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Abstract 

 

Waiting time for elective surgery is a significant 

problem in the current medical world. This 

paper aims to reproduce, by means of a 

simulation model, how the endowment of 

hospital's capital (roughly measured by the 

number of beds) affects the length of stay 

(inpatient activity) and, consequently, the 

waiting list. We simulate inpatient activity by 

fitting a Normal distribution to real impatient 

activity data observed in 2007, and model the 

effect of number of beds on inpatient activity by 

using a linear regression model. The analysis is 

performed by first assuming that the number of 
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beds does not affect the inpatient activity or the 

length of stay (absence of beds effect), and then 

assuming that the number of beds has a linear 

impact on inpatient activity by adapting itself to 

the new conditions. The research allows us to 

evaluate the drop in waiting lists due to a 

potential increase of beds. 
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1. Introduction 

 

A waiting list for healthcare is a queue of 

patients who have been given a care 

procedure but for reasons beyond their 

control must wait to be served a variable 

period of time (Sampietro and Espallargues, 

2001). Waiting lists appear in different care 

fields (primary and specialty care) and in 

different levels of care (outpatient and 

hospital care), and in different therapeutic 

procedures (surgical and nonsurgical), 

diagnostic and rehabilitative (Churruca, 

2000). However, it is customary to discuss 

waiting lists referring to the surgical 

waiting lists. These have been studied more 

frequently, citing major problems of 

morbidity and mortality, as well as greater 

economic impact (Instituto Nacional de la 

Salud, 1998). With the aim of assessing the 

influence of waiting lists on survival rates, 

Richards (1999) reviewed 87 studies 

published in different countries and found 

that survival of patients with more than 

three months of delay on surgical treatment 

of breast cancer was reduced by 10% at 5 

years as compared with those patients who 

benefit from earlier operations. In the same 

line, Silber et al. (1996) examined the risk 

associated with waiting lists and found that 

the risk of mortality in patients awaiting 

coronary by-pass was 1.3% per month and 

that to minimize the risk of death on the 

waiting list, the by-pass should be 

performed within the first week after the 

diagnosis of coronary angiography.  

In Spain, there is a waiting list for 

programmed surgery to such an extent that 

a public opinion barometer has identified 

waiting time for elective surgery as the 

leading source of public dissatisfaction with 

inpatient services. One of the main reasons 

explaining waiting lists for elective surgery 

is the fact that Spanish hospitals have 

serious problems concerning productive 

capacity. Although productive capacity 

refers to resources as staff, beds, operating 

theatres and community-based health 

centers to name a few, the two main in a 

hospital production function are the 

personnel and the number of beds (often 

considered a rough proxy for capital 

endowment). 

In this paper, we analyze the situation in 

one of these hospitals. Specifically, we 

study how the number of beds—a scarce 

and expensive input in healthcare—affects 

the daily inpatient activity, the patients’ 

length of stay and, consequently, the 

hospital waiting list. However, a number of 

technical and financial problems make it 

impossible to experiment with the real 

hospital configuration to examine the effect 

of the number of beds on inpatient activity 

and waiting lists. In our case, 

experimentation with the real system would 

cause a lot of trouble both for patients and 

staff. For that reason, we are obliged to 

perform a simulation approach, which 

represents the real system and can be 

manipulated without disrupting the real 

healthcare practice. Indeed, one of the 
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often-mentioned reasons for using 

simulation as a tool is the experimentation 

with non-existing systems (Law and 

Kelton, 1991). Once validated, the 

simulated model can yield accurate 

estimates of the behavior of the real system 

and help in understanding and clarifying 

complicated dynamic processes 

(Yamaguchi et al., 1994). 

Simulation also offers an easily way to 

investigate the effect of different 

alternatives in situation where actual 

experiments are impossible, too costly, time 

consuming or risky (Lagergren, 1998). By 

this approach we are able to learn how the 

system responds to different changes in 

assumptions and to reveal decisive factors 

(Lubicz and Mielczarek, 1987). Finally, 

simulate a process, like admission to 

elective surgery, could also help in 

identifying bottle-neck and congestion 

points. In addition, the simulation model 

can be useful for monitoring the 

performance of the hospital system and as a 

planning tool to assess the relative 

effectiveness of alternative policies in 

coping with historical or statistically 

generated patient load.  

 

In sum, simulation is a recommended tool 

to solve those problems of complex 

systems, where the use of mathematical 

models is not operational. For that, it is 

widely used to analyze hospital problems 

because such problems are considered a 

complex system, with many variables and 

different random events. For example, in 

surgical services, Everett (2002) developed 

a decision support tool to evaluate various 

policies on wait lists and bed occupancy. 

Akkerman and Knip (2004) used simulation 

to allocate beds to cardiac surgery in order 

reduce waiting times. Denton et al. (2007) 

applied simulation to examine optimal 

timing of surgery. VanBerkel and Blake 

(2007) developed a discrete event 

simulation model to evaluate surgical wait 

times and support capacity planning 

decisions. Although the optimization 

approach is different in each case, the goal 

is to improve all services through the 

optimal use of resources.  

 

To examine the pattern of waiting lists in 

programmed surgery, at aiming to 

reproduce the behavior of the daily 

inpatient activity, the length of stay and, 

consequently, the waiting list, we fit a 

known distribution to each variable, which 

allows us to generate new values for the 

daily inpatient activity and the patients’ 

length of stay by means of a Monte-Carlo 

method. Once new observations of the 

inpatient activity and the stays length are 

generated, we can also create the 

corresponding simulated waiting list and 

the daily percentage of occupied beds (the 

occupancy rate).  

We also examine how the waiting lists vary 

when hospital beds (rough proxy for capital 

input) increase. This is done by examining 

how the number of beds affects the 
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inpatient activity, the stays length and, 

consequently, the waiting list. For 

achieving this objective, we replicate the 

simulation process for various increased 

percentages in the number of beds available 

in two alternative scenarios. First, we 

assume that an increase in the number of 

beds does not modify the pattern of the 

inpatient activity; then, we assume that a 

change in the number of beds modifies the 

behavior of the inpatient activity in the 

amount given by the inpatient activity-beds 

elasticity. All the computational 

programming was performed using the 

statistical free software R. 

Our research provides two main results. If 

there are no beds effects, any increase in the 

number of beds leads waiting lists to 

disappear and the daily occupancy rate to 

drastically reduce, even when beds increase 

is small. By contrast, if the elasticity of the 

beds-inpatient activity relationship is taking 

into account, there are no significant 

differences in terms of occupancy rates and 

waiting lists as the number of beds in the 

hospital increases. In other words, if the 

elasticity is included in the simulation 

model, waiting lists do not drop when the 

teaching hospital has more capital in its 

production function. 

 

Our results are closed to those obtained by 

Kroneman and Siegers (2004). In 

examining the effect of hospital beds on the 

use of them for 10 European countries, 

these authors find that admission rates 

appear to be sensitive to bed supply, and 

exhibits a positive elasticity of 1.44. 

Hospitals of those countries with a high 

number of beds show higher admission 

rates, but the number of beds does not seem 

to have a significant impact on the average 

length of stays. Zeraati et al. (2005) suggest 

that an increase in the number of hospital 

beds tends to generate additional demand, 

either in the form of more patients admitted, 

patients treated for longer periods or some 

combination of the two. This fact reflects 

the so-called Roemer's Law (Roemer, 1961) 

indicating that a sudden increase in the 

hospitals beds in a given country, with no 

changes in other factors, leads to a sharp 

increase in usage rates. 

The remainder of the paper is organized as 

follows. In Section 2, we first present the 

model. Then, in Section 3, we provide the 

simulation analysis and the main results. 

Finally, in Section 4 we discuss the results 

achieved.  

 

2. The model 

2.1. Data on inpatient activity and the 

length of stay 

The approach was applied at the Complejo 

Hospitalario Universitario de Santiago 

(CHUS) in Santiago de Compostela, Spain. 

CHUS is the largest teaching hospital for 

Galician's ... residents and as well serves as 

a regional hospital for approximately ... 

residents in Galicia. In 2007, CHUS ran 
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1,110 inpatients beds, of which about... are 

"reserved" for surgical patients.
 1
  

Our working variables are the daily 

inpatient activity and the length of stay for 

all patients admitted to the hospital in 2007. 

To fit a pattern of the inpatient activity from 

real data and select an adequate fitting 

distribution, we split data into two groups: 

working days (Monday to Friday, except 

July, August and December days) and 

holidays (Saturdays and Sundays plus July, 

August and December days). This is done 

because, as plotted in Figure 1, we observed 

clear differences between values of the 

inpatient activity for working days and 

inpatient activity for holidays. 
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Figure 1. Box-plot (left panel) and histogram (right 

panel) of daily inpatient activity. 

                                                                 

1 Consellería de Sanidade, Xunta de Galicia (2008), 

Memoria 2007 Sistema Público de Saúde de Galicia. 

Available at 

<http://www.sergas.es/Publicaciones/DetallePublicac

ion.aspx?IdPaxina=40008&IDCatalogo=1732>. 

In fact, quartiles are 96.5 (first quartile), 

116 (median) and 126 days (third quartile) 

for the working days, and 53 (first quartile), 

80.5 (median) and 94 days (third quartile) 

for holidays. Besides, a two-sample 

Kolmogorov-Smirnov test applied to data 

shows that the statistic value is 0.5667 and 

the associated p-value is smaller than 0.05, 

so the null hypothesis that inpatient activity 

in working days and in holidays is drawn 

from the same distribution of probability 

can be rejected. Hence, we decided to 

analyze separately the inpatient activity in 

working days and in holidays. 

The box-plot and the histogram of the 

patients’ length of stay are plotted in Figure 

2, where it can be seen that most of data are 

short stays since the first quartile is 3 days, 

the median is 6 days, and the third quartile 

is 12 days, although there are outliers that 

correspond to the longer stays in hospital. 
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Figure 2. Box-plot (left panel) and histogram (right 

panel) of length of stay. 

http://www.sergas.es/Publicaciones/DetallePublicacion.aspx?IdPaxina=40008&IDCatalogo=1732
http://www.sergas.es/Publicaciones/DetallePublicacion.aspx?IdPaxina=40008&IDCatalogo=1732
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2.2. The Monte Carlo simulation method 

The Monte Carlo approach allows us to 

generate new values for the daily inpatient 

activity and the patients’ length of stay. For 

the inpatient activity, we have considered 

the data as independent observations of a 

continuous variable, and then fitted a 

Normal distribution for working days and 

holidays separately.
2
 In other words, we 

have estimated the two parameters (the 

mean   and the standard deviation  ) that 

determine a Normal distribution for 

working days and holidays. After the fitting 

procedure, we selected the Normal 

distribution 

)45.20ˆ,02.112ˆ( 
WW

N  ,                                                              

(1) 

for the inpatient activity in a working day 

(denoted by subscript W) and the Normal 

distribution 

)08.24ˆ,72.76ˆ( 
HH

N  ,                                                              

(2) 

for the inpatient activity in a holiday 

(denoted by subscript H). To check if the 

Normal distribution captures correctly the 

behavior of the inpatient activity variable, 

we also performed a Kolmogorov-Smirnov 

test, which offered 0.0972 as the value of 

the statistics for the working days (p-value 

                                                                 

2 Although we have tried to fit distributions other 

than Normal distribution, the best fitting was reached 

using the latter. 

equals to 0.0503), and 0.1047 for the 

holidays (p-value equals to 0.0481). Then 

we accepted the normality for 01.0 . 

Regarding the length of the stay in the 

hospital, we have fitted a Normal and other 

known distributions like a Poisson 

distribution, but none of them gave us a 

good fitting. A possible cause could be the 

presence of outliers corresponding to large 

stays, which leads the considered 

distributions do not have tails heavy enough 

to fit adequately the real data. Hence, we 

choose an alternative approach based on the 

kernel density estimator for which we 

implicitly assume the variable (the stays 

length) is continuous. Denoting the real 

observations of stays length in 2007 by X1, 

X2,..., Xn, where n represents the size of the 

sample, the density function f of the stays 

length variable can be estimated by the 

kernel estimator (Wand and Jones, 1995) 











 




n

i

i

h
h

Xx
K

hn
xf

1

1
)(ˆ ,                                                        

(3) 

where K is a kernel function satisfying the 

property  1)( dxxK  (usually, K is a 

unimodal symmetric probability density 

function) and h is a positive number called 

bandwidth related with the smoothness of 

the obtained estimator. Specifically, we 

have adopted as the kernel function the 

standard normal density function and we 

have estimated the bandwidth related with 
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the smoothness of the obtained estimator 

74.0ˆ h . 

 

2.3. Generating new observations 

Once the distributions for daily inpatient 

activity and patients’ length of stay have 

been chosen, we generate data for both 

variables. A new observation for inpatient 

activity is drawn from the Normal 

distribution stated in (1) if the 

corresponding day is a working day, and 

from the Normal distribution postulated in 

(2) for a holiday. In turn, the new 

observations for patients’ length of stay 

have been obtained from the kernel 

estimator stated in (3). This is done by 

means of a three-stage method as follows. 

In the first stage, we denote as x1, x2,..., xn 

the real length of stay in 2007 and we 

randomly select one element x of the 

dataset },...,,{
21 n

xxx . In the second stage, 

we generate z from a standard Normal 

distribution )1,0(Nz  . Finally, in the 

third stage, a new length of stay, x
*
, is built 

by using the rule  

)ˆ(* zhxroundx  ,                                                           

(4) 

where ĥ  is the estimated bandwidth for the 

kernel density estimator (3) and )(round  

rounds the simulated values x
*
 to zero 

decimal places.  

 

3. Simulating the inpatient activity and 

the patients’ length of stay 

We can now simulate the hospital activity 

for 2007 when the total number of beds was 

1,100. To avoid starting with an “empty” 

system (a hospital without patients), the 

simulation process begins on August 1
st
 

2006, i.e. before the period of analysis.
3
 

Then for each day of 2007, the simulation 

process followed a three-stage procedure. In 

the first stage, we generate an inpatient 

activity value, taking into account both new 

patients and waiting-list patients. In the 

second stage, we detect the number of free 

beds in the hospital and we decide to 

occupy them with patients for which 

generate the length of their stays. In the 

third stage, if the daily inpatient activity 

exceeds the number of beds available, the 

remaining patients are put on the waiting 

list. 

The results of this three-step model 

are depicted in Figures 3 and 4. Figure 3 

plots the actual inpatient activity of the 

hospital in 2007 (black line) and the 500 

runs of inpatient activity simulated by 

means of this three-step model (grey lines). 

On the other hand, Figure 4 depicts the 500 

replications of simulated daily waiting lists. 

                                                                 

3
 In the simulation literature, this is called the start-up 

problem (Law, 1983). 
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Figure 3. Actual inpatient activity (solid black line) 

and simulated inpatient activity (grey lines) in 2007. 

 

 

Figure 4. Simulated daily waiting list (grey lines) in 

2007. Waiting list quartiles are highlighted: 25% 

(dashed black line), 50% (solid black line) and 75% 

(dotted black line). 

 

We can conclude that the simulated values 

fit well the pattern of the real data for this 

period. Besides, the waiting list in the 

hospital increases until June, disappears 

during July and August, and picks up again 

until December. There are then two critical 

moments located before summer and 

Christmas with very high peaks. A similar 

pattern is observed in the daily occupancy 

rate plotted in Figure 5. 

 

Figure 5. Simulated daily occupancy rate (grey lines) 

in 2007. Occupancy rate quartiles are highlighted: 

25% (dashed black line), 50% (solid black line), and 

75% (dotted black line).  

 

Finally, Figure 6 and 7 summarize the 

results obtained for the daily waiting list 

and the occupancy rate. For example, we 

can see that there is no waiting list for 38% 

of days, but the hospital is fully occupied 

for 62% of days. Indeed, 14% of days are 

characterized by the existence of more than 

350 patients within the waiting list. 
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No list ( 38 %)

1-100 ( 21 %)

100-200 ( 14 %)

200-350 ( 13 %)

>350 ( 14 %)

1100 beds

Figure 6. Pie chart for simulated daily waiting list data

 

70%-80% ( 7 %)

80%-90% ( 12 %)

90%-99% ( 19 %)

100% ( 62 %)

1100 beds

Figure 7. Pie chart for simulated daily occupancy rate. 

 

3.1. The beds-inpatient activity elasticity 

In this subsection we examine what happens in the simulation analysis if the number of hospital 

beds (roughly speaking, the amount of physical capital) increases. To this end, we assume two 

alternative scenarios. First, in Scenario 1 the number of beds has no impact on the inpatient 

activity and on stays pattern. Then, this assumption is removed in Scenario 2. In both cases, we 

assume the actual number of beds (1,100), as well as successive increments of beds: 1,155 (an 

increase of 5% with respect to the actual number of beds), 1,210 (an increase of 10%), 1,265 (an 

increase of 15%), 1,320 (an increase of 20%), 1,430 (an increase of 30%), 1,540 (an increase of 

40%) and 1,650 (an increase of 50%). 

3.1.1. Scenario 1 

Here the daily inpatient activity is simulated as described above-mentioned; that is, W̂  and 

W̂  ( H̂  and H̂ ) are estimated using the inpatient activity sample of working days (holidays). 
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This implies that none increase on the number of beds in the hospital modifies the generation 

process of new values for the inpatient activity or the stays length. In this context, Figure 8 and 

9 show, respectively, the median of the 500 simulated waiting lists and the median of the 500 

simulated occupancy rates both for the various amounts of beds.  
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Figure 8. Median of simulated waiting lists. 
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Figure 9. Median of simulated daily occupancy rate. 

 

The obtained under Scenario 1 can be formally recorded as follows. 
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Proposition 1. If the number of beds has no impact on inpatient activity, even a minor increase 

in the number of beds leads (i) the waiting list to disappear, and (ii) the occupancy rate to 

drastically reduce. 

 

Part (i) of Proposition 1 is illustrated in Figure 10.  

No list ( 38 %)

1-100 ( 21 %)

100-200 ( 14 %)

200-350 ( 13 %)

>350 ( 14 %)

1100 beds

 

No list ( 76 %)

1-100 ( 18 %)

100-200 ( 5 %)

1155 beds

 

No list ( 95 %)

1-100 ( 4 %)

1210 beds

 No list ( 100 %)

1265 beds

 

Figure 10. Pie charts for simulated daily waiting list data. 

It can be observed that a sufficiently small increase of beds leads the waiting list to completely 

disappear. For example, a mere 5% increase on the number of beds available would lead the 

percentage of days with waiting list to reduce to half. Even more important, a 15% increase on 

the number of beads leads the percentage of days with waiting lists to be zero.  

The content of part (ii) of Proposition 1 is illustrated in Figure 11.  
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70%-80% ( 7 %)

80%-90% ( 12 %)

90%-99% ( 19 %)

100% ( 62 %)

1100 beds

 

<70% ( 3 %)

70%-80% ( 14 %)

80%-90% ( 18 %)

90%-99% ( 40 %)

100% ( 25 %)

1155 beds

 

<70% ( 6 %)

70%-80% ( 16 %)

80%-90% ( 31 %)

90%-99% ( 42 %)

100% ( 5 %)

1210 beds

 

<70% ( 12 %)

70%-80% ( 18 %)

80%-90% ( 46 %)

90%-99% ( 23 %)

1265 beds

 

<70% ( 17 %)

70%-80% ( 24 %)

80%-90% ( 52 %)

90%-99% ( 7 %)

1320 beds

 

<70% ( 28 %)

70%-80% ( 51 %)

80%-90% ( 21 %)

1430 beds

 

<70% ( 50 %)70%-80% ( 48 %)

1540 beds

 
<70% ( 83 %)

70%-80% ( 17 %)

1650 beds

 

Figure 11. Pie charts for simulated daily occupancy rate. 

We can see as a 5% increase in the number of beds reduces the number of days with full 

occupancy from 62% to 25%. That is, by adding 55 beds to the hospital the reduction of days 
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for which there is full occupancy is very significant. Even more, an increment of 165 beds over 

the actual number of beds (a 20% increase on hospital beds) would make the hospital not to be 

fully occupied none day.  

 

3.1.2. Scenario 2 

In this case we take the median of the daily inpatient activity in working days (holidays) and the 

number of beds in working days (holidays) to fit a linear regression. It is well know that if the 

number of beds increases, the inpatient activity tends to adapt itself to the new productive 

capacity of the hospital. This effect, known as Roemers’ Law (Roemer, 1961), is estimated for a 

set of 14 Galician hospitals by Reyes et al. (2011). By collecting the number of beds and the 

inpatient activity of these hospitals, these authors show that the elasticity is 1.44.  

Since we are modeling the inpatient activity as a Normal distribution, the pattern of the variable 

is determined by the mean and the standard deviation. Then we examine if both parameters, the 

mean and the standard deviation, are linked with the number of beds. To avoid pernicious 

effects from outliers, we both consider the median and the median absolute deviation (mad) as a 

robust estimator of dispersion.
4
  

The fitted regression model where the covariate is the number of beds in the hospital and the 

response is the median of the daily inpatient activity is given by: 

 

 









holidaysin  Beds,0643.2362.4

days in working Beds,0972.9619.3
activity) (inpatientMedian                          (5) 

 

and there is a reasonable linear relationship between median of inpatient activity and beds. 

Indeed, the coefficients of determination for the two fittings are larger than 0.9. 

In addition, the fitted regression models where the covariate is the number of beds in the 

hospital and the response is the mad of the daily inpatient activity is  

 

                                                                 

4 The mad is the median of the absolute deviations from de data’s median. For example, for a dataset as {2,2,3,4,12}, 

the median is 3, so the absolute deviations from the median are {1,1,0,1,9} (reordered as {0,1,1,1,9}) with a median 

of 1, in this case unaffected by the value of the outlier 12. Hence, the mad is 1. 
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








holidaysin  Beds,0181.02984.2

days in working Beds,0165.03747.2
activity) (inpatient Mad                  (6) 

 

where, once more, there is a reasonable linear relationship between mad of inpatient activity and 

the number of beds. The coefficients of determination for the two fittings are larger than 90%. 

Therefore, we can use a modified simulation process where the inpatient activity values for 

working days are drawn from the Normal distribution )ˆ,ˆ( WWN  , where 

Beds0972.09619.3ˆ 
W

  and Beds0165.03747.2ˆ 
W

 ,                                   (7) 

In turn, the inpatient activity values for holidays are drawn from the Normal distribution 

)ˆ,ˆ( HHN  , where 

 Beds0643.02362.4ˆ 
H

 and Beds0181.02984.2ˆ 
H

 .                              (8) 

Figure 12 and 13 sum up the main results provided by the validated model under the so-called 

Scenario 2. 
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Figure 12. Median of simulated waiting list. 
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Figure 13. Median of simulated daily occupancy rate. 

 

In Figure 14 se muestra que ahora no es posible eliminar las listas de espera, ni siquiera 

aumentando en un 50% el número de camas en observación. Por ejemplo, si el aumento en el 

número de camas es del 5%. 
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Figure 14. Pie charts for simulated daily waiting list data. 
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Figure 14. Pie charts for simulated daily occupancy rate. 
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The simulation results obtained in Scenario 2 can be recorded in the following proposition. 

Proposition 2. If the number of beds has impact on inpatient activity (beds effect), an increase 

in the number of beds leads to no significant differences in (i) waiting list, even for huge 

increases, and (ii) occupancy rate. 

 

4. Discussion 

The expansion of physical capacity in a hospital (building new surgical units) is a long-

run policy which may require time to be implemented. The increase of the health 

workforce may be even slower, since physicians and specialists need to be trained for 

several years before they can become active. Although it is possible to recruit staff 

from abroad, such staff may encounter assimilation difficulties and such a policy can 

also take time.  

This means that the different ways of increasing supply will generally have different 

costs and will require different time scales. In the short run it may be possible to 

purchase extra activity from public facilities at low marginal cost if there is spare 

capacity. If public facilities are already working close to full capacity, it will be possible 

to purchase extra activity only at high marginal cost in the short run. In the medium to 

longer term, it may well be cheaper to expand activity by expanding public capacity. 

For example, Denmark adjusted its public capacity to respond to the upsurge in 

demand for coronary revascularisation procedures more rapidly than did England in 

the 1990s. As a consequence, waiting times for revascularisation fell in Denmark 

whereas they rose steeply in England. 

It is argued that, in principle, waiting times can be reduced through supply-side 

policies, if the volume of surgery is not considered adequate, or through demand-side 

policies, if the volume of surgery is considered to be adequate. Supply-side policies 

include raising public capacity by increasing the number of specialists and beds, or by 

using the available capacity in the private sector. They also include increasing 

productivity by funding extra activity, fostering day-surgery, and linking the 

remuneration system of doctors and hospitals to the activity performed (Hurst and 

Luigi Siciliani, 2006).  

However, it is common to take measures aimed at reducing waiting times by increasing 

activity, and then find that, after a brief period, demand has increased and waiting 

times have reverted to levels similar to those before the introduction of the measures. 
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Such responses may be hard to overcome, since demand responds positively to 

reductions in waiting times.  

The outflow (supply) of elective surgery depends on both public and private surgical 

capacity and the productivity with which capacity is used. Econometric evidence (of a 

cross-sectional kind, at national level) suggests that higher capacity, in terms of 

increased numbers of beds and physicians, is associated with lower waiting times. The 

supply of elective surgery depends on both public and private surgical capacity and the 

productivity with which capacity is used. Evidence on the impact of capacity is 

provided by Martin and Smith (1999) who showed that the waiting time is negatively 

associated with the number of available beds (elasticity equal to -0.242), using an 

English database from the Hospital Episode Statistics in fiscal year 1991-92. Similarly, 

Lindsay and Feigenbaum (1984) found waiting times to be negatively associated with 

both the number of available doctors and beds. 

Even more, Álvarez and Centeno (1999) describe the use of simulation in the 

Washington Adventist Hospital. At this hospital, simulation was employed to evaluate 

an expansion in the number of beds in the Emergency Room, which resulted in a 

reduction of 0.6 hours for average length of stay. Kirtland et al (1995) used simulation 

to improve performance by reducing the patient`s time in the system and determining 

the appropriate staffing levels. They studied eleven different alternatives, which 

resulted in a reduction of thirty eight minutes on the average. 

But large increases in capacity may have a different impact on waiting times according 

to the level of excess demand and of the initial waiting time. Countries with low supply 

and high initial waiting times are likely to have elastic demand to variations in waiting 

times. For this reason, the effect of even large increases in capacity on waiting times 

may be quite modest.  (Hurst and Luigi Siciliani, 2006).  

In general, supply-side policies may well succeed in their aim of raising the rate of 

elective surgery but they may be disappointing in their effects on waiting times. That is 

because an increase in supply may follow rather than lead an increase in demand or 

may be overtaken by fresh increases in demand. Moreover, any reduction in waiting 

times may encourage an increase in the rate of entry to queues because of a lowering 

of clinical thresholds (Hurst and Luigi Siciliani, 2006). 
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Moreover, many commentators suggested that an increase in the supply of hospital 

beds tends to generate additional demand either in the form of more patients 

admitted or patient treated for longer periods of time or some combination of two 

(Zeraati et al, 2005). 

Formerly, Shain and Roemer (1959), found very close correlations between the 

availability of short term general hospital beds per 1000 population and rates of 

utilization as measured by hospital days per 1000 population. Roemer and Milton 

(1961) also reported on a natural experiment where a sudden increase in hospital beds 

in one country, with no changes in other factors, led to a sharp increase in utilization 

rates. Roemer`s Law. 

It is worth noting that, while the use of simulation models in health care is not new, 

one survey of 200 health-care simulation models demonstrates that their results were 

implemented in only 16 cases, showing how their acceptance has been limited 

(Tunnicliffe-Wilson, 1981) 

According to Álvarez and Centeno (1999), the primary reason for the reluctance of the 

health care industry to accept simulation was the management`s reluctance to reduce 

complex process in the health care field to a model representation. 

 

5. Concluding remarks 

 

 

The expected positive sign for bed supply has been indeed found. Admission rates appear to be 

sensitive to bed supply. 
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