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Abstract

The standard practice in empirical industrial organization has been to approximate

the �rm�s output as its revenue de�ated by an industry price index. This approach

introduces a measurement error to the extent that the industry prices do not accurately

measures the �rm�s price level. Therefore, it might be of interest to test whether

these deviations between the �rm�s price level and the industry price index a¤ect the

production function estimators. Some few attempts have been done in the literature

with mixed results. In this paper we use a nonparametric test for assessing the relevance

of the unobserved relative price measurment error. The test rejects the null hypothesis

which suggests the measurement error is not conditionally independent of the production

function explanatory variables, i.e. it may bias the estimators.
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INTRODUCTION

The estimation of production functions raises a set of empirical issues that have no

straightforward solution (Ackerberg et al., 2007; Syverson, 2011). One well-known issue

concerns the measures of output and input, since �rm level surveys typically do not report

quantities nor prices. The standard solution has been to de�ate the �rm�s revenues and

intermediate goods expenditures by an industry price index, hence estimating a revenue

function. However, this procedure may bias the coe¢ cients of the production function to

the extent that the di¤erence between the �rm�s price and the industry price index may be

correlated with de production function explanatory variables. More precisely, the revenue

function estimators of the production function coe¢ cients may be biased if the omitted

price variable -the unobserved �rm�s relative price- were correlated with the �rm�s input

choices (Klette and Griliches, 1996).

In most empirical applications the omitted price variable has been ignored or assumed

away. Recently, the literature has focused on controlling this bias under the assumption

that the omitted price variable is correlated with the input choices. The standard approach

has been to assume a constant elasticity of substitution demand system which basically

amounts to substituting the omitted price variable by the industry�s aggregate demand in

the empirical production function and rescaling the parameters by the demand elasticity

(Klette and Griliches, 1996; hereafter KG; De Loecker, 2011). Alternatively, Grieco et al

(2013) and Gandhi et al. (2013) exploit the �rm�s pro�t �rst order conditions to derive

procedures to estimate the production function when prices are not observed.

Nevertheless, there is not to much empirical evidence assessing the correlation between

the omitted price variable and the input choices, i.e. on how important it is in pratice.

This issue may be of relevance since including additional structural assumptions to solve

the omitted price variable may increase the risk of misspeci�cation, hence deepening the

bias problem.

In this empirical paper we assess the impact of the relative price measurement error on the

production function estimators by testing whether the omitted price variable is correlated
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with the production function explanatory variables. We rely on the nonparametric test

suggested by Henderson et al. (2008).

There have been some previous attempts in the literature which have tried to assess

the impact of the relative price measurement error on the production function estimators.

Naturally, this can only be studied when prices and quantities are available at the plant

level, given that in this case it is straightforward to compare the production function and

the revenue function estimates.

Foster et al. (2008) use information of physical ouptut reported by the North American

Census of Manufactures to compare "quantity based" e¢ ciency measures and revenue e¢ -

ciency measures. Based on plant-level data on manufacturers of 11 homogeneous products

they note that revenue-based and quantity-based productivity are highly correlated with

each other and that these measures might suggest similar patterns with regard to industry

dynamics (Syverson, 2011). Jaumandreu and Mairesse (2005) use a French and a Spanish

Manufacture Panel Data Survey to compare the parameter estimates obtained when the

�rm�s revenue is de�ated by a �rm output price index or an industry price index. Assum-

ing that productivity can be proxied by a �xed e¤ect, their results are in line with those

suggested by Foster et al. (2008), in the sense that they do not �nd signi�cant di¤erences

between the production function and revenue function parameter estimates. In other terms,

these results are consistent with a model where neither the �rm�s optimal input decisions

nor produtivity are correlate the the �rm�s relative price (the ratio between the �rm price

and the industry price index).

In contrast with these previous results, Ornaghi (2006) suggests that the unobserved

relative price term may not be orthogonal to the input optimal decisions and/or productivity

measures. Using the Spanish Manufacture Panel data and assuming that productivity is a

�xed-e¤ect in the production function, he compares the point estimates of the production

function and revenue function when also considering the input relative price measurement

error, i.e. intermediate goods expenditures are de�ated by a common price index. His

results suggest a statistically signi�cant di¤erence between these estimates.

In this paper we revisit this issue but following a di¤erent procedure to those of these
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these previous papers. On the one side, we do not assume that the unobserved productivity

can be speci�ed as a �xed e¤ect. Instead, we follow Olley and Pakes�(1996; OP hereafter)

procedure and assume that productivity is a �rst order markov process. On the other side,

our assessment is relies on a consistent nonparametric test built on the deviations between

the �rm�s output price level and the industry price index. More precisely, the test is built

on whether the residuals between the Olley and Pakes� (1996; OP hereafter) production

function �rst stage estimator and the �rm�s revenue de�ated by the industry price index

are orthogonal to the prodution function explanatory variables. We apply this test to the

Spanish Manufacture Panel Data survey and the test rejects the null hypothesis that the

omited price variable is orthogonal to the input choices.

In order to implement the test we need a consistent estimate of the production function.

However, the Spanish Manufacture panel data survey does not report the �rm�s output

or input price level but its rate of change. As a consequence, as shown by Gonzalez and

Miles (2013), it is not possible to recover a �rm�s speci�c price index to de�ate revenues

and recover quantities because we do not observe the base year price level (i.e., there is

an initial condition problem). In the previous studies this issue has been overlooked and

the initial condition problem has been addressed simply by �xing the unobserved base-

year price level to a constant� for example, normalizing it to 1 (see e.g. Eslava et al.,

2004; Mairesse and Jaumandreu, 2005; Ornaghi, 2006; Dolado et al. 2012). However, such

normalization implies that all �rms in all industries have the same price level (i.e., there is

neither intra- nor interindustry price dispersion) in the base year despite the existence of

price heterogeneity in all other years. From an econometric standpoint, normalizing also

implies assuming that the unobserved base-year price level is statistically independent of

the production equation�s right-hand-side variables �in other words, assuming that �rms are

positioned randomly in the base-year price distribution. This random hypothesis is rejected

in Gonzalez and Miles (2013), a result that suggest treating the unobserved base-year price

level as a �xed e¤ect in the empirical production function equation (Gonzalez and Miles,

2013).

Therefore, the �rst stage of the procedure proposed by OP and ACF in order to account
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for the presence of the unobserved base-year price level �xed e¤ect. The original OP/ACF

procedure comprises two stages. In the �rst stage, a proxy function replaces the unobserv-

able productivity in the production function, leading to a partially linear semiparametric

model. In the presence of the base-year price level �xed e¤ect the �rst stage of the OP

procedure amounts to a partially linear semiparametric model with �xed e¤ects (Su and

Ullah, 2010). It is therefore necessary to remove the �xed e¤ect in order to estimate con-

sistently the nonparametric function that will be used in the second stage. Here we employ

the �xed-e¤ect pro�le, maximum likelihood estimator of Su and Ullah (2006; hereafter SU).

The second stage of the OP procedure is not a¤ected by the base-year price level �xed

e¤ect.

The paper is organized as follows: in the next section we discuss the di¢ culties that arise

when de�ating revenues and materials expenditures by an industry price index and also the

initial condition problem attendant upon constructing a price index using rate-of-change

data. In section three we present the estimation procedure and describe semiparametric

�xed-e¤ect methods. In section four we present the test. In section �ve we apply those

methods to Spanish data and discuss the results before concluding in the paper�s �nal

section.

UNOBSERVED QUANTITIES: MEASUREMENT ERRORS

In this section we discuss the empirical problems that arises when �rm level quantities

are not observed. First, we discuss the problem that arises when the �rm�s nominal values

are de�ated by a common price index. Second, we present the problem that arises when we

observe the �rm�s price rate of change but not the price levels.

De�ating by an industry price index

Following Klette and Griliches (1996), we assume that the production function for the

ith manufacturing �rm at time t can be represented by a Cobb-Douglas function:

Qit = L
�l
itK

�k
it M

�m
it exp (!it + �it) (1)
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where Qit denotes the quantity produced by �rm i at time t, Lit the number of workers,

Kit physical capital, and Mit quantities of materials. The parameters �l; �k; �m relate

input choices to output; !it is the unobservable productivity shock (resulting from, e.g.,

managerial ability and entrepreneurship or expected downtime due to machine repairs); and

�it captures all those shocks that a¤ect production but cannot be anticipated or predicted

by the �rm when making its input decisions�or are due to pure measurement error.

Expressed in logs, equation (1) can be written as

qit = �llit + �kkit + �mmit + !it + �it (2)

where lowercase letters signify the logarithms of uppercase variables. The standard asump-

tion in empirical industrial organization is that the production function is correctly speci�ed,

that is, E (�itjlit; kit;mit; !it) = 0:

The main empirical shortcoming with regard to equation (2) is that quantities are seldom

available in �rm-level data sets, which instead report total revenue: Rit = PitQit; where

Pit is the ith �rm�s output price. Because �rm data sets tend also to exclude �rm price

information, output is usually proxied as total revenue de�ated by an industry price index

PIt. That is, Qit is measured as eRit = PitQit=PIt; which in logs is given by
erit = rit � pIt = qit + (pit � pIt)

or

qit = erit � (pit � pIt)
= erit � vit

Notice that this equation resembles a typical measurement error with respect to the depen-

dent variable: the �rm�s logged output quantity at t is measured by the logged real revenue

at t as corrected by the value of the relative price, (pit � pIt).

Morever, let Eit = MitP
m
it be the �rm�s expenditure on materials and let P

m
It be the

materials industry-wide price index for materials. Then the logged de�ated expenditure is

given by eit = mit+(p
m
it � pmIt), where the last term is an "omitted-input" price term in the

empirical equation for the production function (Ornaghi, 2006).
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Hence, if substitute the observable proxies in the production function equation, the result

is erit = �llit + �kkit + �meit + !it + vit + �it;
where vit re�ects the omitted price variables, vit = (pit � pIt)� �m (pmit � pmIt).

As suggested by De Loecker (2011), in most empirical applications the omitted price

variables have been ignored or assumed away. This implies arguing that the omitted price

variables - the di¤erence between the �rm price and the industry price index- does not

in�uence input decision nor is correlated with the �rm�s structural factors recovered through

the productivity measure, i.e. the �rm can not anticipate the di¤erence between the �rm�s

price and the industry price index when is deciding about its optimal input demands at t.

Therefore, it might be relevant to test whether the omitted price variables bias the pro-

duction function parameter estimators before introducing additional structural assumptions.

More precisely, we should test whether E (vitjlit; kit; eit; !it) = 0:

Naturally, this test can only be performed if we can compare the estimates of the revenue

function with those of the production function, i.e. when prices and quantities are available

at the plant level. There are particularly few surveys that report quantities and prices,

though some report the �rm�s price level rate of change. The �rm�s price level rate of

change is usually used to obtain a �rm price index in order to de�ate revenues and obtain

quantities. In the next subsection we discuss the problem that arises when we observe the

�rm�s level price rate of change but not the �rm�s price level.

Price rate of change: the unobserved base-year price level

Some �rm-level data sets� such as the Spanish ESEE, the Bank of Italy�s Survey on

Italian Manufacturing Firms (INVIND), the Colombian Encuesta Anual de Manufacturas

(EAM), and the French manufacturing survey� report the rate of change in the �rm�s

output price. Here we discuss the initial condition problem that arises when the rate of

price change is used to derive a �rm-speci�c price index, which is used to de�ate nominal

values.

7



Following Eslava et al. (2004), among others, we let the price information reported by

a �rm-level panel dataset be the rate of change, 4Pijt=Pijt�1, here 4Pijt = Pijt � Pijt�1;

j indexes the number of products produced by �rm i and Pijt is the price of product j

charged by �rm i at time t: The rate of change in the �rm�s output price can be obtained

by using a Tornqvist index, which is a weighted average of the growth rate of individual

products:
4Pit
Pit�1

=
X
j=1

sijt (4Pijt=Pijt�1) ; t = 1; :::; T ;

here sijt is any weighting function (e.g., the revenue or market share of product j of �rm i

at time t) that relates the product j to the �rm�s total.

The �rm�s output price level for each period is obtained from the recursion formula

Pit = (1 +4Pit=Pit�1)Pit�1; t = 1; :::; T;

where 4Pit=Pit�1 is given in (4) and backward induction yields the output price level at

time t

Pit =

tY
t=1

(1 +4Pit=Pit�1)Pi0:

Here Pi0 is the base-period price level and the �rm�s speci�c price index is now given by

Pit=Pi0. Hence the output measure is equal to the �rm�s revenue, Rit = PitQit; de�ated by

the �rm�s speci�c price index:

R�it = (PitQit) =(Pit=Pi0) = Pi0Qit;

in logs, we have

qit = r
�
it � pi0: (3)

It should be clear that the �rm�s logged output quantity at t is measured by the logged real

revenue at t as corrected by the value of the base-year price level. The empirical limitation

of this approach is that price levels are usually not observed in surveys that report the

rate of change in prices; that is, pi0 is unavailable. Yet this issue has been overlooked by

previous studies, which simply set the base-year price level to a particular constant� for

instance Pi0 = 1 for all i at t = 0; which implies that pi0 = 0:
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Equation (3) ; however, embodies a typical measurement error with respect to the de-

pendent variable. The standard approach to correct for such an error is to assume that

it is statistically independent of the explanatory variables and hence can be disregarded

(Wooldridge, 2010). Note that this assumption is implicitly invoked when the base-year

price level is set to any given constant.

Furthermore, the materials price index su¤ers an analogous measurement error problem:

the base-year price level of materials is not observed in surveys that report data on the

rate of change for prices. Thus we have mit = eit � pmi0, where eit is the log of (de�ated)

expenditures on materials and pmi0 is the log of the base-year price level of materials. Because

this measurement error concerns an explanatory variable, it may well bias the parameter

estimators.

Here we treat the unobservable base-year price level of output and materials as measure-

ment error �xed e¤ects. Hence, if output is measured by qit = r�it � pi0 and materials by

mit = eit � pmi0; substituting in equation (2)

r�it = �llit + �kkit + �meit + !it + � i + �it;

where � i = pi0 � �mpmi0 captures the base-year price levels of materials and output.

ESTIMATING THE PRODUCTION FUNCTION WITH PARTIALLY

OBSERVED FIRM-LEVEL PRICES

In order to perform the test we �rst need a consistent to estimate the production function.

Here we rely on semiparametric frist stage of the approach proposed by Olley and Pakes

(1996) under the timing assumptions suggested by Ackerberg et al. (2006). In this section

we brie�y describe the original OP procedure (with the ACF assumptions) and introduce

the modi�cations needed when the base-year price level is considered a �xed e¤ect.

The original OP approach considers �rms that make production choices to maximize

the present discounted value of current and future pro�ts. A �rm�s production function

resembles equation (1), where the unobserved productivity !it is assumed to follow an

exogenous �rst-order Markov process, i.e. Pr
�
!itj f!it�jgtj=1

�
= Pr (!itj!it�1), which is
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stochastically increasing in !it�1. Inputs to be used in period t can be classify in �exible

inputs, which can be adjusted in every period, e.g. materials, or quasi-zexible, subject to

adjustment frictions, which are chosen at t�1, e.g. capital or labor. Furthermore, inputs can

either be dynamic, in which case the current period�s input choices a¤ect the �rm�s future

pro�ts (these are so-called state variables), or nondynamic. Finally, �rms are assumed to

operate in perfectly competitive output and input markets. In this economic environment,

the �rm�s pro�t maximization problem results in an investment policy rule that depends

on the �rm�s unobserved productivity and the state variables� namely, iit = ft (!it; kit; lit)

(Ackerbert et al., 2007):

The OP model relies crucially on the notion that this investment policy rule can be

inverted to proxy for unobserved productivity in the production function equation via a

function of investment and the state variables: !it = f�1t (iit; kit; lit) : Pakes (1994) gives

conditions for invertibility when only one unobservable a¤ects �rm behavior (i.e., a scalar

unobservability assumption); the implication is that the investment function is strictly in-

creasing in !it in the region where iit is positive.1

Under these assumptions, the original OP method consists of two stages. In the �rst

stage, the unobservable productivity in the production function is replaced by the inverse

of the investment function (i.e., the proxy function) to yield a partial linear model. That

is, in light of (2) we have

qit = �mmit + �t (iit; kit; lit) + �it

where �t (iit; kit; lit) = �llit + �kkit + f
�1
t (iit; kit; lit) : In principle, this �rst stage could be

used to estimate a semiparametric version of the production function, i.e. we can obtain the

coe¢ cients for the nondynamic variable inputs� that is, the intermediate inputs coe¢ cient

�m as well as �t.
2.

1Recent papers have relaxed this scalar unobservable assumption by admitting additional unobservables

in the investment equation (DeLoecker, 2007; Ackerberg et al., 2007; Huang and Hu, 2011; Aguirregabiria

and Alonso-Borrego, 2013).
2The OP method�s second stage identi�es the parameters of the dynamic inputs by relying on the moment

conditions that result from (a) the �rst-order Markov assumption, !it = E (!itj!it�1)+ "it = g (!it�1)+ "it
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Ackerberg et al. (2006) discuss the ability of the OP procedure to identify the variable

input coe¢ cients in the �rst stage. Under OP assumptions, the variable input demand could

be a function of productivity, in which case� conditional on the �rst stage�s proxy function�

no variability would be left for intermediate materials. That is, mit = gt (!it; kit; lit) so

mit = gt
�
f�1t (iit; kit; lit) ; kit; lit

�
= zt (iit; kit; lit) ; which implies that �m is not identi�ed in

the �rst stage because there remains no variation conditional on the nonparametric function.

In order to allow for identi�cation in the �rst stage, ACF propose additional timing

assumptions concerning when productivity shocks hit the �rm and when inputs are chosen.3

The idea is to introduce an independent source of cross-sectional variability by assuming

that input decisions are based on an information set other than that of investment. So,

suppose that !it evolves between subperiods t � 1,t � b, and t according to a �rst-order

Markov process and tha mit is chosen at t � b. In this case the �rm�s optimal material

input will be a function not of !it but rather of !it�b, which resolves the multicollinearity

problem and allows the �rst stage to be identi�ed. The intuition is that intermediate goods

are chosen without perfect information about !it, and this incomplete information is what

moves mit independently of the nonparametric function. Hereafter, we incorporate these

and (b) the time to build assumption, E (kit"it) = E (lit�1"it) = 0: We can recover the residual "it by

nonparametrically regressing !it (�k; �l) on g (!it�1 (�k; �l)), given that

!it (�k; �l) =
b�t � (�llit + �kkit)

and then estimate the coe¢ cients by minimizing the sample analogue of the moment conditions,

1

N

1

T

X
"it (�k; �l)

24 kit

lit�1

35
using standard GMM techniques.

3ACF present an alternative approach to dealing with the problem of multicollinearity: estimate only the

nonparametric function in the �rst stage and then estimate all the parameters in the second stage. Thus

the �rst-stage estimation would be given by

qit = �
�
it (iit; kit; lit;mit) + �it

and the second stage would use moment conditions to estimate the coe¢ cients.
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ACF assumptions into the OP procedure.4

Moreover, in OP original setting, all �rms are confronted to the same prices because

they operate in a perfectly competitive markets. As a consequence, the �rm price level

does not constitute a state variable in the investment function. In our context, there is

price heterogeneity which can imply that prices should be considered as a state variable.

However, we follow De Loecker (2011) and the price structural underpinings given by Foster

et al. (2008) and Roberts and Supina (2000) to argue that the �rm prices are not state

variables in the investment optimal demand function, i.e. prices are conditionally serially

uncorrelated.

De Loecker (2011) assume that the unobserved �rm level prices are picked up by the

variation in inputs and by aggregate demand, which he argues are not conditionally seri-

ally correlated, i.e. aggregate demand is not a state variable. In our case, the aggregate

demands in the industry-year intersection are constant for the �rms in the same industry

and, therefore aggregate demand is capture through year dummies5. Moreover, Forster�s et

al. (2008) explicitly derive the �rm price as a function of productivity and demand shifters,

which suggest that, conditioning on these variables, the price idyosincratic shock is condi-

tionally serially uncorrelated. Additionally, Roberts and Supina (2000) present a similar

price equation as Foster at al. (2008) and suggest that the �rm�s price indyosincratic shock

may not serially correlated once conditioning on �rm�s structural characteristics that change

slowly over time, e.g. productivity, which embodies the producers idyosincratic tecnologies

that explain prices movements.

As a consequence, the production function with �xed-e¤ects measurement error, � i is

given by

r�it = �llit + �kkit + �meit + !it + � i + �it:

4The following ACF assumptions support their conclusions: the realization of materials cost shocks are

not conditionally serially correleted and are realized after the investment decision takes place; and capital

and labor markets are perfectly competitive.
5Notice that this is equivalent to assume that �rms are confronted to a constant substitution demand

function (Klette and Griliches, 1996; De Loecker, 2011).
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and iit = ft (!it; kit; lit; Dit) ; where Dit captures observable demand shifters and time

dummy variables.6

The foregoing discussion indicates that the �rst-stage equation can be written as

r�it = �llit + �kkit + �meit + f
�1
t (iit; kit; lit; Dit) + � i + �it

= �meit + �t (iit; kit; lit; Dit) + � i + �it:

Here �t (iit; kit; lit; Dit) = �llit + �kkit + !it and !it = f
�1
t (iit; kit; lit; Dit).7

The presence of a base-year price level �xed e¤ect in the production function a¤ects the

estimation procedure. We next show how to modify the �rst stage of the OP procedure

by means of semiparametric, partially linear, panel data �xed-e¤ect models that enable

us to estimate not only the �rst-stage nonparametric function but also parameters of the

nondynamic inputs. The nonparametric function is then used in the second stage to estimate

the dynamic inputs, just as in the original OP/ACF procedure.

Partially linear panel data models

The �rst stage of the OP method can be described as a partially linear panel data �xed-

e¤ect model. We employ the notation most commonly used in semiparametric partial linear

6We remark that measurement error in the materials input may a¤ect the derivation in Levinsohn and

Petrin (2003). Their procedure derives the proxy function from the optimal materials demand decision,

mit = dt (kit; lit; !it) so !it = d�1t (kit; lit;mit). If there is a base-year measurement error, then !it =

d�1t (kit; lit; eit � pmio) = d�1t (kit; lit; eit; � i); this expression characterizes a partially separable panel data

model.
7Observe that if the unobservable base-year price level is considered a state variable, then we have

a partially separable nonparametric panel data model. That is, if iit = ft (!it; kit; lit; � i) so !it =

f�1 (kit; lit; iit; � i), then subsituting into the production function equation yields r�it = � (iit; kit; lit;mit;� i)+

�it under the ACF alternative speci�cation for the OP�s procedure �rst stage. Unfortunately, existing meth-

ods for nonseparable models recover only the average derivatives�estimators. In ongoing research, Evdokimov

(2010), has proposed a method for estimating the nonparametric function �.
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models:8

yit = x
0
it� +m (zit) + � i + �it; i = 1; :::; n; t = 1; :::; Ti:

Here yit represents r�it; xit is a p � 1 vector of explanatory variables, including materials

inputs eit; m (�) = � (�) ; and zit = (iit; kit; lit; Dit), which is a q � 1 vector.9

Recent years have seen an increasing number of papers that propose alternative estima-

tion methods for use with �xed-e¤ect nonparametric or semiparametric panel data models

(Su and Ullah, 2010). Each of these papers proposes an alternative method of estimating

the linear or nonparametric component. For example, Li and Stengos (1996) use a ker-

nel instrumental variable to estimate the linear� but not the nonparametric� component.

Henderson et al. (2008) propose a similar iterative kernel estimator for the nonparametric

function that is, however, computationally more demanding.

In this paper we apply two straightforward methods for estimating the unknown com-

ponent of the partial linear model. One is based on pro�le likelihood estimation for the

nonparametric component (Su and Ullah, 2006); the other is based on series approximation

(Baltagi and Li, 2002). We have chosen these two methods because they are computation-

ally less costly and have good asymptotic properties (Su and Ullah, 2010; Gao, 2012).

Su and Ullah (2006) propose estimating the semiparametric �xed-e¤ect model by means

of pro�le maximum likelihood (i.e., pro�le least squares). The local linear approximation

of their equation can be written as

yit = x0it� +m (z) +
@m

@z
(zit � z) + � i + �it

= x0it� + Zit (z) � (z) + � i + �it

where @m
@z =

�
@m
@z1
; :::; @m@zq

�
, Zit (z) =

�
1; (zit � z)0

�
1�(q+1) and � (z) =

�
m (z) ; @m@z

�0
:

8These methods were developed for data from balanced panels: we have extended these procedures to

unbalanced panels.
9Although OP, ACF, and Levinsohn and Petrin (2003) all assume that the functional form of the in-

vestment proxy is time dependent, in their empirical applications this form is presumed not to be time

dependent. In fact, it is possible (as suggested by a referee) for these functions to depend on t, but that

would require an estimation methodology not yet available in the literature.
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The idea behind this approach is to pro�le out the individual e¤ect and the linear para-

meters, � =
�
� 0; �0

�0 and then consider the concentrated least squares for � (z) : Therefore,
if � is known the estimate of � (z) is given by

�� (z) = arg min
�2Rq+1

X
i

X
t

�
yit � � i � x0it� � Zit (z) � (z)

�2
KH (zit; z) ;

where KH (zit; z) =
qY
k=1

h�1k k
�
zit;k�z
hk

�
for k (�) a univariate kernel function and subject to

the identi�cation condition
P
i � i = 0: Thus,

�� (z) =

"X
i

X
t

Zit (z)
0KH (zit; z)Zit (z)

#�1X
i

X
t

Zit (z)
0KH (zit; z)

�
yit � � i � x0it�

�
:

However, �� (z) is not an operational term because it depends on the unknown parameter

�: Hence this method pro�les out m (z) by estimating � as

b� = argmin
�

X
i

X
t

�
yit � � i � x0it� �m� (zit)

�2
where m� (zit) is the �rst component of �� (z). Given the pro�le estimates b� = �b� 0; b�0�0, the
pro�le likelihood estimator of m (z) is

bm (z) = mb� (z) = e0�b� (z)
= e0S (z)

�
y �Db� �Xb��

in matrix form, where e = (1;0q�1)(q+1)�1;

S (z) =
�
Z (z)0KH (z)Z (z)

��1
Z (z)0KH (z)

Z (z) =
�
Z11 (z)

0 :::Z1T1 (z)
0 :::ZnTn (z)

0�0
R�(q+1) ;

KH (z) = diag [K (z11 � z) ;K (z12 � z) :::K (z1T1 � z) :::K (znTn � z)]R�R

DR�n�1 = [(��n�1; In�1)
 �Ti ]i=1;:::;n

y = (y11;:::ynTn)
0
R�1

for R =
Pn
i=1 Ti; ; � = (�2; :::�n)

0 and XR�p:
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The parameter pro�le estimates are given by

b� =
h eX 0 eXi�1 eX 0ey

b� =
h
D�

0
D�
i�1

D�
0
�
y� �X�0b�� :

Here the asterisk � indicates the residual after regressing the respective variable on the

matrix de�ned by S = [s (zit)] = [e0S (zit)] i=1;:::;n;t=1;::::Tn and the tilde e� denotes the
residuals of regressing X� and y� on D�: Su and Ullah (2006) demonstrate the consistency

of the nonparametric estimator and +the
p
n�consistency of the parameters estimator. In

Su and Ullah (2007) these authors develop a similar estimation procedure for random-e¤ects

models.

A TEST FOR THE OUTPUT RELATIVE PRICE TERM

In this section we built the test to assess the relevance of the relative price measurement

error. The test relies in evaluating the residuals de�ned as the di¤erence between the

�rm�s revenue de�ated by an industry index and the consistent estimate of the production

function.

Let the production function be stated as in the �rst stage of the OP procedure be given

by

qit = �mmit + �t (iit; kit; lit; Dit) + �it

= ��t (zit) + �it

where E (qitjzit) = �mmit + �t (zit) = ��t (zit) ; zit = (iit; kit; lit; Dit;mit) and �t (�) is an

unknown functions. In the previous section we described how we can recover a consistent

estimate ��t (�) when we only observe the �rm�s level price rate of change.

The �rm�s output as measured by the �rm�s revenue de�ated by the industry price index

is given by

qit = erit � vit;
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and substituting in the �rst stage of the OP procedure we have

erit = ��t (zit) + vit + �it:
Therefore, if E (vitjzit) = 0 then case E (qitjzit) = E (eritjzit). As a consequence, the test

can be based in a statistic derived from the orthogonality condition,

E (erit � ��t (zit) jzit) = 0;
where all its components are observable or can be consistently estimated.

In order to derive the test statistic we follow Henderson et al. (2008) see also Li and Sun,

2013). Let uit = (erit � �� (zit)) be the residual between the �rm�s revenue de�ated by the
industry price index and the OP �rst stage production function. Then, we want to test

H0 : E (uitjzit) = 0

HA : E (uitjzit) 6= 0

The proposed test is based on the sample analogue of J = E fuitE (uitjzit) f (zit)g =

E
n
[E (uitjzit)]2 f (zit)

o
: If the model is assumed to be correctly speci�ed, then the statistic

equals zero under H0 -no omitted variable bias- but exceeds zero under HA.

In order to implement the statistic, let b�� (zit) = b�mmit+ b� (iit; kit; lit;mit) be consistent

estimators of �� = �mmit + � (iit; kit; lit;mit) described in the previous section. Then, a

consistent estimator of uit is given by buit = erit � b�� (zit) where erit is the �rm�s revenue
de�ated by the industry price index.

A feasible test statistic is given by

bJ = 1

R

nX
i=1

TiX
t=1

buitE�it (buitjzit) bf�it (zit)
where R =

PN
i=1 Ti and where a wild bootstrap procedure is used to approximate the �nite

sample null distribution of bJ (Li and Sun, 2013; Henderson et al., 2008):
The null hypothesis implies that the relative price omitted term does not bias the produc-

tion function parameter estimators, i.e. the production function is consistently estimated by

the revenue funciton. Therefore, the bootstrap is based on the revenue production function
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residuals. Let bur = �bur11; :::; burnTn�0R�1 be the residuals of the revenue function as in the �rst
stage of the OP procedure,

erit = b�rmmit + b�r (iit; kit; lit) + burit
from where we de�ne the bootstrap residuals based on a two point wild bootstrap

ur�it =

8<:
��
1�

p
5
�
=2
� burit p =

�
1 +

p
5
�
=
�
2
p
5
���

1 +
p
5
�
=2
� burit 1� p

We generate the bootstrap sample fer�it; zitgi=1;::;n;t=1;:::Ti ; as
er�it = b�rmmit + b�r (iit; kit; lit;mit) + u

r�
it

where b�r; b�r are the revenue function estimates in the original sample. This bootstrap sam-
ple fer�it; zitgi=1;::;n;t=1;:::Ti is then used to estimate the revenue function bootstrap residuals,bur�it = er�it�b��rmmit�b��r (iit; kit; lit;mit) ; where

�b��r; b��r� are the bootstrap revenue function
estimates: The bootstrap test statistic bJ� is obtained just as is bJ except that the residual,buit; is replaced by the revenue function bootstrap residual bur�it : This process is repeated a
large number of times after which the empirical bootstrap distribution is then used to ap-

proximate the null distribution of the test statistic bJ: For each bootstrap sample we perform
the test and repeat for B bootstraps. The bootstrap p-value is given as B�1

P
I
� bJ� > bJ� :

In the next section we apply the methods just described to data from a survey of Spanish

manufacturing �rms.

DATA AND RESULTS

Our data comes from the Encuesta Sobre Estrategias Empresariales (ESEE) 1991�2006

survey, an unbalanced �rm-level panel of Spanish manufacturing �rms that is sponsored by

the Ministry of Industry. These data have been frequently used to estimate the production

function. We selected a subsample consisting of small and medium-size �rms (i.e., �rms

with 10�199 workers) that exhibited positive investment levels and at least two consecutive

periods in the sample. This selection criteria yielded a total of 10,484 observations of 1,616

�rms belonging to ten di¤erent industrial sectors.
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In Figure 1we compare 75th and 25th quantiles �rm�s price index obtained normalizing

the base year price level, i.e. P0i = 1 for all i; and the Industry price index. As it can be

observed from the Figure, the normalization restricts all prices to be the same in the base

year though there are singi�cant price di¤erences in subsequent years. These graphs could

be suggesting two things: �rst, that the production function parameters estimators de�ned

using the revenue function may be bias; second, that the normalization of the unobserved

base-year price level to a particular constant for all �rms in all industries may a¤ect the

production function parameter estimators.

[Insert Figure 1 about here]

In Table 1we present the results of implementing the test to assess whether the unobserved

relative price term bias the production function parameter estimators under three di¤erent

bandwith parameters..

[Insert Table 1 about here]

Overall, the test rejects the null hypothesis that the unobserved relative price term is un-

correlated with the production function explanatory variables. In other terms, recovering

the production function parameters from the revenue function may lead to uncorrect re-

sults. Another interpretation of the Table 1 results is that the conventional functional forms

adopted in the empirical implementation of the OP/ACF procedure are incorrect (Bierens,

2009). That is, because the nonparametric test can detect overall misspeci�cation of a func-

tional form, the test could imply either that the unobserved relative price term signi�cantly

a¤ects the parameter estimators (assuming a correct functional form speci�cation) or that

the overall functional forms are not correct.

CONCLUSION

A limitation of the empirical research on production functions is that output and input

quantities are not observed. When �rm-level price information is unavailable, the standard
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approach is to measure the �rm�s output as revenue divided by an industry-level de�a-

tor (revenue production function). However, this approach introduces an omitted variable

problem de�ned by the di¤erence between the �rm�s price and the industry price, i.e. an

unobserved relative price term. There have been some few attempts in the literature try-

ing to assess whether this omitted variable term biases the production function parameter

estimators. These papers used a �xed-e¤ect productivity speci�cation and assessed the sta-

tistical relevance of the unobserved price term by comparing the estimates of the production

function and the revenue function, reporting mixed results.

In this paper we use a formal nonparametric test to assess whether the unobserved relative

price term may bias the production function parameter estimators. Using a panel data

from the Spanish manufacturing industry we reject the null hypothesis that states that the

unobserved relative price term is uncorrelated with the production function explanatory

viariables. In other terms, the revenue function parameter estimators report bias production

function parameters.

APPENDIX A: SURVEY AND DEFINITION OF VARIABLES

The Encuesta Sobre Estrategias Empresariales (ESSE) 1990�2006 is a panel of �rms.

The raw data set consists of 4,357 manufacturing �rms and a total of 30,827 observations.

At the beginning of this survey in 1990, 5% of �rms with fewer than 200 workers were

sampled randomly by industry and size strata. All such �rms were asked to participate,

which they did at a rate of about 70%. The initial sample properties have been maintained

in subsequent years because exit attrition is balanced by replacing exiting �rms with newly

created �rms that satisfy the initial sampling criteria as in the �rst year.

For the research reported in this paper, we selected a subsample consisting of small and

medium-size �rms that are present in the panel data for at least two consecutive years;

this subsample includes 15,757 observations for 2,616 �rms. Because the OP procedure

considers only �rms with positive investment, we eliminated from the sample all �rms that

did not exhibit positive investment. Hence our �nal sample contained 10,484 observations
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for 1,616 �rms.

The variables are de�ned as follows.

� Capital. Capital at current replacement values Kit is computed recursively from an

initial estimate and using data on current investments in equipment goods Iit. We

update the value of the past stock of capital by means of the price index of investment

in equipment goods pIt as Kit = (1��)(pIt=pIt�1)Kit�1+Iit�1; where � is an industry-

speci�c estimate of the rate of depreciation. Capital in real terms is obtained by

de�ating capital at current replacement values by the price index of investment in

equipment goods.

� Investment. The value of current investments in operative capital includes equipment

goods but excludes buildings, land, and �nancial assets. The magnitude is de�ated

by the price index of investment (the equipment goods component of the index of

industry prices computed and published by the Spanish Statistic Institute, INE).

� Market dynamism. Firms are asked to assess the current and future situation (slump,

stability, or expansion) of up to �ve separate markets in which they operate. The

market dynamism index is computed as a weighted average of the responses.

� Materials. Value of intermediate consumption (including raw materials, components,

energy, and services) de�ated by a �rm-speci�c price index of materials.

� Output. Value of produced goods and services, computed as sales plus the variation

of inventories and de�ated by a �rm-speci�c price index of output.

� Employment. Number of full-time plus half of part-time workers as of December 31.

� Demand shifters: �rms are asked to assess the current and future situation of up to

5 separate markets which they operate: contraction, stability or expansion.

� Materials price index : Firm-speci�c price index for intermediate consumption: �rms

are asked about the price changes that occurred during the year for raw materials,
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components, energy, and services. The price index is computed as a Paasche-type

index.

� Output price index : Firm-speci�c price index for output. Firms are asked about the

price changes they made during the year in up to 5 separate markets in which they

operate. The price index is computed as a Paasche-type index.
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Table 1. Unobserved relative price measurement error nonparametric test.

Industrial sectors I II III

1. Food, drink and tobacco 0:157
(0:000)

0:047
(0:000)

0:266
(0:000)

2. Textile, leather and shoes 0:054
(0:000)

0:024
(0:000)

0:081
(0:000)

3. Timber and furniture 0:062
(0:000)

0:036
(0:000)

0:077
(0:000)

4. Paper and printing 0:076
(0:000)

0:038
(0:000)

0:098
(0:000)

5. Chemical products 0:076
(0:000)

0:031
(0:000)

0:109
(0:000)

6. Nonmetalic minerals 0:151
(0:000)

0:072
(0:000)

1:941
(0:000)

7. Metal products 0:050
(0:000)

0:023
(0:000)

0:073
(0:000)

8. Agricultural. & industrial machinery 0:640
(0:000)

0:102
(0:000)

1:400
(0:000)

9. O¢ ce, computers and electronics 0:066
(0:000)

0:041
(0:000)

0:084
(0:000)

10. Vehicles accessories 0:105
(0:000)

0:053
(0:000)

0:1585
(0:000)

Note: I: Same bandwidth as Henderson et al. (2008), hz=�zn
�1=1+q; where z index continuos variables

and the Li and Racine and Li (2004) mixed continuous-discrete kernel with � = �cn
�1=1+d where c

index discrete variables;.Colunms II, III, bandwith multiply by a constant taking values: 0.5, 1.5; p-value in

parenthesis obtained after 500 bootstraps.

27


