predictive

power. Hence, our benchmarks are the 16 models that do not contain any of

the first four regressors and the alternatives are the remaining 240 that do.

When b = 0, that is, when the null holds, method 2 has a rejection prob-

ability only a little greater than our tests and essentially as the theoretic size.

When b1 = 0.2 the power is a little greater as well.

To save space, only a small selection of results were included. We have found

generally, quite similar size and power between methods 2, 3a and 3b. We invite

the reader to experiment with our MATLAB programs.

4 Exchange rates and commodity prices

There are many models in the literature that relate exchange rates to economic

fundamentals and much work has been invested trying to find empirical evidence

of their validity. Unfortunately, this has proved a hard task. For example, Meese

and Rogoff (1983a, b) conclude that random walk forecasts are as good as any.

Later studies, such as Cheung, Chinn and Garćıa Pascual (2005), with a new

generation of models do not change substantially the picture.

A possible explanation of the failure to measure relationships between ex-

change rates and other variables is advanced in Engel and West (2004). They

assume a present-value model and show that when the dynamics of at least one

fundamental has a unit root, then the exchange rates behave approximately as

a random walk as the discount factor approaches unity. In view of this, it may

not be surprising that in empirical analysis the random walk performs as well as
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Figure II: Case b = 0, null hypothesis, T=80. We represent the empirical

distribution functions of the p-values with: method 2=thick continuous curve;

minimax=dotted curve; maximin=dash-dot curve. For reference, we draw the

diagonal as a thin continuous line. Recursive scheme.

more complex models. They also suggest that present-value models also imply

that exchange rates could be useful to predict the fundamentals. The rationale

for this is that if current exchange rates depend on discounted expectations of

fundamentals, then information related to the future evolution of the latter is

already incorporated in exchange rates. It is also possible that this informa-

tion is not at hand to be used explicitly in econometric models to forecast the

fundamentals.

This idea is pursued in Chen, Rogoff and Rossi (2010, hereafter CRR). In

particular, they focus on commodity prices. With other fundamentals it is

difficult to discard the possibility that exchange rates affect them through other

channels than the expectations. For example, monetary policy responses to
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variations in exchange rates can affect other fundamentals. By avoiding this,

we ensure that Granger-causality from exchange rates can be interpreted as

evidence for the present-value model.

In CRR, the predictive ability of the exchange rates for the commodity

prices is tested through simple linear models for five countries. As in Meese and

Rogoff (1983a), the models are evaluated by means of out-of-sample forecast

error. Given that the model comparisons are nested, the encompassing tests

by Clark and McCracken (2001) are a natural choice. In particular, the ENC-

F test appears to reject in most cases the null that the univariate models for

commodity prices are as good as the bivariate models including exchange rates.

However, we show that there is a bug in the implementation of the test and the

results after the correction are not at all clear. All this is discussed in section

4.1.

There is a difficulty in the interpretation of the tests, because several uni-

variate and bivariate models are used. This entails that we have a number of

pairwise comparisons. If the null is rejected in some of them, but not all, we

need a procedure to arrive at a global decision about whether the bivariate

models are collectively an improvement with respect to the univariate models

or not. We discuss in section 4.3 some methods to do this. By Monte Carlo

simulations, we can discard some of them and reduce the possibilities to only

two. Both of them fail to find evidence that the exchange rates are actually

useful to predict commodity prices.

4.1 The problem

Let us consider a present-value model such as

st =
∞
∑

j=0

ψjE[a′ft+j|It],

where st is the price of an asset, ψ a discount factor, ft is a vector of fundamen-

tals, It is the information set at time t, and a is a vector of coefficients. The

objective of the exercise is to check whether such a model could be valid for
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exchange rates. The route to this is to see if st Granger-causes ft. In partic-

ular, we focus on the commodity prices to avoid being entangled with reverse

causality.

We consider quarterly series of commodity prices (cpt), exchange rates rel-

ative to dollar (erdt) and British pound (erpt) and nominal effective exchange

rates (ernt) from Australia, New Zealand, Canada, Chile and South Africa.

They are taken from the data set by CRR retrieved from the personal website

of Barbara Rossi.

We want to determine whether the knowledge of erdt, erpt or ernt allows

making better predictions of cpt+τ than with the latter alone. We focus first in

τ = 1, but also include some results later for τ = 4. This can be regarded as a

comparison between univariate and bivariate models. For simplicity, we restrict

ourselves to linear models. In CRR, the ones proposed are in first differences,

because the unit root tests do not reject the null of one unit root. Hence, they

try the univariate models

∆cpt = εt; ∆cpt = β0 + εt; ∆cpt = β0 + β1∆cpt−1 + εt,

where εt is white noise. These models are a random walk (RW), a random walk

with drift (RWD) and an AR(1) (in fact, referred to the original variable cpt it

is an ARI(1,1), but we respect the nomenclature by CRR). The bivariate models

are

∆cpt = β0 + γ∆ert−1 + εt; ∆cpt = β0 + β1∆cpt−1 + γ∆ert−1 + εt,

that is, a simple regression model (R) and a VAR(1). Here by ert we mean

generically, any of the three exchange rates.

With these models, different specific null hypotheses can be tested: (i) R

does not beat RW, (ii) R does not beat RWD and (iii) VAR(1) does not beat

AR(1)2. Firstly, these nulls are tested with in-sample Granger-causality tests,

that consist on testing the significance of the parameters of ert−1 in the bivariate

2In fact, it is also possible to compare RW and RWD to the VAR(1), but in the event of

rejection we would not know whether we do because of ∆cp
t−1 or ∆ert−1.
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models. To reject the null amounts to say the bivariate model is better than

the univariate one. To account for possible instabilities of the parameters, the

procedure3 of Rossi (2005) is also used. These tests support the idea that the

exchange rates actually help forecasting cpt+τ .

However, there is a widespread belief that in-sample (IS) tests tend to reject

too often and thus they are unreliable when they indicate Granger causality.

This has been contested, for example in Inoue and Kilian (2005). But however

compelling are their arguments, out-of-sample (OOS) tests are still favored by

practitioners and in fact, the literature about them is still growing. There are

strong intuitive reasons why OOS tests are more convincing than IS tests. When

using IS tests, rejection of the null of no GC can be regarded as evaluating the

models using forecast errors in which the forecasts use the future (because future

observations are used to estimate the parameters). With OOS tests, we use true

or ’pure’ forecasts, in that they do not use the future4.

4.2 Pairwise tests

For OOS causality testing, it is used the ENC-NEW test from Clark and Mc-

Cracken (2001). This test is subsequently called in the literature ENC-F, so

we stick to this notation. To apply this kind of tests, the series are split into

two parts of lengths R and P . Then, there are different ways to proceed. The

one used here is called ’rolling scheme’ and it consists of estimating the param-

eters with a sliding window that comprises observations t − R + 1 to t, with

t = R, . . . , R+ P . The ’recursive scheme’ uses an expanding window from 1 to

t and the ’fixed scheme’ keeps the first estimates throughout.

Encompassing tests are specifically designed to deal with nested compar-

isons. When the nested model is in population terms as good as the larger one,

3Which essentially amounts to split the sample in two parts, enlarge the ordinary Granger-

Causality test with the difference between the estimates in both parts and average along the

splitting points.
4With a small caveat: they are not absolutely realistic because use data from later vintages

to forecast a certain period.
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the finite-sample MSFE of the larger model will be greater due to estimation

variability. These tests get more power by correcting for this effect. The statistic

of the ENC-F test is

ENC-F = P
P−1

∑R+P
t=R+1(û

2
2,t − û2,tû1,t)

P−1
∑R+P

t=R+1 û
2
1,t

,

where û1,t, û2,t are the forecasting errors of the nesting and nested model re-

spectively (the indexes are reversed with respect to the original notation to fit

with the MATLAB code below).

The asymptotic distribution of the test is non-standard and depends on

the estimation scheme and on the limit of the ratio R/P , but critical values

can be found for many situations in the appendix to Clark and McCracken

(2001). They also can be obtained by a semiparametric bootstrap (Clark and

McCracken, 2012).

In CRR, three tests are performed: RW vs R, RWD vs R and AR(1) vs

VAR(1). The results reported in tables 4, 7(a) panel D and 7(b) panel D of

CRR, seem to point that exchange rates actually have predictive content to fore-

cast cpt. Unfortunately, their figures are affected by a MATLAB programming

bug. The ENC-F statistic is computed for the rolling scheme in the function

testshacAR as

Pred*(media(u2.^2-u1roll.*u2))/(media((u1roll-media(u1roll)).^2));

First of all, the denominator is not the MSFE, but the variance, which given

that the nesting models have an intercept probably is asymptotically correct,

but it is not the definition of the test. However, the main problem is that u2

is the error of the nested model with the recursive scheme, so the formula is

mixing different schemes and thus, the asymptotic critical values of Clark and

McCracken (2001) are no longer valid.

We have run the right tests and a very different picture emerges in table

I. We find only signs of a relevant improvement using exchange rates when

the univariate model is the RW (and in the case of NZ, the RWD). In view of

this, one may suspect that the rejections are mostly due to the poor forecasting
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Table I

AUS NZ CAN CHI SA

Dollar ER

RW vs R 4.7349(**) 6.0469(***) 0.2453 1.7840(*) 5.4078(***)

RWD vs R 0.6605 2.7718(**) -0.5683 0.9560 -0.9793

AR(1) vs VAR(1) -1.0233 0.8956 -0.6125 0.4096 -1.2851

RW vs R 0.0043 0.0026 0.3161 0.1121 0.0046

RWD vs R 0.1599 0.0217 0.8197 0.1433 0.8538

AR(1) vs VAR(1) 0.9820 0.1353 0.8876 0.2408 0.9434

Nominal Effective ER

RW vs R 4.5707(**) 4.2938(**) 0.4624 0.1356(*) 5.9648(***)

RWD vs R 0.9011 1.1783 -0.4594 0.1784 -0.0470

AR(1) vs VAR(1) 0.0694 -0.1482 -0.5093 -0.1374 -0.1066

RW vs R 0.0034 0.0116 0.2814 0.3577 0.0025

RWD vs R 0.0774 0.0784 0.6547 0.2978 0.4610

AR(1) vs VAR(1) 0.3741 0.4869 0.6665 0.4476 0.4798

British pound ER

RW vs R 3.5920(**) 2.5224(**) 0.3665 1.4283(*) 6.0028(***)

RWD vs R -0.3618 -0.3217 -0.5013 0.7782 -0.5437

AR(1) vs VAR(1) -0.2135 -2.0156 -0.6172 0.8781 -0.7954

RW vs R 0.0092 0.0383 0.2833 0.1237 0.0024

RWD vs R 0.8591 0.6444 0.8489 0.1258 0.7722

AR(1) vs VAR(1) 0.6631 1.0000 0.9191 0.1301 0.9157

In the first, third, and fifth panels, we report the ENC-F statistics of the

pairwise comparisons. The asterisk indicate significance at 90% (*), 95% (**)

and 99% (***) according to the critical values in Clark and McCracken (2001).

The second, fourth, and sixth panels includes the p-values according to the

bootstrap, that largely coincide.
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Table II

AUS NZ CAN CHI SA

RW vs AR(1) 22.4012(***) 43.1662(***) -0.8938 2.5620(*) 5.9473(***)

RWD vs AR(1) 14.7158(***) 33.5563(***) -1.7126 1.9542(**) -0.4717

Comparison between univariate models. In the above panel, we report the

ENC-F statistics of the pairwise comparisons. The asterisk indicate significance

at 90% (*), 95% (**) and 99% (***) according to the critical values in Clark

and McCracken (2001).

performance of the RW and RWD when compared to the AR(1). We can see this

by performing encompassing tests to check whether the AR(1) are significantly

better than the RW and RWD. In table II we present the results of the tests

and we see that with the exception of Canada, the RW is inferior to the AR(1).

Canada is precisely the country in which even with the RW, there is no rejection.

On the other hand, the RWD is inferior to AR(1) for NZ.

This already points to the conclusion that OOS forecasting gives no evidence

that exchange rates have actual predictive content. However, in the next section,

we will discuss how can we deal more systematically with this kind of multiple

comparisons.

4.3 Results with the multi-model RC

The situation we have here is that we want to test the null that the best univari-

ate model of cpt is as good as any bivariate one that uses past values of ert. To

find a feasible testing procedure, we first make the simplifying assumption that

only linear models matter. Then, even among linear models, we have to restrict

ourselves to relatively simple models. In CRR, this constraint is tight because

using only pairwise comparisons with the ENC-F test, it would be difficult to

manage a large number of models. Even with so few models, pairwise compar-

isons may produce contradictory results, as we saw in the previous section. How
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Table III

AUS NZ CAN CHI SA

Dollar ER

∆-Mm 0.9810 0.1343 0.8526 0.2102 0.8413

∆-mM 0.9817 0.1346 0.8654 0.2150 0.8499

Nominal Effective ER

∆-Mm 0.3782 0.4914 0.5862 0.3966 0.3881

∆-mM 0.4027 0.5476 0.6183 0.4162 0.3960

British pound ER

∆-Mm 0.6629 0.9998 0.8206 0.1043 0.7311

∆-mM 0.6800 0.9998 0.8484 0.1074 0.7454

P-values of the maximin and minimax tests for the three settings.

can we summarize the information into a simple decision?

Let us first consider the case that we have only one univariate model, say

∆cpt+1 = β0 + εt+1 and we want to compare it with different alternatives, for

example, ∆cpt+1 = β0+γ1∆ert+ εt+1 and ∆cpt+1 = β0+γ1∆ert+γ2∆ert−1+

εt+1. In this situation, we can use an RC.

However, RC tests still require to use a particular benchmark. In the case of

CRR, it is not clear beforehand which benchmark should we use. We can deal

with this in different ways: either using some model selection criteria to decide

the benchmark model or generalizing the RC test.

In table III, we report the p-values of the maximin and minimax tests applied

to the benchmarks RW, RWD and AR(1) and the alternatives R and VAR(1).

It seems that when we take into account all models, there is no evidence that

bivariate models forecast the commodity prices better than the best univariate

model.

Given that we have now a tool to combine the information the pairwise com-

parisons between two classes of models, we do not need to constrain ourselves to
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so simple models. We can include regressions with more lags of both variables.

We will assume now that I contains univariate models such as

∆cpt = φ1∆cpt−1 + . . .+ φp∆cpt−p + εt,

and J bivariate models as

∆cpt = φ11∆cpt−1 + . . .+ φ1p∆cpt−p +

φ21∆ert−1 + . . .+ φ2p∆ert−p + εt,

with p up to 12. For the data of South Africa, the largest models have multi-

collinearity troubles, so we reduce the order of the models to 9. The p-values

of the tests with these sets of models are reported in table IV. Here it seems

that some signs of Granger-causality appear in the Australian data. However,

in order not to incur in data mining, we should take into account that even if

the null holds for the five countries, the probability of one of them having a

p-value under 0.1 is over 40%, so we should be cautious about giving relevance

to this, especially given that the p-value is only slightly below 0.1.

On the other hand, in view that method 2 appears to perform well, we could

just look in table I at the comparisons or AR(1) against VAR(1), but this is

consistent with the minimax and maximin tests.

The ∆-Mm and ∆-mM tests can be applied to longer horizons. In table V,

we report the results of the tests with τ = 4. Again, we do not find evidence of

predictability.

These results may appear to contradict the findings of Clark and McCracken

(2012). However, in their experiment, the alternative models use not just ex-

change rates, but also a commodity futures index. Table 5 in their article

presents the alternative models sorted by their RMSE. We can see that most

of the models that perform well include the futures index and thus, the models

that use only exchange rates are mostly in the bottom of the table. Hence, we

cannot conclude that rejection is due to the use of exchange rates instead of the

future indexes.
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Table IV

AUS NZ CAN CHI SA†

Dollar ER

∆-Mm 0.0626 0.7666 0.6762 0.3176 0.2469

∆-mM 0.0814 0.8506 0.6412 0.3023 0.2859

Nominal Effective ER

∆-Mm 0.0949 0.1399 0.9068 0.6493 0.2334

∆-mM 0.1215 0.1488 0.7628 0.7931 0.2294

British pound ER

∆-Mm 0.1399 0.2086 0.7489 0.2139 0.3066

∆-mM 0.1662 0.2350 0.6943 0.2487 0.3749

These are p-values of the tests with autoregressive models of order up to 12. †

For SA, maximum lag is set to 9, because of multicollinearity problems that

appear for larger models.

Table V

AUS NZ CAN CHI SA

Dollar ER

∆-Mm 0.3353 0.1812 0.2194 0.4888 0.7976

∆-mM 0.3428 0.1441 0.2237 0.4981 0.8081

Nominal Effective ER

∆-Mm 0.5940 0.5667 0.5097 0.8731 0.3556

∆-mM 0.6153 0.5728 0.5304 0.8799 0.3283

British pound ER

∆-Mm 0.5800 0.4468 0.8755 0.2238 0.5901

∆-mM 0.5965 0.4540 0.8783 0.2323 0.5655

P-values of the maximin and minimax tests for the three settings, with

forecasting horizon τ = 4.
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5 Final remarks

We have generalized the idea of RC to the case in which one wants to compare

two classes of models. This makes unnecessary to pick a specific benchmark

and apply an RC, which is convenient because we have seen that by being too

cavalier about how to choose the benchmark we can easily get into troubles.

In order to obtain critical values for the test, we use a semiparametric boot-

strap. The assumptions necessary for the bootstrap to work properly are the

main cause of lack of generality. Hence, a theme for future research would be

to find a more general way to approximate or simulate the distribution of the

test. Nevertheless, even in this constrained framework there are a number of

examples in which the test may be of interest.

In the past, it had been difficult to find empirical evidence for models relating

exchange rates to its fundamentals. Unfortunately, our results seem to indicate

that the commodity price approach is no less hard and it resist our efforts to

find predictability.

A Proofs and lemmas

Proof of Proposition 1. We will prove (i) for the MSE-t-mM and leave the other

case to the reader. First

∆-mM = min
(

min
i∈I0

max
j∈J

∆ij , min
i∈I\I0

max
j∈J

∆ij

)

.

Since ∀i ∈ I \ I0,maxj∈J ∆ij
p→ ∞, then mini∈I\I0 maxj∈J ∆ij

p→ ∞. Thus, by

lemma 1,

∆-mM = min
i∈I0

max
j∈J

∆ij + op(1). (7)

Now, we can apply again lemma 1 for each i to get maxj∈J ∆ij = maxj∈J0
∆ij+

op(1). Then, we conclude by replacing in (7) and invoking the continuous map-

ping theorem.

Lemma 2. Let the regressors be ordered so that β = (β′
ℓ, β

′
ℓc)

′. Then, if ∀a ∈
{1, . . . , n} \ ℓ, σ2(ℓ) = σ2(ℓ ∩ {a}), then βℓc = 0.
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Proof. Let us assume for simplicity that Ext = 0. Now, Bµ,ν = Exµ,tx
′
ν,t and

bµ = Exµ,ty
′
t+τ . Then, the assumption implies that





Bℓ,ℓ Bℓ,a

Ba,ℓ Ba,a





−1 



bℓ

ba



 =





νa

0



 .

Hence, Bℓ,ℓ = νbℓ and Bℓ,a = νaba, so all νa are equal to ν. This implies that

π = (ν′, 0, . . . , 0)′ is a solution to the system




Bℓ,ℓ Bℓ,ℓc

Bℓc,ℓ Bℓc,ℓc



π =





bℓ

bℓc



 .

Proof of Proposition 2. Let us assume that i ∪ j = {1, . . . n} and ℓ = i. Now, if

i and j were in I0 and J0 respectively, then σ2(i ∪ {a}) = σ2(i) for all a ∈ j \ i.
Then, by lemma 2 the coefficients in the regression yt+τ on xi∪j,t of all the

elements of j \ i would be zero. This contradicts the assumption that i and j

were nonnested.

Proof of Proposition 3. The result is a straightforward adaptation of theorem

3.2 in Clark and McCracken (2012) for the pairs (i, j) where i is nested in j and

theorem 2.1 in Clark and McCracken (2014) when i and j are overlapping. We

only need to be careful to ensure that the Brownian motion used to express the

distribution of the one-to-one statistic is the same for all pairs (i, j). For this,

note that if we set Ckt = ht, where C = S
1/2
hh , we can apply theorem 4.1 in

Hansen (1992) to get

[vt]
∑

s=[ut]

K(s)k′s ⇒
∫ v

u

W (ω)dW (ω)′,

where⇒ denotes weak convergence andK(s) = C−1H(s). Now, h̃s = σ−1ÃB1/2Cks.

Thus

t
∑

s=[ut]

H̃(s)h̃′s = σ−2ÃB1/2C

t
∑

s

K(t)k′sC
′B1/2′Ã′ ⇒

σ−2ÃB1/2C
{

∫ 1

u

W (ω)dW (ω)′
}

C′B1/2′Ã′.
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Consequently,

t
∑

s=[ut]

h̃′sH̃(s) = tr

t
∑

s=[ut]

H̃(s)h̃′s ⇒

σ−2trÃB1/2C
{

∫ 1

u

W (ω)dW (ω)′
}

C′B1/2′Ã′ =

∫ 1

u

W (ω)′
(

σ−2C′B1/2′Ã′ÃB1/2C
)

dW (ω).

The sums for Γ2,ij and Γ3,ij can be dealt with in the same way.

Proof of Proposition 5. We will prove (iii) first. Lemma 2 and assumption 2′(c)

imply that βkc
0
= 0. On the other hand, assumption 2′(c) ensures that all models

i ∈ I0 and j ∈ J0 satisfy k1 ⊂ i, j, where k1 is the set of the regressors with

nonzero coefficients in the full model. Now, let us compare our bootstrap with

those of Clark and McCracken (2012) and (2014) when (i, j) ∈ I0 × J0.

• In case i ∈ I0 is nested in j ∈ J0, the difference is that we generate the data

with x′k0,t
β̂k0,T + v̂∗t+τ instead of x′i,tβi + v̂∗t+τ , but since all the regressors

with nonzero coefficients are in i ⊂ k0, then the excess parameters have

null population values.

• In case i ∈ I0 and j ∈ J0 are overlapping, the difference is that we generate

the data with x′k0,t
β̂k0,T + v̂∗t+τ instead of x′i∩j,tβi∩j + v̂∗t+τ , but now, all

regressors with nonzero coefficients are in i∩ j ⊂ k0 and again, the excess

parameters have null population values.

We have to see that the excess regressors in the artificial sample only aport

a op∗(1) error to the MSE-F statistics. Let us check this for the numerator. For

the denominators of both pairwise statistics, the calculations are similar.

We denote by û∗ℓ,t+τ(a) the bootstrapped residual obtained using the model

x′a,tβ̂a,T + v̂∗t+τ . We can prove

∑

s

{

(û∗i,s+τ (i)
2 − û∗j,s+τ (i)

2)− (û∗i,s+τ (k0)
2 − û∗j,s+τ (k0)

2)
}

= op(1). (8)

In order to see that (8) holds, we write first, for ℓ = i, j,

û∗ℓ,s+τ (k0) = û∗ℓ,s+τ (i) + x′tQj(t)B(t)−1Jk0
β̂k0,T .
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On the other hand, we can put Jk0
β̂k0,T = Jk0∩ℓJ

′
k0∩ℓJk0

β̂k0,T+Jk0∩ℓcJ
′
k0∩ℓcJk0

β̂k0,T ,

but ∀m ⊂ ℓ,Qℓ(t)B(t)−1Jm = 0 and thus,

û∗ℓ,s+τ (k0) = û∗ℓ,s+τ (i) + x′tQℓ(t)B(t)−1Jk0∩ℓcJ
′
k0∩ℓcJk0

β̂k0,T = û∗ℓ,s+τ (i) +Dℓ.

Hence,

û∗i,s+τ (k0)
2 − û∗j,s+τ (k0)

2 = û∗i,s+τ (i)
2 − û∗j,s+τ (i)

2 +

2û∗i,s+τ (i)(Di −Dj) + 2Dj

(

û∗i,s+τ (i)− û∗j,s+τ (i)
)

+ (D2
i −D2

j ) =

û∗i,s+τ (i)
2 − û∗j,s+τ (i)

2 + E1 + E2 + E3.

Now, that

E1 =
∑

s

2ĥ∗i,s+τ (i)
′
(

Qi(s)−Qj(s)
)

B(t)−1 ×
[

Jk0∩icJ
′
k0∩ic − Jk0∩jcJ

′
k0∩jc

]

Jk0
β̂k0,T = op(1)

can be proved along the lines of lemma 1 in Clark and McCracken (2012), and

using that [Jk0∩icJ
′
k0∩ic − Jk0∩jcJ

′
k0∩jc ]Jk0

β̂k0,T = op(T
−1/2). Now,

|E2| = |
∑

s

Ĥ∗(s)′(Qi(s)−Qj(s))xsx
′
sQi(t)B(t)−1Jk0∩icJ

′
k0∩icJk0

β̂k0,T | ≤

sup
s

|Ĥ∗(s)| ·
∑

s

|(Qi(s)−Qj(s))xsx
′
sQi(t)B(t)−1| · |Jk0∩icJ

′
k0∩icJk0

β̂k0,T |.

The first factor is Op∗(T−1/2), the second is Op∗(T ) and the third is op∗(T−1/2)

because the population parameters outside i are zero. For

E3 =
∑

s

β̂′
k0,TJ

′
k0
Jk0∩icJ

′
k0∩icB(s)−1Qi(s)xsx

′
s(Qi(s)−Qj(s))×

B(s)−1Jk0∩icJ
′
k0∩icJk0

β̂k0,T = op(1),

we may use that sups |T 1/2(Qi(s)−Qj(s)−Qi +Qj)| = Op(1).

For (i) and (ii), we use that by lemma 1 in Clark and McCracken (2012)

and (8), σ̂2,∗
τ (ℓ)

p∗

→ σ2
τ (ℓ), that is, the bootstrapped MSE are consistent. On

the other hand, the same arguments can be used to prove that the bootstrap

estimates of the autocovariance γ̂∗dij
(l) are consistent.
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Therefore, when (i, j) ∈ I0 × Jc
0 , both σ̂

2,∗
τ (i)− σ̂2,∗

τ (j)
p∗

→ σ2
τ (i)− σ2

τ (j) < 0

and the numerator of MSE-t∗ij converges to a positive variance. Thus, MSE-t∗ij →
−∞. Conversely, when (i, j) ∈ Ic0 × J0, MSE-t∗ij → +∞. The same arguments

used in the proof of proposition 1 entail that only the models in I0 and J0 are

asymptotically relevant.
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