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Abstract

In recent years there has been a remarkable growth of volatility options. In particular,
VIX options are among the most actively trading contracts at CBOE. These options exhibit
upward sloping volatility skew and the shape of the skew is largely independent of the
volatility level. To take into account these stylized facts, this article introduces a novel
two-factor stochastic volatility model with mean reversion that accounts for stochastic skew
consistent with empirical evidence. Importantly, the model is analytically tractable. In this
sense, I solve the pricing problem corresponding to standard-start, as well as to forward-start
European options through the Fast Fourier Transform.

To illustrate the practical performance of the model, I calibrate the model parameters to
the quoted prices of European options on the VIX index. The calibration results are fairly
good indicating the ability of the model to capture the shape of the implied volatility skew
associated with VIX options.
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1 Introduction

Volatilities of financial assets are of great importance for derivatives pricing, as well as for port-

folio theory. The fact that volatilities are stochastic is widely recognized and in recent years

new derivatives, that have some measure of volatility as the underlying asset, are emerging. In

this sense, volatility has become an asset class. In 2004 the Chicago Board Options Exchange

(CBOE) introduced futures traded on the CBOE Volatility Index (VIX index) and in 2006 op-

tions on that index. The VIX index started to be calculated in 1993 and was originally designed

to measure the market’s expectation of 30-day at-the-money implied volatility associated with

the Standard and Poor’s 100 index. But with the new methodology1 implemented in 2003, the

squared of the VIX index approximates the variance swap rate or delivery price of a variance

swap, obtained from the European options corresponding to the Standard and Poor’s 500 index

with maturity within one month.

Since the introduction of the VIX index, exchanges in several countries have launched volatil-

ity indices. For instance, in 1995 the Deutsche Börse introduced the VDAX index as a measure

of the at-the-money implied volatility associated with the DAX equity index. In 2005 the

Deutsche Börse launched the VDAX-NEW. This index is calculated with a similar methodol-

ogy2 as the current VIX index and represents the 30 day expected market volatility of the DAX

index.

The first model to price options on an implied volatility index was originated by Whaley

(1993) who applied the Black (1976) valuation formula to price calls on futures contracts. Bali

and Ozgur (2008), among others, show that the existence of persistence and mean reversion

is quite relevant in stock market volatility. To account for this persistence Grünbichler and

Longstaff (1996) use the square root process to model the behavior of a standard deviation

index such us the VIX index, whereas Detemple and Osakwe (2000) propose a log-normal

Ornstein-Uhlenbeck process.

As pointed out by Sepp (2008) the implied volatility of VIX options displays upward sloping

skew. The reason is that out-of-the-money calls on the VIX index offer protection against

an equity market crash. Unfortunately, none of the previous models is able to account for

this important feature of volatility options. Recently, a number of models have been proposed
1For a definition of the methodology and the history of the VIX index, see CBOE (2009) and Carr and Wu

(2006).
2See Deutsche Börse AG (2006).
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to account for the upward sloping skew associated with the VIX index. These models can

be included in two main categories. The first category corresponds to models that impose

certain dynamics directly for the volatility index. Within this group we have, among others,

the work of Mencía and Sentana (2009) who extend the models of Grünbichler and Longstaff

(1996), as well as of Detemple and Osakwe (2000) to incorporate stochastic volatility, jumps

and a time varying central tendency in the evolution of the VIX index. They conclude that

the introduction of stochastic volatility within the Ornstein-Uhlenbeck specification for the

logarithm of the volatility index provides an important improvement in the options pricing

performance. Conversely, the introduction of central tendency or jumps has little impact on

options on volatility. Unfortunately, calibration errors with respect to market implied volatilities

are remarkably high making the model hardly to use for trading purposes.

The second category corresponds to those models where the volatility index is derived from

the assumed returns dynamics. Among others, Sepp (2008), Gatheral (2008), who considers

stochastic volatility and central tendency, and Lin and Chang (2009, 2010) follow this approach.

Unfortunately, as shown by Cheng et al. (2012), Lin and Chang’s formula for volatility deriva-

tives is not an exact solution of their pricing equation and their formula cannot serve as a

reasonable approximation. On the other hand, Bergomi (2005) models the joint dynamics of

forward variance swap rates and the underlying return process but, as explained by Gatheral

(2008), this model generates almost no skew for VIX options.

Although from a theoretical perspective is quite interesting to consider the relationship

between the volatility index and the underlying equity index, from a practical point of view,

since hedging of VIX options is typically done with trading in futures contracts, the valuation

of volatility options can be addressed postulating directly the dynamics associated with the

volatility process. This situation has certain analogy with the valuation of options on equity

indices. The return on the index is the weighted average of the returns on the individual assets

but the dynamics of index returns are not so simple. For instance, in the Black-Scholes (1973)

context the assumption that the underlying asset for an option follows a geometric Brownian

motion is convenient for individual stocks, but a linear combination of log-normal variables does

not have a log-normal distribution. Nevertheless, the standard practice, in the literature and

among practitioners, is to set directly the dynamics associated with the evolution of the index

without considering the dynamics corresponding to its constituents.

Wang and Daigler (2011) examine the pricing performance of several VIX option models
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including Whaley (1993), Grünbichler and Longstaff (1996) and Lin and Chang (2009), using

actual VIX option market prices. One of the conclusions of this study is that an adequate

pricing model has yet to be developed. In this sense, Cheng et al. (2012) postulate that a

commonly accepted VIX option pricing model is not available yet.

As documented in this article, another important feature of VIX options is that there is

considerable time-variation in the implied volatility skew. This article contributes to the litera-

ture presenting a valuation model that is consistent with this stylized fact. To this end, I follow

the first approach and I introduce a two-factor stochastic volatility model within the Ornstein-

Uhlenbeck specification for the logarithm of the volatility index of Detemple and Osakwe (2000)

to price options on volatility. This novel valuation model accounts for mean reversion, stochastic

volatility and stochastic correlation between the volatility index and its instantaneous stochastic

variance. Hence, the model is able to generate stochastic implied volatility skew consistent with

empirical evidence. Importantly, the model is analytically tractable. In this sense, I solve the

pricing problem corresponding to European options through the Fast Fourier Transform as in

Carr and Madan (1999).

The existence of stochastic skew has been documented by Derman (1999) and Christoffersen

et al. (2009) in the equity context, as well as by Carr and Wu (2007) for foreign exchange options

markets. Christoffersen et al. (2009), as well as da Fonseca et al. (2008) propose multifactor

stochastic volatility models to account for the existence of stochastic skew in the valuation of

equity options. But, to the best of my knowledge, the model presented in this paper represents

the first multifactor stochastic volatility model to price volatility options under the existence of

mean reversion in the underlying volatility index.

Forward-start options, i.e. options with a strike price that will be determined at a later

date are usually embedded in equity structured products. Although, nowadays, forward-start

options on volatility are not common, it is likely that they experience an upswing with the

future development of volatility options markets. Hence, another contribution of this paper

consists of providing semi-closed-form solutions for the price of forward-start volatility options

under the model presented in this article.

The rest of the paper is organized as follows. Section 2 analyzes the dynamics associated

with the implied volatility surface corresponding to the VIX volatility index and describes the

main features of VIX options. Section 3 presents the multifactor stochastic volatility model

with mean reversion. Section 4 considers the pricing problem and provides semi-closed-form
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solutions for the price of standard-start, as well as forward-start European options on volatility.

Section 5 shows an example of its implementation as applied to the VIX index options market.

Finally, section 6 concludes.

2 Empirical properties of volatility options

As said previously, exchanges in several countries have launched volatility indices but the VIX

index has effectively become the standard measure of volatility risk between investors and it

is the only volatility index with listed options. They are European-style options with cash

settlement according to the difference between the value of the VIX at expiration and the strike

price. Note that these options can also be interpreted as options on VIX futures with the same

maturity as the options. This fact can be used to simplify the pricing problem.

Interestingly, VIX options are among the most actively trading contracts at CBOE. One of

the reasons is that they allow investors to be hedged against the equity market downside. Panel

A of figure 1 displays the weekly evolution of the at-the-money implied volatility associated with

options with maturity within three months during the period January 6, 2010 to April 18, 2012.

On the other hand, panel B shows the evolution of the 95-100 skew, defined as Σ1 − Σ0.95, as

well as the 100-105 skew, defined as Σ1.05−Σ1, where ΣK is the implied volatility corresponding

to options with strike equal to K expressed as a percentage of the underlying asset. The data

have been obtained from Bloomberg. We can see from the figure that both measures of skew

are always positive indicating the existence of an upward sloping volatility skew. The figure

also shows that the at-the-money implied volatility, as well as the skew evolves stochastically

through time. Moreover, it seems that the shape of the skew is largely independent of the

volatility level. To corroborate this fact, panel A of figure 2 provides a scatter plot, which gives

the relation between the 95-100 skew and the at-the-money implied volatility, while panel B

displays the scatter plot associated with the 100-105 skew. The figure shows that there are low

volatility days with a steep volatility slope, as well as a flat volatility slope. On the other hand,

we also have high volatility days with steep and flat volatility slopes3. This fact was first noticed

by Derman (1999) in the context of the implied volatility corresponding to equity indices and it

have been also documented by Christoffersen et al. (2009) for the implied volatility associated

with the Standard and Poor’s 500 equity index.

Importantly, in single-factor stochastic volatility models the correlation between the volatil-
3The same behavior is observed for implied volatilities associated with other maturities.
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ity index and its instantaneous variance is constant. This structural limitation does not allow

this kind of models to capture the time-varying nature of the volatility skew. To account for

this stylized fact, the following section introduces a two-factor stochastic volatility model with

mean reversion that have more flexibility to model the level and slope of the skew, as well as

the volatility term structure.

3 A two-factor stochastic volatility model

To take into account the mean reversion observed in volatility indices, such as the VIX index,

and the time-varying nature of the volatility skew observed in volatility options, this section

introduces the two-factor stochastic volatility model and describes its variance-covariance struc-

ture. Let Xt denote the spot price of the underlying volatility process at time t ∈ [0,Υ], where

Υ is some arbitrarily distant horizon and let us denote by Yt = lnXt the log-return process.

For simplicity, I assume that the continuously compounded risk-free rate r is constant. Let Θ

denote the probability measure defined on a probability space (Ω,z,Θ) such that asset prices

expressed in terms of the current account are martingales. We denote this probability measure

as the risk-neutral measure. I assume the following dynamics for the log-return process Yt under

Θ:

dYt = κY (θY − Yt) dt+
2∑
i=1

√
vitdZit

with:

dvit = κi (θi − vit) dt+ σi
√
vitdWit

where θY is the long-term mean associated with the log-return process and κY denotes the

speed of mean reversion. Analogously, θi represents the long-term mean corresponding to the

instantaneous variance factor i (for i = 1, 2), κi denotes the speed of mean reversion and, finally,

σi represents the volatility of the variance factor i. For analytical convenience, let us rewrite

the previous equations as follows:

dYt = (aY − bY Yt) dt+
2∑
i=1

√
vitdZit (1)

dvit = (ai − bivit) dt+ σi
√
vitdWit (2)
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where bY = κY , aY = κY θY , bi = κi and ai = κiθi. In equations (1) and (2) Zit and Wit are

Wiener processes such that:

dZitdWjt =
{
ρidt for i = j

0 for i 6= j

On the other hand, Z1t and Z2t are uncorrelated. In addition,W1t andW2t are also uncorrelated.

I denote the specification of equations (1) and (2) the two-factor stochastic volatility with mean

reversion (TFSV-MR) model.

3.1 Variance-covariance structure

The conditional variance of the return process is:

Vt := 1
dt
V ar(dYt) =

2∑
i=1

vit

whereas the variance associated with dVt is given by:

Πt := 1
dt
V ar(dVt) =

2∑
i=1

σ2
i vit

Both variance processes are stochastic as in single-factor volatility models but the multifactor

specification provides more flexibility to model the term structure of volatility. Moreover, under

the multifactor volatility model the correlation between the log-return corresponding to the

volatility index and its instantaneous variance is also stochastic and it can be expressed as:

ρXtVt := Corr (dYt, dVt) = ρ1σ1v1t + ρ2σ2v2t√
σ2

1v1t + σ2
2v2t
√
v1t + v2t

Importantly, the consideration of two stochastic volatility factors potentially enables the model

to capture the time-varying behavior of the skew. Moreover, it provides more flexibility to

model term structure effects. Note that if, in the previous expression, we drop factor 2 we have

that the correlation between the asset return and the variance process simplifies to the constant

correlation level ρ1. Hence, single-factor volatility specifications have an structural limitation

to account for the existence of stochastic skew.
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4 The pricing problem

In this section I follow the methodology of Carr and Madan (1999) to calculate option prices

efficiently in terms of the Fast Fourier Transform. In this sense, let us consider a generic payoff

on the terminal value of the underlying asset, at time t = T, under the risk-neutral probability

measure w (YT ). From the Fundamental Theorem of Asset Pricing we have that the time t = 0

price of this option, denoted OP0, is given by:

OP0 = e−rTEΘ [w (YT )] = e−rT
∫
R

w (YT ) δT (YT ) dYT

where δT (YT ) is the risk-neutral density function of YT . In the particular case of a European

call with strike K, the payoff function becomes:

w (YT ) := (XT −K)+ =
(
eYT − elnK

)+

Carr and Madan (1999) show that the time t = 0 price associated with the European call with

maturity t = T and strike price K can be expressed as follows:

C (X0, T,K) = e−(rT+α lnK)

π

∞∫
0

e−iz lnK ψ (z − i (1 + α) ;Y0, T )
(α+ 1 + iz) (α+ iz) dz (3)

where the parameter α is introduced in order to have an integrable function, i2 = −1 and where

ψ (u;Y0, T ) is the characteristic function associated with the asset returns defined as:

ψ (u;Y0, T ) := EΘ
[
eiuYT

]
=
∫
R

eiuYT δT (YT ) dYT (4)

Hence, the call option price is known once the parameter α is chosen4 and the characteristic

function is found explicitly, which is the case of the TFSV-MR model.

4.1 The characteristic function

Appendix A shows that, under the risk-neutral measure Θ, the characteristic function associated

with the TFSV-MR model ψ (u;Y0, T ) is given by:

ψ (u;Y0, T ) = eB(λ,T )+
∑2

i=1 Ai(λ,T )vi0+c(λ,T )Y0 (5)
4In my experience α = 1.25 provides good results.
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with λ = iu, c (λ, T ) = λe−TbY and where:

∂Ai (λ, t)
∂t

= λ2e−2tbY

2 +Ai (λ, t)
[
ρiσiλe

−tbY − bi
]

+ σ2
i

2 A
2
i (λ, t) for i = 1, 2 (6)

with boundary conditions Ai (λ, 0) = 0. On the other hand, B (λ, T ) can be obtained as follows:

B (λ, T ) = λaY
bY

[
1− e−TbY

]
+

2∑
i=1

ai

T∫
0

Ai (λ, t) dt

In general, the Riccati equations (6) do not admit closed-form solutions. However, they can be

solved numerically very efficiently using a Runge-Kutta algorithm5. In the particular case where

bY = b1 = b2 = b, that is, when the speeds of mean reversion associated with the logarithm of

the volatility index, as well as with the variance factors coincide, then we have the following

closed-form expression corresponding to Ai (λ, T ):

Ai (λ, T ) =
λ2e−Tb

[
egi(T ) − 1

]
ρiσiλ

[
1− egi(T )]+

[
1 + egi(T )]√σ2

i λ
2 (ρ2

i − 1
) for i = 1, 2

gi (T ) =

(
1− e−Tb

)
b

√
σ2
i λ

2 (ρ2
i − 1

)
Although the assumption that leads to this closed-form solution can be quite restrictive, it

is useful to check the accuracy of the numerical method, as well as to obtain very quickly

relatively good starting points for the calibration procedure associated with the unconstrained

specification.

Note that we can combine equation (3) together with equation (5) to obtain a semi-closed-

form solution for the price of a European call under the assumptions of the TFSV-MR model.

On the other hand, the time t = 0 value corresponding to a forward contract with maturity

t = T on the volatility index can be expressed as:

F0,T (XT ) := EΘ [XT ] = EΘ
[
eYT

]
= ψ (−i;Y0, T )

From the put-call parity it is easy to obtain the price associated with a European put combining

the pricing formula corresponding to the call and the explicit solution for the forward price of

the previous equation.
5This method is also used by da Fonseca and Grasselli (2011) to compute the characteristic function of equity

assets returns under multifactor stochastic specifications.
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4.2 Pricing forward-start options

Sometimes investors can be interested in European options on a volatility index with a strike

price that will be determined a later date. These forward start options are quite sensitive to the

evolution of the volatility of volatility. This section considers the pricing problem associated

with forward-start European options under the TFSV-MR model. To this end, I define the

forward log-return process as Yt,T := YT − Yt. Let us consider a forward-start European call

that depends on the evolution of the asset price between the strike date t and the maturity date

T with payoff:

w (Yt,T ) :=
(
XT

Xt
−K

)+
=
(
eYT−Yt − elnK

)+

The time t = 0 price corresponding to the forward-start European call under the risk-neutral

probability measure Θ, C0 (X0, t, T,K) , can be expressed as follows:

C0 (X0, t, T,K) = e−rTEΘ

[(
eYT−Yt − elnK

)+
]

Let us denote by ψY (u; t, T ) the characteristic function associated with the forward log-return

process YT − Yt, denoted forward characteristic function:

ψY (u; t, T ) := EΘ
[
eiu(YT−Yt)

]

It is possible to express the previous equation as follows:

ψY (u; t, T ) = EΘ
[
e−iuYtEt,Θ

[
eiuYT

]]

where Et,Θ [.] denotes the expectation conditional on the information available through time t.

Taking into account equations (4) and (5), we can rewrite the previous expression as:

ψY (u; t, T ) = EΘ
[
e−iuYtψ (u;Yt, T − t)

]
= eB(λ,T−t)EΘ

[
e
∑2

i=1 Ai(λ,T−t)vit+[c(λ,T−t)−λ]Yt

]

Let Ψ (Hi, Q;V0, Y0, t) denote the Laplace transform corresponding to the variance process Vt

and the log-return process Yt under the risk-neutral probability measure Θ defined as:

Ψ (Hi, Q;V0, Y0, t) := EΘ

[
eQYt+

∑2
i=1 Hivit

]
Hi, Q ∈ R for i = 1, 2
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If we set Hi = Ai (λ, T − t) and Q = c (λ, T − t) − λ, appendix B shows that the Laplace

transform Ψ (Ai (λ, T − t) , c (λ, T − t)− λ;V0, Y0, t) is given by:

Ψ (Ai (λ, T − t) , c (λ, T − t)− λ;V0, Y0, t) = eL(t)+
∑2

i=1 Ri(t)vi0+M(t)Y0

where

M (t) = Qe−tbY

∂Ri (t)
∂t

= Q2e−2tbY

2 +Ri (t)
[
ρiσiQe

−tbY − bi
]

+ σ2
i

2 R
2
i (t) for i = 1, 2 (7)

with boundary conditions Ri (0) = Hi and where L (t) can be obtained as follows:

L (t) = QaY
bY

[
1− e−tbY

]
+

2∑
i=1

ai

t∫
0

Ri (s) ds

Therefore, the forward characteristic function is given by:

ψY (u; t, T ) := eB(λ,T−t)+L(t)+
∑2

i=1 Ri(t)vi0+M(t)Y0 (8)

Hence, it is possible to use once again the Fast Fourier transform to express the time t = 0 price

associated with a forward-start European call on the volatility index as follows:

C0 (X0, t, T,K) = e−(rT+α lnK)

π

∞∫
0

e−iz lnK ψY (z − i (1 + α) ; t, T )
(α+ 1 + iz) (α+ iz) dz (9)

where the forward characteristic function is given by equation (8). Importantly, in the context

of equity options, da Fonseca et al. (2008) show that the value of forward-start options is

independent on the level of the underlying asset and depends only on the volatility process.

But, under the existence of mean reversion in the evolution of the underlying asset, the value

of forward-start options is also affected by the underlying asset price.

As in the case of standard-start options, in general, the differential equations (7) do not

admit closed-form solutions but can be easily solved using Runge-Kutta methods. As before, if
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we assume that bY = b1 = b2 = b, then we can obtain Ri (t) in closed-form:

Ri (t) = e−tb

Q
2
[
efi(t) − 1

]
+Hi

[(
efi(t) − 1

)
Gi +

(
1 + efi(t)

)√
G2
i −Q2σ2

i

]
(
1− efi(t)

) [
Gi +Hiσ2

i

]
+
(
1 + efi(t)

)√
G2
i −Q2σ2

i

 for i = 1, 2

fi (t) =

(
1− e−tb

)
b

√
G2
i −Q2σ2

i

Gi = ρiσiQ

5 Illustration

5.1 Calibration to market data

In this section I analyze the practical ability of the TFSV-MR model to replicate the quoted

prices of European options. When we calibrate a model, we have to specify if we choose a set of

options quoted at a fixed day or a times series of option prices. The market practice is to perform

a calibration per day. Bakshi et al. (1997), Carr et al. (2003) and da Fonseca and Grasselli

(2011), among others, follow this approach. In fact, as explained by da Fonseca and Grasselli

(2011), if we perform a calibration on a time series of option prices, since the volatility is not

observable, it would have to be considered as a parameter and then estimated together with the

other parameters. But this strategy leads to optimize a function with respect to a large number

of variables which can become too difficult numerically and can give odd solutions. Hence, it

is desirable that the calibration process involves the optimization of a function that should be

as simple as possible. In this sense, to illustrate the TFSV-MR model, I calibrate it to VIX

options data corresponding to February 22, 2012, obtained from Bloomberg. The data consist of

implied volatilities associated with European options with maturities within two months, three

months and six months and with moneyness6 ranging from 80% to 120%. The corresponding

reference spot price for the VIX index is 18.19. Figure 3 displays the data graphically. We can

see from the figure that in reverse to the downward sloping implied volatility skew associated

with equity options, the skew observed in the VIX call options has an upward sloping skew.

The figure also displays negative term structure with higher implied volatilities for short-term

options. Moreover, for these options the slope of the skew is more pronounced.

Another important question when calibrating a model is related to the choice of the penal-

izing function. In fact, Christoffersen and Jacobs (2004) show that the choice of the distance
6The moneyness is defined as K/X where K is the strike price and X is the level associated with the VIX

index.

11



has a relevant impact on the calibrated parameters. To improve the calibration of short term

implied volatility the market practice consists of putting more weight on short maturity options

using the inverse of the vega. In this study, I follow this approach7 and I choose the model

parameters that solve the following optimization problem:

min
γ

1
NiNj

Ni∑
i=1

Nj∑
j=1

[
Cmkt (Ki, Tj)− Cγ (Ki, Tj)

ς (Ki, Tj)

]2

where γ is the vector of parameters to be estimated, Cmkt (Ki, Tj) is the market price of a

European call with strike price Ki and maturity Tj , Cγ (Ki, Tj) is the model price, ς (Ki, Tj) is

the vega corresponding to a European option with strike Ki and maturity Tj , Ni is the total

number of strikes and, finally, Nj represents the number of maturities considered.

Table 1 displays the calibrated parameters values and the mean absolute errors (MAE)

associated with implied volatilities, as well as with options prices. In the case of the MAE cor-

responding to option prices, the table provides the percentage MAE, expressed as a percentage

of the VIX index level and the MAE expressed in dollars. The calibration results are fairly good.

In particular, the MAE corresponding to implied volatilities is of the same order of magnitude

as the calibration errors obtained by Christoffersen et al. (2009) in the estimation of their two-

factor stochastic volatility model using options data for the Standard and Poor’s 500 equity

index. Importantly, since implied volatilities associated with the VIX index are much higher

than the implied volatilities corresponding to the Standard and Poor’s 500 index, the volatility

errors, as a percentage of the market implied volatility, obtained under the TFSV-MR model

are considerably lower than the ones obtained under the specification of Christoffersen et al.

(2009). Moerover, the dollar errors are much lower than the ones obtained by Wang and Daigler

(2011) and Mencía and Sentana (2009) corresponding to different VIX pricing specifications.

It is important to note that, unlike what happens in the case of equity assets, the coeffi-

cients ρi are positive to capture the upward sloping skew associated with the implied volatility

corresponding to the VIX index.

Panels A, B and C of figure 4 show, respectively, the market implied volatility skew, as well as

the one generated by the parameters of table 1 under the TFSV-MR specification corresponding

to options with maturity within two months, three months and six months. Finally, panel D

of figure 4, displays the calibrated implied volatility surface. We can see from the figure that

this volatility surface exhibits positive skew and negative term structure consistent with the
7Christoffersen et al. (2009) and Fonseca and Grasselli (2011), among others, also choose this methodology.
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empirical evidence.

One prominent feature of the TFSV-MR model is the two-regime property of the calibrated

dynamics. In this sense, we have a low mean reversion, as well as a high correlation and high

volatility of volatility regime, which can be associated with the short term skew. On the other

hand, we have a quite high mean reversion, as well as a low correlation together with a low

volatility of volatility that can be associated with the long term smile. This is an important

advantage of the multifactor specification when compared with single-factor volatility models.

In this sense, I also calibrated a simplified version of the model with only one factor. In this

case, the estimated correlation between the volatility index and the variance factor is equal to 1

and, hence, the dynamics is degenerate indicating that a single factor specification is not flexible

enough to capture the shape corresponding to the implied volatility surface associated with the

VIX index.

Interestingly, the estimated parameters of table 1 exhibit some striking similarities with the

results of Christoffersen et al. (2009). In particular, in both cases, the factor with the highest

mean reversion has a smaller volatility of volatility and a smaller correlation parameter (in

absolute value). Note that the Feller’s condition8, which ensures that the variance factors do no

reach zero, is not satisfied. Similar results have been obtained, among others, by Christoffersen

et al. (2009) and da Fonseca and Grasselli (2011) in the calibration of the Heston (1993) model

and other multifactor stochastic volatility models using equity options data.

Importantly, once we have determined the characteristic function associated with the as-

set returns, we can use the Fourier theorem to obtain the corresponding risk-neutral density

function9:

δT (YT ) = 1
2π

∞∫
−∞

e−iuYTψ (u;Y0, T ) du

δXT (XT ) = δT (YT )
XT

where δXT (XT ) is the risk-neutral density function of the volatility index XT . As an illustra-

tion, figure 5 shows the calibrated risk-neutral density function corresponding to options with

maturity within six months. The figure reveals that the market curve has excess probability in

the right tail of the distribution, which is consistent with the existence of an upward sloping
8The Fellers condition is given by 2κiθi > σ2

i .
9This approach is equivalent to the result obtained by Breeden and Litzenberger (1978) to calculate the

risk-neutral density function in terms of European options prices.
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volatility skew.

5.2 Forward-start implied volatility skew

As said previously, forward-start options are quite sensitive to the evolution of the volatility

of volatility. Since we have available semi-closed-form solutions corresponding to the price

of these options under the TFSV-MR model, we can use the calibrated parameters of table

1 to obtain the forward-start volatility skew consistent with the market price of European

options under the TFSV-MR specification. In this sense, figure 6 displays the three months

forward implied volatility surface. The figure provides the implied volatility of forward-start

calls with maturity equal to three months for different start dates and strikes. For each strike

Ki, expressed in percentage terms, and time tj , expressed in years, the figure shows the forward

implied volatilities associated with the following forward-start calls:

C0

(
X0, tj −

1
4 , tj ,Ki

)

where X0 = 18.19 is the spot price corresponding to the VIX index. The figure shows that

forward skews are more convex than today’s skew. This effect is consistent with the results

obtained under other stochastic volatility specifications in the equity context. As pointed out

by Bergomi (2004), since the price of a call option is an increasing and convex function of its

implied volatility, uncertainty in the value of future implied volatility increases the price of the

option.

6 Conclusion

In recent years there has been a remarkable growth of volatility options. In particular, VIX

options are among the most actively trading contracts at CBOE. These options exhibit upward

sloping volatility skew because out-of-the-money calls on the VIX index offer protection against

an equity market crash. Another remarkable feature is that the shape of the skew is largely

independent of the volatility level. There are low volatility days with a steep volatility slope, as

well as a flat volatility slope. On the other hand, we also have high volatility days with steep and

flat volatility slopes. Since, in single-factor stochastic volatility models the correlation between

the volatility index and its instantaneous variance is constant, they are not able to capture the

time-varying nature of the volatility skew.

To take into account these stylized facts, this article introduces a novel two-factor stochas-
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tic volatility model with mean reversion that accounts for stochastic correlation between the

volatility index and its instantaneous stochastic variance. Hence, the model is able to generate

stochastic implied volatility skew consistent with empirical evidence. Importantly, the model is

analytically tractable. In this sense, I solve the pricing problem corresponding to standard-start,

as well as to forward-start European options through the Fast Fourier Transform.

To analyze the practical performance of the TFSV-MR model to replicate market prices,

I calibrate the model parameters to the quoted prices of European options on the VIX index.

The calibration results are fairly good indicating the ability of the model to capture the shape

of the implied volatility skew associated with VIX options.

A The characteristic function of the asset returns

As said previously, the characteristic function of the asset returns is given by the following

expression:

ψ (u;Yt, T − t) := Et,Θ
[
eiuYT

]
where Et,Θ [.] denotes the expectation conditional on the information available through time t.

From the Feynman-Kac theorem we have that:

∂ψ

∂t
+ ∂ψ

∂Yt
Et,Θ [dYt] +

2∑
i=1

∂ψ

∂vit
Et,Θ [dvit] + 1

2
∂2ψ

∂Y 2
t

V art,Θ [dYt]

+1
2

2∑
i=1

∂2ψ

∂v2
it

V art,Θ [dvit] +
2∑
i=1

∂2ψ

∂Yt∂vit
Covt,Θ [dYt, dvit] = 0

Substituting the expressions corresponding to the expectations and covariances in the previous

equation yields:

∂ψ

∂t
+ ∂ψ

∂Yt
[aY − bY Yt] + 1

2

2∑
i=1

∂2ψ

∂Y 2
t

vit +
2∑
i=1

∂ψ

∂vit
[ai − bivit] (10)

+1
2

2∑
i=1

∂2ψ

∂v2
it

σ2
i vit +

2∑
i=1

∂2ψ

∂Yt∂vit
σiρivit = 0

I postulate the following guess solution:

ψ (λ;Yt,T − t) = ψ (λ;Yt,τ) = eB(λ,τ)+
∑2

i=1 Ai(λ,τ)vit+c(λ,τ)Yt
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where λ = iu and τ = T − t. The boundary conditions associated with the previous solution

are:

Ai (λ, 0) = 0 for i = 1, 2.

B (λ, 0) = 0

c (λ, 0) = λ

Substituting the guess solution in equation (10) and dividing by ψ yields:

−∂B
∂τ
−

2∑
i=1

∂Ai
∂τ

vit −
∂c

∂τ
Yt + c [aY − bY Yt] + c2

2

2∑
i=1

vit

+
2∑
i=1

Ai [ai − bivit] + 1
2

2∑
i=1

A2
iσ

2
i vit + c

2∑
i=1

Aiσiρivit = 0

This equation has to hold for all values of vit and Yt. Therefore, we have:

− ∂c
∂τ
− cbY = 0 (11)

−∂Ai
∂τ

+ c2

2 + [cσiρi − bi]Ai + σ2
i

2 A
2
i = 0 for i = 1, 2

−∂B
∂τ

+ caY +
2∑
i=1

aiAi = 0

The solution to equation (11) is given by c (λ, τ) = λe−τbY . Hence, we have:

∂Ai (λ, τ)
∂τ

= λ2e−2τbY

2 +Ai (λ, τ)
[
ρiσiλe

−τbY − bi
]

+ σ2
i

2 A
2
i (λ, τ) for i = 1, 2

B (λ, τ) = λaY
bY

[
1− e−τbY

]
+

2∑
i=1

ai

τ∫
0

Ai (λ, s) ds

B The Laplace transform of the variance process and the asset
returns

Let us consider the conditional Laplace transform corresponding to the variance process Vt and

the log-return vector Yt, under the risk-neutral probability measure Θ:

Ψ (Hi, Q;Vt, Yt, T − t) := Et,Θ

[
eQYT +

∑2
i=1 HiviT

]
Hi, Q ∈ R for i = 1, 2
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From the Feynman-Kac theorem we have that:

∂Ψ
∂t

+ ∂Ψ
∂Yt

[aY − bY Yt] + 1
2

2∑
i=1

∂2Ψ
∂Y 2

t

vit +
2∑
i=1

∂Ψ
∂vit

[ai − bivit] (12)

+1
2

2∑
i=1

∂2Ψ
∂v2

it

σ2
i vit +

2∑
i=1

∂2Ψ
∂Yt∂vit

σiρivit = 0

I postulate the following guess solution:

Ψ (Hi, Q;Vt, Yt, T − t) = Ψ (Hi, Q;Vt, Yt, τ) = eL(τ)+
∑2

i=1 Ri(τ)vit+M(τ)Yt

The boundary conditions associated with the previous solution are:

Ri (0) = Hi for i = 1, 2.

M (0) = Q

L (0) = 0

Substituting the guess solution in equation (12) and dividing by Ψ yields:

−∂L
∂τ
−

2∑
i=1

∂Ri
∂τ

vit −
∂M

∂τ
Yt +M [aY − bY Yt] + M2

2

2∑
i=1

vit

+
2∑
i=1

Ri [ai − bivit] + 1
2

2∑
i=1

R2
i σ

2
i vit +M

2∑
i=1

Riσiρivit = 0

This equation has to hold for all values of vit and Yt. Therefore, we have:

−∂M
∂τ
−MbY = 0 (13)

−∂Ri
∂τ

+ M2

2 + [Mσiρi − bi]Ri + σ2
i

2 R
2
i = 0 for i = 1, 2

−∂L
∂τ

+MaY +
2∑
i=1

aiRi = 0

The solution to equation (13) is given by M (τ) = Qe−τbY . Hence, we have:

∂Ri (τ)
∂τ

= Q2e−2τbY

2 +Ri (τ)
[
ρiσiQe

−τbY − bi
]

+ σ2
i

2 R
2
i (τ) for i = 1, 2

L (τ) = QaY
bY

[
1− e−τbY

]
+

2∑
i=1

ai

τ∫
0

Ri (s) ds
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List of tables

Table 1: Estimation results for the TFSV-MR model associated with the implied volatility
surface of the VIX index corresponding to February 22, 2012.

Parameter Value Parameter Value
κ 2.5359 v1 0.3445
θ 2.8468 κ2 11.0467
κ1 3.8344 θ2 0.2493
θ1 0.2158 σ2 2.9659
σ1 3.4993 ρ2 0.7138
ρ1 0.9402 v2 0.2718

MAE implied volatilities 1.4708%
Percentage MAE prices 0.2915%

dollar MAE prices 0.0530
Note. The Percentage MAE, associated with option
prices, is normalized by the underlying asset price.
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Figure 1: Weekly evolution of the at-the-money implied volatility (panel A), as well as the
95-100 skew and the 100-105 skew (panel B) associated with options with maturity within three
months, during the period January 6, 2010 to April 18, 2012, for the VIX index. The 95-100
skew is defined as Σ1 − Σ0.95, whereas the 100-105 skew is defined as Σ1.05 − Σ1, where ΣK is
the implied volatility corresponding to options with strike equal to K expressed as a percentage
of the underlying asset. The data have been obtained from Bloomberg.
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Figure 2: Scatter plot corresponding to the relation between the 95-100 skew and the at-the-
money implied volatility (panel A), as well as to the relation between the 100-105 skew and the
at-the-money implied volatility (panel B). The 95-100 skew is defined as Σ1 − Σ0.95, whereas
the 100-105 skew is defined as Σ1.05 − Σ1, where ΣK is the implied volatility corresponding to
options with strike equal to K expressed as a percentage of the underlying asset. The data have
been obtained from Bloomberg.
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Figure 3: Market implied volatility skews associated with options with maturity within 2 months, 3
months and 6 months, for February 22, 2012 market data, corresponding to the VIX index. Strike prices
are expressed as a percentage of the index price.
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Figure 4: Comparison between the market implied volatility skew and the one generated by
the parameters of table 1 under the TFSV-MR specification corresponding to February 22, 2012
(panel A, B and C), as well as calibrated implied volatility surface (Panel D).
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Figure 5: Calibrated risk-neutral density function associated with options with maturity
within six months for the VIX index corresponding to February 22, 2012.
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Figure 6: Three months forward implied volatility surface generated by the TFSV-MR spec-
ification of table 1. For each strike Ki, expressed in percentage terms, and time tj , expressed
in years, the figure shows the forward implied volatilities associated with the following forward-
start calls C0

(
X0, tj − 1

4 , tj ,Ki

)
where X0 = 18.19, is the spot price corresponding to the VIX

index.
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