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Abstract

We propose a method to deal simultaneously with model uncertainty and cor-
related regressors in linear regression models by combining elastic net spec-
ifications with a spike and slab prior. The estimation method nests ridge
regression and the LASSO estimator and thus allows for a more flexible mod-
elling framework than existing model averaging procedures. In particular, the
proposed technique has clear advantages when dealing with datasets of (po-
tentially highly) correlated regressors, a pervasive characteristic of the model
averaging datasets used hitherto in the econometric literature. We apply our
method to the dataset of economic growth determinants by Sala-i-Martin et
al. (Sala-i-Martin, X., Doppelhofer, G., and Miller, R. I. (2004). Determi-
nants of Long-Term Growth: A Bayesian Averaging of Classical Estimates
(BACE) Approach. American Economic Review, 94: 813-835) and show that
our procedure has superior out-of-sample predictive abilities as compared to
the standard Bayesian model averaging methods currently used in the litera-
ture.
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1 Introduction

Inference under model uncertainty is a pervasive problem of empirical applications
in economics. In particular, assessing empirically the robustness of economic growth
determinants under model uncertainty is a subject which has spawned many econo-
metric studies in the last decade. Fernández et al. (2001), Sala-i-Martin et al. (2004),
Crespo Cuaresma and Doppelhofer (2007), Ley and Steel (2007), Doppelhofer and
Weeks (2009), Ley and Steel (2009), Durlauf et al. (2008) or Eicher et al. (2011)
are some examples of studies which apply methods based on Bayesian model aver-
aging to account for uncertainty in the specification of econometric models aimed at
explaining differences in long-run economic growth across countries.

Most of the existing methods used in this branch of the literature do not assess
explicitly the potential problem of multicollinearity among the set of potential ex-
planatory variables. Although some ad hoc dilution priors have been proposed in
the literature to account for related regressors (see for example Durlauf et al. (2008),
who puts forward the use of the correlation matrix of model-specific regressors to ad-
just model priors based on the idea of dilution priors put forward by George (2007)),
a systematic assessment of the issue is hitherto missing.1 In this paper we propose a
method to deal with the problem of model uncertainty in the presence of correlated
regressors. The framework of bridge regression allows us to deal explicitly with the
problem of correlated explanatory variables by shrinking coefficients. Prominent
cases of the bridge regression class are ridge regression and LASSO. Our method is
based on Bayesian elastic net specifications, which nest both ridge regression and
the LASSO estimator as special cases. Additionally, we propose using a spike and
slab prior (see for instance Mitchell and Beauchamp (1988) or George and McCul-
loch (1993)) which allows us to perform variable selection or model averaging in the
framework of the Bayesian elastic net. In addition, the use of a spike and slab prior
allows us to include explicitly prior information concerning model size or the relative
importance of covariates in the specification in a straightforward manner.

We evaluate our method making use of the dataset by Sala-i-Martin et al. (2004),
which comprises information on income per capita growth for the period 1960-1996
and 67 potential growth determinants for a broad cross-section of countries. Schnei-
der and Wagner (2008) apply frequentist adaptive LASSO methods to the dataset
and find a substantial degree of similarity with the results in Sala-i-Martin et al.
(2004), although some variables (Population Coastal Density or Life Expectancy, for
instance) which Sala-i-Martin et al. (2004) tagged as robust do not appear to be
important according to the results using the shrinkage method. The use of Bayesian
elastic nets leads to some important changes in the results of the robustness anal-
ysis as compared to the existing literature. As in Schneider and Wagner (2008),
compared to Sala-i-Martin et al. (2004) variables like Population Coastal Density or
Life Expectancy strongly reduce their importance in our results, but variables like
Malaria Prevalence and Years Open appear as more robust growth determinants.
In addition, we perform an out-of-sample prediction exercise which confirms the
superiority of the Bayesian elastic net with spike and slab priors as compared to

1Related regressors in Bayesian model averaging have been assessed more deeply in the frame-
work of interaction terms and polynomial specifications (see Chipman (1996) for a general presen-
tation and Crespo Cuaresma (2011) for a recent application to economic growth).

2



standard linear Bayesian model averaging methods.

The paper is structured as follows. Section 2 presents the Bayesian elastic net,
section 3 explains the approach we take to model uncertainty in the framework of
Bayesian elastic net models and section 4 performs the empirical analysis based on
Sala-i-Martin et al. (2004). Finally, section 5 concludes.

2 Ridge regression, LASSO and the elastic net

Assume that a group of K variables {x1, . . . xK} are proposed as potential determi-
nants of y in the framework of linear regression models. Let the specification where
all K variables are included in the model be given by

y = Xβ + u, (1)

where y is a vector containing the N observations of y, X is the N×K design matrix
of explanatory variables, β = (β1 . . . βK)′ denotes the parameter vector of interest
and it is assumed that u ∼ N(0, σ2IN). Assuming that N > K, the standard OLS
estimator of β in (1), β̂ = (X′X)−1X′y, will have unsatisfactory features if the design
matrix is ill-conditioned, that is, if the explanatory variables are highly correlated.
In particular, notice that E((β̂−β)′(β̂−β)) = σ2

∑K
j λ

−1
j , where {λ1, . . . , λK} are

the eigenvalues of (X′X).2 If multicollinearity among our regressors is present, at
least one of the eigenvalues will be close to zero, inflating the variance of the OLS
estimator.

Bridge regression methods have been proposed in order to deal with this problem.
In a frequentist setting, the bridge regression estimate is obtained by minimizing the
residual sum of squares subject to the constraint

∑K
j=1 |βj|γ < t for constants t and

γ ≥ 1. The regression coefficients are thus obtained as

β̂bridge = argmin
β

{
(y −Xβ)′(y −Xβ) + λ

K∑
j=1

|βj|γ
}
. (2)

The Lagrangian parameter λ ≥ 0 can be interpreted as a shrinkage weight and γ
defines the differential shrinkage of parameters. Prominent estimators derived from
equation (2) are the ridge regression (Hoerl and Kennard (1970)) estimator, with
γ = 2 and the least absolute shrinkage and selection operator (LASSO) estimator
(see Tibshirani (1996)), for which γ = 1. However, while the penalty in (2) shrinks
parameters for γ = 2, it does not necessarily set them to zero. The form of the
shrinkage in the LASSO estimator allows for corner solutions with some elements of
β equal to zero. In this sense, the LASSO estimator acts at least partly as a model
selection device.

When it comes to optimization, there is still some reluctance to adopt L1 methods
of estimation, although Portnoy and Koenker (1997) demonstrate that L1 regression
(γ = 1) can be made competitive with L2 regression (γ = 2) in terms of computa-
tional speed.

2See, e.g. Poirier (1995), page 582.
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From a Bayesian point of view, the ridge and LASSO estimators appear as posterior
mode estimators under particular prior settings (see for example Hans (2009) and
Park and Casella (2008)). Both estimators can be obtained in the framework of a
Bayesian hierarchical model where the distribution of the regression coefficients is
given by a scale mixture of normal distributions with mixing over τ 2. Conditional
on τ 2 the prior distribution of the regression cofficients is given by

β|τ 2, σ2 ∼ N(0, σ2Wτ ), (3)

with τ 2 = (τ 2
1 . . . τ

2
K) and Wτ = diag{τ 2

1 . . . τ
2
K}. The standard improper prior over

the error variance is used,
p(σ2) = 1/σ2, (4)

and the LASSO estimator is obtained by assigning an independent double exponen-
tial (or Laplace) distribution for each τ 2

j . The ridge regression estimator, on the
other hand, is obtained by imposing the common inverse gamma distribution as a
prior over τ 2.

From a frequentist perspective, the elastic net uses a convex combination of the
penalties implied by the ridge and LASSO regression and therefore obtains the
estimator as

β̂enet = argmin
β

{
(y −Xβ)′(y −Xβ) +

K∑
j=1

(
λ1|βj|+ λ2β

2
j

)}
. (5)

The elastic net combines thus the characteristics of the ridge regression and the
LASSO. Li and Lin (2010) and Bornn et al. (2010) present a Bayesian framework
to estimate elastic nets. Following Li and Lin (2010), the following prior is assigned
to the parameters of the model

β|σ2 ∼ exp

{
− 1

2σ2

[
λ1

K∑
j=1

|βj|+ λ2

K∑
j=1

β2
j

]}
. (6)

This prior over β conditional on σ2, combined with (4) and the fact that y ∼
N(Xβ, σ2IN), allows for the use of a Gibbs sampler to estimate the corresponding
posterior distributions. Posterior distributions for the parameters of interest can
be obtained after noting that, as for the case of the LASSO and ridge regression,
conditional on σ2, the distribution of βj can be treated as a scale mixture of normals.
In the case of the Bayesian elastic net, as shown in Li and Lin (2010), the mixing
distribution is given by a truncated Gamma distribution.

3 Model uncertainty and the Bayesian elastic net

To the extent that parameter estimates in the Bayesian elastic net framework are
shrunk to zero, the model embodies to a certain degree a variable selection mech-
anism. Given the logic behind shrinkage models, such a mechanism takes explic-
itly into account the potential effect of multicollinearity. The existing studies on
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Bayesian elastic nets propose carrying out variable selection through ad hoc ap-
proaches based on the posterior distribution of the individual elements in β. Li and
Lin (2010) propose using the credible interval and scaled neighborhood criteria. Us-
ing the former, a variable xj is excluded if the credible interval of its corresponding
parameter covers zero. The latter one considers the posterior probability contained
in [−

√
var(βj|y),

√
var(βj|y)] and a variable is excluded if this posterior probability

exceeds a certain ad hoc probability threshold.

In this contribution we further expand the variable selection method by modifying
the prior on the β vector. We propose a prior which corresponds to a spike and
slab mixture such as that put forward by Mitchell and Beauchamp (1988) (see also
George and McCulloch (1993) and George and McCulloch (1997)). We assign a
prior to each single coefficient βj which is a mixture of a point mass at zero and the
prior distribution for βj described above.3 That implies that the prior on βj is given
by

p(βj|γj, τj, σ2) ∼ (1− γj)I0 + γjπ(βj|τj, σ2) (7)

where π(βj|τj, σ2) is the prior distribution of βj implied by (6) after reparametrizing
it as a mixture of normals and including the additional parameter vector τ . A
Bernoulli prior is assumed on γj, so that γj ∼ Be(γ). We can elicit the prior by

setting γ = k̄/K, where k̄ can be interpreted as the expected value of the prior over
model size. The standard Bayesian elastic net specification is nested in this setting
and corresponds to imposing k̄ = K. The posterior distribution of γj, p(γj|y) can
be interpreted by comparing it to the concept of posterior inclusion probability
(PIP), which is widely used in the modern literature on Bayesian model averaging
as an indicator of robustness of covariates to model uncertainty (see for example
Fernández et al. (2001), Sala-i-Martin et al. (2004) or Ley and Steel (2009) for
empirical applications related to economic growth).

The use of the spike and slab prior has several advantages as compared to relying
exclusively on the variable selection method embodied in the shrinkage strategy of
the elastic net. By controlling the prior expected model size through the elicitation
of γ, we are able to exploit additional prior information concerning our beliefs about
the number of variables which should be included in the specification. In applications
related to model averaging and model comparison in the framework of cross-country
growth regressions, for example, models with a very large number of covariates tend
to be considered “less probable” a priori than models with a relatively small size.
In terms of model comparison, the inclusion of such a prior over the model space
implies that, in addition to the penalty on model size embodied in the Bayes factor,
very large models may be further penalized using a prior model probability which
depends on the number of covariates included in the specification.

Ley and Steel (2009), following Brown et al. (1998), propose to robustify the choice
of a prior variable inclusion probability (and thus, of a prior expected model size) by
imposing a hyperprior on γ, so that γ ∼ Beta(a, b). They show that inference based
on such a hyperprior over the prior inclusion probability makes on the one hand
inference more robust to the choice of a prior expected model size and on the other
hand it improves the out-of-sample predictive ability of model-averaging techniques.

3The point mass at zero is also sometimes replaced by a mean zero normal distribution with a
very low variance (see e.g. George and McCulloch (1993)).
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We also follow this approach in our empirical application.

The setting presented implies that inference on the parameters of our model is
subject to two types of shrinkage mechanisms. On the one hand, the potential
multicollinearity present in the set of covariates is explicitly taken into account by
the automatic shrinkage imposed by the elastic net. On the other hand, the relative
a priori importance of each variable as a determinant of y (or the relative prior belief
that the size of the model is “reasonable”) determines a second type of shrinkage
which is implemented through the spike and slab structure given by (7).

The full model can be estimated in a straightforward manner by integrating the
Gibbs sampling procedure proposed by Li and Lin (2010) into the structure of the
Gibbs sampler used to estimate linear models with spike and slab priors (as described
in e.g. Mitchell and Beauchamp (1988)).

4 Empirical application: Fishing economic growth

determinants

4.1 Robust economic growth determinants using Bayesian
elastic nets

Sala-i-Martin et al. (2004) (henceforth, SDM) study the robustness of economic
growth determinants to model uncertainty using a dataset for 88 countries com-
prising data on GDP per capita growth over the period 1960-1996 as well as 67
variables which have been proposed as potential determinants of income growth
in the literature.4 The average absolute correlation between the variables is only
0.212. However we observe groups of highly correlated variables, such as for exam-
ple Political Rights, Fraction Population Less than 15, Fraction Population Over 65,
European Dummy, Fertility Rates in 1960s and Population Growth Rate 1960-90
with an average absolute correlation of 0.794. The dataset has become a workhorse
to apply econometric methods related to model uncertainty and model averaging
(see Ley and Steel (2007), Doppelhofer and Weeks (2009), Ley and Steel (2009) or
Eicher et al. (2011), just to name a few, for recent papers where new techniques
related to Bayesian model averaging are applied to these data).

We apply the model to the data using the following uninformative priors. We use a
Beta(1, 1) prior on γ, and reparametrize λ1 and λ2 as αλ and (1−α)λ, respectively,
imposing the same prior structure as for γ on α. We introduce a hyperprior on λ, so
that λ2 ∼ Gamma(0.1, 0.1).5 The precision of the error term u, 1/σ2, is assumed to
follow a Gamma(0.001, 0.001) and each τj is drawn from a [1,∞) truncated gamma
distribution with a shape value of 0.5. The Gibbs sampler is implemented by running
four parallel Markov chains, each initialized with a different seed. One million
iterations of the sampler were performed, whereby only every tenth value was used

4The dataset can be obtained from Gernot Doppelhofer’s homepage at
http://www.nhh.no/Default.aspx?ID=3075.

5We depart here from the proposal by Li and Lin (2010), who put forward to use an empirical
Bayes prior for λ1 and λ2. Our approach is based on Park and Casella (2008), and is also proposed
by Li and Lin (2010) as an alternative to empirical Bayes.
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for posterior estimation. Convergence diagnostic indicated satisfactory convergence
and the results presented are based on averages over the individual Markov chains.

Table 1 compares the results in Sala-i-Martin et al. (2004) with those obtained from
estimating the Bayesian elastic net with spike and slab priors on the inclusion of the
variables.6 The first column presents the original ranking in terms of PIP implied by
the results of SDM. In the following three columns the PIP, as well as the mean and
standard deviation of the posterior distribution of each parameter are shown for the
results presented by SDM and those obtained using the Bayesian elastic net. The
PIP of the SDM results and those of the elastic net have a correlation of 0.61, and
strong differences can be observed when comparing the relative importance of the
variables in the dataset. The mean of the posterior distribution of γj is 0.139, cor-
responding to a mean of the posterior model size distribution of approximately 9.3,
a result which is in line with the results presented for the same dataset by Ley and
Steel (2009), who use a comparable hyperprior on the prior inclusion probabilities
of the variables, albeit in the framework of standard linear models.

The shrinkage implied by the Bayesian elastic net has a strong effect on the nature
of the robust determinants of economic growth implied by the results in Table 1. On
the one hand, some of the variables with highest posterior inclusion probability in
SDM (in particular Investment Price, but also Population Coastal Density and Life
Expectancy) strongly reduce their importance in the results obtained by the Bayesian
elastic net. On the other hand, Malaria Prevalence and Years Open appear as very
robust determinants of economic growth in our results and improve their relative
importance significantly as compared to the original results in SDM.

The differences in results between the two methods can be traced back to the way
that the two model averaging techniques deal with correlated regressors. A standard
measure for the degree of collinearity among the variables in a given model is given
by the determinant |Rk| of the correlation matrix of regressors, a measure proposed
by George (2007) as a building block of dilution priors over the model space. This
determinant equals to one if the columns of Xk are orthogonal and zero for perfectly
collinear columns in Xk. We compute this measure for all models visited by the
Markov chain for each one of the two methods evaluated and the histograms of
|Rk| are shown in figure 1. The standard approach has an average determinant
of the correlation matrix of regressors of 0.092, while for the Bayesian elastic net
the mean determinant is 0.179, nearly twice as large. A larger number of models
with very small regressor correlation determinants are visited in the standard BMA
approach, while for the Bayesian elastic net method models with high values for the
determinants (above 0.7) are also visited.

These results indicate that in this application the Bayesian elastic net leads to
averaging over models whose explanatory variables are on average less collinear.
This implies that variables with a high correlation to other important variables but
with a small effect on the dependent variable tend indeed to be omitted due to the
regularization effect implied by the shrinkage of the Bayesian elastic net.

6All the computations within this work are done by using R, a language and environment for
statistical computing (R Development Core Team (2011)) and its extension packages rjags, coda
and bms. Codes are available from the authors upon request.
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BACE Elastic net
# (BACE) Description Name PIP PM PSD PIP PM PSD

1 East Asian Dummy EAST 0.8225 0.0218 0.0061 0.9756 0.0239 0.0065
7 Malaria Prevalence MALFAL66 0.2519 -0.0158 0.0062 0.6566 -0.0151 0.0064
2 Primary Schooling Enrollment P60 0.7965 0.0268 0.0080 0.5902 0.0171 0.0078
5 Fraction of Tropical Area TROPICAR 0.5633 -0.0148 0.0042 0.3672 -0.0101 0.0052
14 Years Open 1950-94 YRSOPEN 0.1193 0.0124 0.0063 0.3638 0.0118 0.0063
9 Fraction Confucian CONFUC 0.2065 0.0538 0.0220 0.2291 0.0182 0.0190
13 Spanish Colony Dummy SPAIN 0.1232 -0.0109 0.0050 0.2154 -0.0078 0.0052
18 Government Consumption Share GVR61 0.1038 -0.0452 0.0239 0.2085 -0.0165 0.0190
4 Initial Income (Log GDP in 1960) GDPCH60L 0.6846 -0.0085 0.0029 0.2048 -0.0059 0.0034
17 Ethnolinguistic Fractionalization AVELF 0.1047 -0.0114 0.0059 0.2023 -0.0088 0.0065
22 (Imports + Exports)/GDP OPENDEC1 0.0761 0.0089 0.0053 0.1996 0.0072 0.0049
27 Primary Exports in 1970 PRIEXP70 0.0533 -0.0115 0.0076 0.1914 -0.0086 0.0068
26 Fraction Population In Tropics TROPPOP 0.0580 -0.0108 0.0069 0.1895 -0.0087 0.0068
10 Sub-Saharan Africa Dummy SAFRICA 0.1537 -0.0153 0.0071 0.1847 -0.0080 0.0062
12 Fraction GDP in Mining MINING 0.1241 0.0375 0.0184 0.1791 0.0119 0.0143
24 Government Share of GDP GOVSH61 0.0632 -0.0373 0.0263 0.1768 -0.0119 0.0162
16 Fraction Buddhist BUDDHA 0.1084 0.0212 0.0109 0.1682 0.0093 0.0097
25 Higher Education in 1960 H60 0.0614 -0.0709 0.0412 0.1555 -0.0084 0.0189
29 Fraction Protestants PROT00 0.0458 -0.0123 0.0097 0.1500 -0.0050 0.0101
56 Population Growth Rate 1960-90 DPOP6090 0.0192 0.0471 0.3015 0.1494 -0.0003 0.0152
31 Fraction Population Less than 15 POP1560 0.0411 0.0447 0.0406 0.1487 0.0012 0.0147
45 Defense Spending Share GDE1 0.0213 0.0523 0.0700 0.1482 0.0011 0.0193
44 Fraction Population Over 65 POP6560 0.0224 0.0209 0.1179 0.1480 0.0015 0.0193
48 Public Educ. Spend. /GDP in 1960s GEEREC1 0.0208 0.1281 0.1697 0.1474 0.0038 0.0182
33 Gov C Share deflated with GDP prices GOVNOM1 0.0355 -0.0335 0.0273 0.1438 -0.0061 0.0140
30 Fraction Hindus HINDU00 0.0450 0.0188 0.0127 0.1422 0.0047 0.0122
47 Terms of Trade Growth in 1960s TOT1DEC1 0.0212 0.0349 0.0465 0.1407 0.0008 0.0150
28 Public Investment Share GGCFD3 0.0482 -0.0578 0.0427 0.1393 0.0029 0.0124
11 Latin American Dummy LAAM 0.1493 -0.0132 0.0058 0.1333 -0.0050 0.0055
65 Fraction Othodox ORTH00 0.0151 0.0053 0.0136 0.1221 0.0038 0.0097
41 Revolutions and Coups REVCOUP 0.0286 -0.0068 0.0062 0.1151 -0.0025 0.0055
21 Fraction Speaking Foreign Language OTHFRAC 0.0799 0.0069 0.0040 0.1139 0.0045 0.0051
15 Fraction Muslim MUSLIM00 0.1145 0.0125 0.0061 0.1133 0.0000 0.0054
40 Civil Liberties CIV72 0.0288 -0.0075 0.0072 0.1113 -0.0025 0.0058
39 Colony Dummy COLONY 0.0293 -0.0049 0.0047 0.1079 -0.0042 0.0044
63 Terms of Trade Ranking TOTIND 0.0156 -0.0038 0.0097 0.1053 -0.0024 0.0074
42 British Colony Dummy BRIT 0.0267 0.0038 0.0036 0.1049 0.0040 0.0035
60 Fraction Spent in War 1960-90 WARTIME 0.0159 -0.0017 0.0092 0.1020 -0.0017 0.0070
53 English Speaking Population ENGFRAC 0.0200 -0.0028 0.0067 0.0995 -0.0034 0.0055
37 European Dummy EUROPE 0.0300 -0.0014 0.0100 0.0959 -0.0006 0.0065
36 Fertility Rates in 1960s FERTLDC1 0.0308 -0.0068 0.0100 0.0945 -0.0018 0.0062
62 Tropical Climate Zone ZTROPICS 0.0157 -0.0029 0.0066 0.0937 -0.0022 0.0059
50 Religion Measure HERF00 0.0205 -0.0050 0.0075 0.0931 -0.0010 0.0056
52 Socialist Dummy SOCIALIST 0.0203 0.0040 0.0050 0.0918 -0.0019 0.0052
35 Fraction Catholic CATH00 0.0331 -0.0077 0.0093 0.0862 -0.0022 0.0055
55 Oil Producing Country Dummy OIL 0.0194 0.0041 0.0065 0.0837 0.0014 0.0053
58 Fraction Land Area Near Navig. Water LT100CR 0.0187 -0.0028 0.0059 0.0787 -0.0015 0.0048
38 Outward Orientation SCOUT 0.0297 -0.0034 0.0027 0.0755 -0.0025 0.0029
8 Life Expectancy LIFE060 0.2086 0.0008 0.0004 0.0675 0.0007 0.0003
49 Landlocked Country Dummy LANDLOCK 0.0205 -0.0023 0.0042 0.0652 0.0003 0.0038
66 War Particpation 1960-90 WARTORN 0.0150 -0.0008 0.0030 0.0565 -0.0011 0.0029
57 Timing of Independence NEWSTATE 0.0191 0.0010 0.0020 0.0459 0.0011 0.0020
23 Political Rights PRIGHTS 0.0656 -0.0018 0.0013 0.0415 -0.0013 0.0014
3 Investment Price IPRICE1 0.7735 -0.0001 0.0000 0.0328 -0.0001 0.0000
51 Size of Economy SIZE60 0.0203 -0.0005 0.0014 0.0290 -0.0003 0.0013
64 Capitalism ECORG 0.0151 -0.0003 0.0011 0.0248 0.0004 0.0011
43 Hydrocarbon Deposits in 1993 LHCPC 0.0246 0.0003 0.0004 0.0089 0.0000 0.0003
20 Real Exchange Rate Distortions RERD 0.0815 -0.0001 0.0000 0.0084 -0.0001 0.0001
34 Absolute Latitude ABSLATIT 0.0331 0.0001 0.0002 0.0080 0.0002 0.0002
54 Average Inflation 1960-90 PI6090 0.0197 -0.0001 0.0001 0.0031 -0.0001 0.0001
6 Population Coastal Density DENS65C 0.4284 0.0000 0.0000 0.0006 0.0000 0.0000
67 Interior Density DENS65I 0.0150 0.0000 0.0000 0.0006 0.0000 0.0000
19 Population Density DENS60 0.0861 0.0000 0.0000 0.0004 0.0000 0.0000
59 Square of Inflation 1960-90 SQPI6090 0.0177 0.0000 0.0000 0.0000 0.0000 0.0000
32 Air Distance to Big Cities AIRDIST 0.0394 0.0000 0.0000 0.0000 0.0000 0.0000
46 Population in 1960 POP60 0.0212 0.0000 0.0000 0.0000 0.0000 0.0000
61 Land Area LANDAREA 0.0158 0.0000 0.0000 0.0000 0.0000 0.0000

PIP stands for “posterior inclusion probability”, PM stands for “posterior mean” and PSD stands for “posterior standard deviation”,

“# (BACE)” refers to the ordering by PIP in Sala-i-Martin et al. (2004). Rows ordered by PIP obtained from the elastic net.

Table 1: Estimation results: Elastic net versus BACE

8



Determinant

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Determinant

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Figure 1: Histogram on the determinant of the regressor correlation matrix for
models visited by the Markov chain in the standard BMA procedure (left) and the
Bayesian elastic net (right).

4.2 Assessing out-of-sample predictive ability

The different estimation method and shrinkage philosophy can explain the differ-
ences in results between standard linear approaches and the Bayesian elastic net
presented in Table 1. The superiority of one of the two approaches, however, needs
to be assessed in terms of predictive accuracy. For this purpose, we perform an
out-of-sample prediction simulation based on the SDM data. We assign to each
observation a probability of 0.15 to belong to the out-of-sample group and, there-
fore, 0.85 to be part of the in-sample data. We then perform inference based on
the observations of the realized in-sample group and obtain point predictions for the
out-of-sample observations, which are in turn given by the weighted average of the
corresponding model-specific conditional expectation, where the weights correspond
to the posterior model probabilities obtained using the in-sample observations.

We repeat this procedure 100 times, estimating in each replication the Bayesian
elastic net and the standard linear counterpart. For the linear model we adopt a
fully Bayesian approach, thus deviating slightly from SDM and instead using the
approach put forward by Fernández et al. (2001) and expanded by Ley and Steel
(2009). We obtain the mean prediction error for each replication based on the best
10,000 models in terms of posterior model probability.

Table 4 and figure 2 display summary statistics of the resulting mean squared predic-
tion errors. Both the average of the out-of-sample prediction error and its dispersion
are smaller in the case of the Bayesian elastic net as compared to the standard linear
Bayesian model averaging method.

4.3 Robustness checks: LASSO and ridge specifications

We conducted some robustness checks in the framework of the Bayesian elastic net
changing priors over the parameters in the model, which left the results presented in
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Figure 2: Boxplot of the mean prediction
errors (multiplied by 104), Bayesian elas-
tic net (BEN) versus standard Bayesian
model averaging (BACE) and BACE with
hyperpriors on the model size and the co-
efficients (BACE-h2).

BEN BACE BACE-h2
Min. 0.4516 0.3336 0.2414
1st Qu. 1.1733 1.0865 1.1365
Median 1.4942 1.6053 1.5410
Mean 1.5914 1.6697 1.7220
3rd Qu. 1.7452 2.0981 2.2376
Max. 3.8911 4.2835 4.8706

Table 2: Summary statistics of the mean
prediction errors (multiplied by 104).
Bayesian elastic net (BEN) versus stan-
dard Bayesian model averaging (BACE)
and BACE-h2 .

Table 1 qualitatively unchanged.7 We also estimated the models using exclusively
Bayesian LASSO and ridge specifications, corresponding to the Bayesian elastic net
model presented above with λ1 = 0 or λ2 = 0 in (6) for, respectively, the LASSO and
ridge regression. The results from the estimation for the SDM dataset are presented
in Tables 3 and 4. The results for LASSO and ridge regressions are qualitatively very
similar to those presented for the Bayesian elastic net, but a couple of interesting
differences should be pointed out. While the top variables in terms of PIP are
left unchanged across estimation settings, the PIP assigned to Initial Income (Log
GDP in 1960) in the ridge regression specification is much lower than using other
estimation methods. This indicates that, although the overall results concerning
the most robust growth determinants are left unchanged when different shrinkage
methods are used, the type of shrinkage may have sizeable effects on the relative
importance of correlated covariates.

5 Conclusions

We propose a method to deal simultaneously with model uncertainty and correlated
regressors in linear regression model and apply it to the cross-country growth re-
gression dataset in Sala-i-Martin et al. (2004). The method is a straightforward
generalization of Bayesian elastic nets using spike and slab priors to account for be-
liefs concerning model size and the relative a priori importance of different potential
determinants. Our specification presents better out-of-sample prediction abilities
than standard model averaging methods which do not explicitly account for shrink-
age in individual specifications beyond the penalty implied by the posterior model
probability when Zellner’s g-priors are used (Zellner (1986)).

The method proposed is simple to estimate and presents a high degree of flexibil-
ity when setting prior structures. Our results indicate that explicitly assessing the

7Detailed results of the robustness checks are available from the authors upon request.
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correlation across covariates using shrinkage methods can lead to improvements in
modelling economic processes which are subject to model uncertainty. Further as-
sessment of shrinkage methods and priors over the model space could be particularly
relevant in the setting of Bayesian elastic nets.
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# (BACE) # (BEN) Description Name PIP PM PSD
1 1 East Asian Dummy EAST 0.9700 0.0247 0.0065
7 2 Malaria Prevalence MALFAL66 0.6601 -0.0158 0.0065
2 3 Primary Schooling Enrollment P60 0.5568 0.0173 0.0080
5 4 Fraction of Tropical Area TROPICAR 0.3483 -0.0104 0.0053
14 5 Years Open 1950-94 YRSOPEN 0.3198 0.0119 0.0067
9 6 Fraction Confucian CONFUC 0.2205 0.0224 0.0226
13 7 Spanish Colony Dummy SPAIN 0.2018 -0.0169 0.0175
18 8 Government Consumption Share GVR61 0.1969 -0.0109 0.0094
17 10 Ethnolinguistic Fractionalization AVELF 0.1825 -0.0088 0.0066
26 13 Fraction Population In Tropics TROPPOP 0.1771 -0.0008 0.0059
4 9 Initial Income (Log GDP in 1960) GDPCH60L 0.1747 -0.0033 0.0047
22 11 (Imports + Exports)/GDP OPENDEC1 0.1740 -0.0048 0.0064
27 12 Primary Exports in 1970 PRIEXP70 0.1731 -0.0073 0.0051
10 14 Sub-Saharan Africa Dummy SAFRICA 0.1655 -0.0110 0.0123
12 16 Fraction GDP in Mining MINING 0.1640 0.0009 0.0137
24 15 Government Share of GDP GOVSH61 0.1616 0.0009 0.0137
16 17 Fraction Buddhist BUDDHA 0.1516 0.0100 0.0104
25 18 Higher Education in 1960 H60 0.1459 -0.0110 0.0228
56 20 Population Growth Rate 1960-90 DPOP6090 0.1392 0.0014 0.0318
48 24 Public Educ. Spend. /GDP in 1960s GEEREC1 0.1368 0.0014 0.0311
31 21 Fraction Population Less than 15 POP1560 0.1359 0.0042 0.0229
44 23 Fraction Population Over 65 POP6560 0.1353 0.0021 0.0255
45 22 Defense Spending Share GDE1 0.1335 0.0064 0.0206
29 19 Fraction Protestants PROT00 0.1307 -0.0043 0.0138
33 25 Gov C Share deflated with GDP prices GOVNOM1 0.1293 -0.0067 0.0108
30 26 Fraction Hindus HINDU00 0.1276 0.0028 0.0111
47 27 Terms of Trade Growth in 1960s TOT1DEC1 0.1256 0.0052 0.0138
28 28 Public Investment Share GGCFD3 0.1241 -0.0015 0.0160
11 29 Latin American Dummy LAAM 0.1194 -0.0052 0.0055
65 30 Fraction Othodox ORTH00 0.1095 0.0042 0.0098
41 31 Revolutions and Coups REVCOUP 0.1031 -0.0050 0.0060
15 33 Fraction Muslim MUSLIM00 0.1017 0.0048 0.0057
21 32 Fraction Speaking Foreign Language OTHFRAC 0.1002 0.0045 0.0046
40 34 Civil Liberties CIV72 0.0967 -0.0046 0.0050
39 35 Colony Dummy COLONY 0.0955 -0.0041 0.0058
63 36 Terms of Trade Ranking TOTIND 0.0939 -0.0008 0.0065
42 37 British Colony Dummy BRIT 0.0929 0.0020 0.0038
60 38 Fraction Spent in War 1960-90 WARTIME 0.0893 -0.0019 0.0074
53 39 English Speaking Population ENGFRAC 0.0862 -0.0034 0.0056
37 40 European Dummy EUROPE 0.0840 -0.0007 0.0065
50 43 Religion Measure HERF00 0.0830 -0.0013 0.0062
52 44 Socialist Dummy SOCIALIST 0.0821 0.0003 0.0053
36 41 Fertility Rates in 1960s FERTLDC1 0.0814 -0.0009 0.0058
62 42 Tropical Climate Zone ZTROPICS 0.0804 -0.0007 0.0058
35 45 Fraction Catholic CATH00 0.0749 -0.0013 0.0055
55 46 Oil Producing Country Dummy OIL 0.0719 0.0004 0.0053
58 47 Fraction Land Area Near Navig. Water LT100CR 0.0684 -0.0010 0.0037
38 48 Outward Orientation SCOUT 0.0668 -0.0024 0.0034
8 49 Life Expectancy LIFE060 0.0626 -0.0001 0.0010
49 50 Landlocked Country Dummy LANDLOCK 0.0581 0.0004 0.0039
66 51 War Particpation 1960-90 WARTORN 0.0494 -0.0012 0.0029
57 52 Timing of Independence NEWSTATE 0.0394 0.0011 0.0021
23 53 Political Rights PRIGHTS 0.0354 -0.0014 0.0014
3 54 Investment Price IPRICE1 0.0276 -0.0001 0.0000
51 55 Size of Economy SIZE60 0.0240 -0.0003 0.0013
64 56 Capitalism ECORG 0.0208 0.0004 0.0012
34 59 Absolute Latitude ABSLATIT 0.0091 0.0001 0.0002
20 58 Real Exchange Rate Distortions RERD 0.0083 0.0000 0.0002
43 57 Hydrocarbon Deposits in 1993 LHCPC 0.0075 0.0000 0.0003
54 60 Average Inflation 1960-90 PI6090 0.0029 -0.0001 0.0001
6 61 Population Coastal Density DENS65C 0.0012 0.0000 0.0000
67 62 Interior Density DENS65I 0.0004 0.0000 0.0000
19 63 Population Density DENS60 0.0003 0.0000 0.0000
59 64 Square of Inflation 1960-90 SQPI6090 0.0001 0.0000 0.0000
32 65 Air Distance to Big Cities AIRDIST 0.0000 0.0000 0.0000
46 66 Population in 1960 POP60 0.0000 0.0000 0.0000
61 67 Land Area LANDAREA 0.0000 0.0000 0.0000

PIP stands for “posterior inclusion probability”, PM stands for “posterior mean” and PSD stands for “posterior standard deviation”,

“# (BACE)” refers to the ordering by PIP in Sala-i-Martin et al. (2004), “# (BEN)” refers to the ordering by PIP according to the

Bayesian elastic net. Rows ordered by PIP obtained from the LASSO with a spike and slab prior.

Table 3: Estimation results: LASSO with a spike and slab prior
14



# (BACE) # (BEN) Description Name PIP PM PSD
1 1 East Asian Dummy EAST 0.9584 0.0268 0.0061
7 2 Malaria Prevalence MALFAL66 0.6610 -0.0188 0.0057
2 3 Primary Schooling Enrollment P60 0.4620 0.0195 0.0075
5 4 Fraction of Tropical Area TROPICAR 0.2701 -0.0128 0.0049
14 5 Years Open 1950-94 YRSOPEN 0.2052 0.0144 0.0067
9 6 Fraction Confucian CONFUC 0.1906 -0.0159 0.0227
18 10 Government Consumption Share GVR61 0.1878 0.0162 0.0226
13 8 Spanish Colony Dummy SPAIN 0.1409 -0.0102 0.0049
24 15 Government Share of GDP GOVSH61 0.1273 -0.0235 0.0215
12 16 Fraction GDP in Mining MINING 0.1190 0.0214 0.0170
27 13 Primary Exports in 1970 PRIEXP70 0.1094 -0.0148 0.0124
25 18 Higher Education in 1960 H60 0.1085 -0.0196 0.0228
26 12 Fraction Population In Tropics TROPPOP 0.1018 -0.0079 0.0147
17 9 Ethnolinguistic Fractionalization AVELF 0.0993 -0.0120 0.0071
44 24 Fraction Population Over 65 POP6560 0.0981 0.0064 0.0376
16 17 Fraction Buddhist BUDDHA 0.0968 0.0009 0.0248
56 20 Population Growth Rate 1960-90 DPOP6090 0.0960 0.0021 0.0391
48 21 Public Educ. Spend. /GDP in 1960s GEEREC1 0.0949 0.0105 0.0293
45 23 Defense Spending Share GDE1 0.0925 0.0132 0.0222
31 22 Fraction Population Less than 15 POP1560 0.0913 0.0124 0.0263
22 11 (Imports + Exports)/GDP OPENDEC1 0.0879 0.0092 0.0051
10 14 Sub-Saharan Africa Dummy SAFRICA 0.0818 -0.0122 0.0173
47 27 Terms of Trade Growth in 1960s TOT1DEC1 0.0798 0.0064 0.0253
33 25 Gov C Share deflated with GDP prices GOVNOM1 0.0788 -0.0074 0.0191
28 28 Public Investment Share GGCFD3 0.0778 -0.0012 0.0174
30 26 Fraction Hindus HINDU00 0.0762 0.0072 0.0112
4 7 Initial Income (Log GDP in 1960) GDPCH60L 0.0685 -0.0062 0.0033
11 29 Latin American Dummy LAAM 0.0635 -0.0075 0.0063
29 19 Fraction Protestants PROT00 0.0615 -0.0098 0.0074
65 30 Fraction Othodox ORTH00 0.0578 0.0087 0.0132
15 34 Fraction Muslim MUSLIM00 0.0512 0.0083 0.0074
41 32 Revolutions and Coups REVCOUP 0.0482 -0.0078 0.0068
60 38 Fraction Spent in War 1960-90 WARTIME 0.0399 -0.0040 0.0100
63 35 Terms of Trade Ranking TOTIND 0.0376 -0.0030 0.0098
40 33 Civil Liberties CIV72 0.0369 -0.0047 0.0070
39 36 Colony Dummy COLONY 0.0361 -0.0044 0.0062
37 40 European Dummy EUROPE 0.0357 -0.0043 0.0062
21 31 Fraction Speaking Foreign Language OTHFRAC 0.0349 0.0039 0.0057
36 41 Fertility Rates in 1960s FERTLDC1 0.0343 -0.0009 0.0070
53 39 English Speaking Population ENGFRAC 0.0336 -0.0048 0.0070
42 37 British Colony Dummy BRIT 0.0317 0.0027 0.0046
50 42 Religion Measure HERF00 0.0309 -0.0013 0.0067
62 44 Tropical Climate Zone ZTROPICS 0.0301 -0.0024 0.0078
52 43 Socialist Dummy SOCIALIST 0.0295 0.0024 0.0063
35 45 Fraction Catholic CATH00 0.0275 -0.0017 0.0074
55 46 Oil Producing Country Dummy OIL 0.0251 0.0006 0.0065
58 47 Fraction Land Area Near Navig. Water LT100CR 0.0233 -0.0028 0.0062
38 48 Outward Orientation SCOUT 0.0222 -0.0035 0.0031
49 50 Landlocked Country Dummy LANDLOCK 0.0179 0.0014 0.0046
66 51 War Particpation 1960-90 WARTORN 0.0146 -0.0016 0.0033
57 52 Timing of Independence NEWSTATE 0.0105 0.0010 0.0013
23 53 Political Rights PRIGHTS 0.0093 -0.0009 0.0018
8 49 Life Expectancy LIFE060 0.0086 0.0002 0.0012
51 55 Size of Economy SIZE60 0.0061 -0.0007 0.0013
64 56 Capitalism ECORG 0.0047 0.0003 0.0012
3 54 Investment Price IPRICE1 0.0043 -0.0001 0.0000
34 59 Absolute Latitude ABSLATIT 0.0020 0.0002 0.0002
43 57 Hydrocarbon Deposits in 1993 LHCPC 0.0016 -0.0001 0.0004
20 58 Real Exchange Rate Distortions RERD 0.0011 -0.0001 0.0000
54 60 Average Inflation 1960-90 PI6090 0.0006 -0.0001 0.0001
6 61 Population Coastal Density DENS65C 0.0001 0.0000 0.0000
67 62 Interior Density DENS65I 0.0000 0.0000 0.0000
19 63 Population Density DENS60 0.0000 0.0000 0.0000
32 65 Air Distance to Big Cities AIRDIST 0.0000 0.0000 0.0000
61 67 Land Area LANDAREA 0.0000 0.0000 0.0000
46 66 Population in 1960 POP60 0.0000 0.0000 0.0000
59 64 Square of Inflation 1960-90 SQPI6090 0.0000 0.0000 0.0000

PIP stands for “posterior inclusion probability”, PM stands for “posterior mean” and PSD stands for “posterior standard deviation”,

“# (BACE)” refers to the ordering by PIP in Sala-i-Martin et al. (2004), “# (BEN)” refers to the ordering by PIP according to the

Bayesian elastic net. Rows ordered by PIP obtained from the Bayesian ridge regression model with a spike and slab prior.

Table 4: Estimation results: Bayesian ridge regression with a spike and slab prior
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