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Abstract 
 

This paper estimates the impact of BMI and obesity on direct medical costs by 
using a panel of medical and clinical administrative records for the period 2004-
2010 for a subpopulation of Spanish individuals. Such marginal impacts are 
derived from a two-part model of medical costs (i.e., heavily right-skewed with 
many zeros) under two different approaches: i) the adjusted-heteroscedasticity 
retransformed OLS estimation on log costs and ii) the GLM panel data regression.  
All the estimations account for different challenges posed by the data and a 
dynamic version of the model is also examined. 
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1. Introduction 
 
 

Obesity -the accumulation of excessive fat in the body- is considered a multifactorial chronic 

disease linked to genetic, perinatal, socioeconomic and other factors. The prevalence of 

obesity has tripled in Europe in the last two decades and is estimated that 150 million adults 

and 15 million children and adolescents in the region are obese (Berghöfer et al., 2008). For 

the EU15 annual deaths attributable to overweight were 7.7%, and ranged from 5.8% in 

France up to 8.7% in England. Similar trend is observed in the US and Spain is not an 

exception, with an estimated 37.8% (15.6%) of Spanish adults being overweight (obese) 

(Aranceta-Bartrina et al., 2005). After the United Kingdom, Spain is the EU country with the 

highest increases in obesity rates over the last decade (WHO, 2002); and  appears to be one of 

the countries where the impact of obesity on avoidable mortality is the highest, being 

responsible for approximately 5.5% of total mortality and about 18,000 deaths yearly 

(Banegas et al., 2003). 

 The epidemic is a major public health concern as it is a key risk factor for a range of 

chronic conditions (i.e., hypertension, diabetes, cholesterol, heart disease, stroke, gallbladder 

disease, biliary calculus, narcolepsy, osteoarthritis, asthma, apnea, dyslipidemia, gout and 

certain cancers) which tend to reduce the quality of life and ultimately cause death (Alberti et 

al., 2009; López-Suárez et al., 2008). In addition, a significant share of obese patients tend to 

suffer mental disorders and social rejection leading to a loss of self-esteem, a particularly 

sensitive concern in children (Gariepy et al., 2010). As a consequence of its high prevalence 

and association with multiple chronic illnesses, obesity tends to substantially increase health 

care resource utilization and costs. 

 The connexion between obesity and medical costs in the literature on health 

economics is rooted in the tradition of the Grossman’s model (1972) whereby obesity impacts 

both the demand of health and healthcare services through the depreciation of the stock of 

health. Empirical evidence documents that obese people tend to reduce the demand of health 

but increase the demand of healthcare resouces, thus impacting healthcare budgets.     

 The aim of this paper is to estimate the influence of BMI and obesity on direct medical 

costs (i.e., diagnosis and treatment) taking advantage of a panel sample of medical and 

clinical administrative records of patients observed in the course of seven consecutive years 

(2004-2010). This study contributes to the literature on obesity economics by modelling 

medical costs by means of a two-part model (2PM) using panel data econometrics and 
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examining two broadly studied econometric strategies for the second part of the 2PM. In 

addition, the estimations incorporate a set of different econometric challenges posed by using 

panel data analysis. The paper is organised as follows: Section 2 presents the related 

literature; Section 3 describes the empirical strategy; Section 4 describes the data; Section 5 

presents the results, Section 6 discusses the main policy implications of the findings and 

Section 7 concludes. 

 

2. Related Literature 
 
 

There exists a considerable body of literature which quantifies the magnitude of the healthcare 

expenditures associated with the obesity epidemics. Following Barret et al. (2011) we can 

distinguish two different lines of research. On the one hand, a set of studies are concerned 

with the estimation of annual direct costs of obesity at an aggregate level. Most of them 

follow an “etiologic fraction approach” considering the most frequent obesity-related diseases 

(Wolf and Colditz, 1998; Colditz, 1999; Sander and Bergemann, 2003; Vazquez-Sanchez and 

Alemany, 2002; Müller-Riemenschneider et al., 2008), while others rely on representative 

sample data (Finkelstein et al., 2004; Arterburn et al., 2005). These studies find that the share 

of the national health care expenditures attributable to obesity ranges from 5.3 to 7% for the 

US and from 0.7 to 2.6% in other countries, reaching for instance a 7% of total health care 

expenditures in Spain.1 On the other hand, focusing on a lifetime perspective and using 

medical records there exists a set of investigations aimed to study the impact of BMI 

categories on the use of resources and direct costs. Most of these works are drawn from US 

data (Quesenberry et al., 1998; Thompson et al., 2001; Raebel et al., 2004; Finkelstein et al., 

2005) and very few from other country contexts (Borg et al., 2005; Kakamura et al., 2007; 

van Baal et al., 2008). 

 A part from to these two strands of research, it is worthy to note the paper by Cawley 

and Meyerhoefer (2011) which is the first, as far as we know, to estimate the (causal) impact 

of obesity on medical costs (using MEPS 2000-2005 data) by applying health econometrics 

methods widely employed in the literature to predict healthcare expenditures. Another key 

element of their paper is the use of IV methods to address problems of endogeneity and 

reporting error biases. 

 
                                                 
1 Within this type of literature another set of papers estimate medical costs and obesity based on survey data 
(Sturm, 2002; Andreyeva et al., 2004; Von Lengerke et al., 2006). 
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3. Empirical Method 

 

There is a plethora of investigations in the field of health economics exploring the advantages 

and drawbacks of the proposed empirical methods to analyse the utilization of healthcare 

services and the implied medical costs.2 The (cross-section) datasets used for analysing such 

healthcare outcomes typically contain a large proportion of zero observations (non-users) as 

well as a long right-hand tail of individuals who make a heavy use of healthcare services and 

imply high costs (skewness). Under these characteristics OLS estimation is biased and 

inefficient. A leading alternative model to analyse these outcomes and deal with such data 

problems is the well-known “hurdle” or “two-part model”, which assumes that the censoring 

mechanism and the outcome may be modelled using two separate processes or parts 

(Manning et al., 1981; Duan et al., 1983; Duan et al., 1984). For instance, in explaining 

individual annual hospital expenses, the first part determines the probability of hospitalization 

while the second part explains associated hospital expenditures conditional on being 

hospitalised.3 

The traditional candidates for modelling the first part in this literature are binary 

regression models (i.e., probit and logit). However much controversy exists regarding the 

estimation of the dependent variable in the second part. On the one hand, researchers have 

proposed the log transformation of costs (also the square root) before OLS estimation in order 

to accommodate or reduce skewness (Manning et al., 1983; Duan et al., 1983; Leung and Yu, 

1996).4 As nobody is interested in log model results per se (e.g., log dollars) such estimates 

must be retransformed to the original scale, but these retransformations can be problematic 

due to the impact of, for instance, heteroscedasticity (Manning, 1998). On the other hand, 

generalised linear models (GLMs) have been more recently proposed as an alternative 

approach when there are unknown forms of heteroscedasticity (Mullahy, 1998; Manning and 

Mullahy, 2001; Buntin and Zaslavsky 2004; Manning et al. 2005). These models specify a 

distribution function (e.g., Gamma, Poisson, Gaussian) that reflects the relationship between 

the variance and the raw-scale mean functions and a link function that relates the conditional 

mean of medical costs to the covariates. Interestingly, GLM estimates are on the raw medical 

                                                 
2 See Jones (2010) for a review of the proposed econometric methods and their comparative performance. 
3 These two distinct processes can be understood under the perspective of a principal-agent model where the 
decision to contact a physician is made by the patient but the frequency of visits or continuation of treatment is 
decided by the doctor. 
4 Actually estimates based on logged models are often much more precise and robust than direct analysis of the 
unlogged original dependent variable (Manning, 1998). They may also reduce (but not eliminate) 
heteroscedasticity. 
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cost scale, so there is no need of retransformation. Another advantage is that this approach 

allows for heteroscedasticity through the choice of the distribution function. 

 

3.1 Two-part model strategy 

 

Based on the previous literature, this paper estimates direct medical costs by means of a 2PM 

taking into account the panel structure of the data. Interestingly, in our dataset medical costs 

are zero for 16% of the sample and positive medical costs are very right-skewed. Thus the 

first part models the probability of incurring in a positive cost (yi >0) through a random effects 

(RE) logit or probit binary model of the type,  

 

( | , ) Pr( 0 | , ) ( )it i i it i i itE y x y x F xβ α β α α β= > = +  (1) 

 

where the non-linear function F(·) is the logistic or the standard normal cumulative 

distribution function, xit are the regressors and αi is the unobserved time-invariant and 

individual-specific effect which is normally distributed, αi ~ N(0, σα2). While the second part 

of the 2PM uses panel data linear methods to predict mean direct medical costs conditional on 

positive costs. Notice that these two parts are assumed independent and are estimated 

separately. In particular two specifications are analysed here:  

 

i) First, a RE generalised least squares (GLS) regression of log medical costs (log y) on a set 

of controls, 

 
'(log 0, , ) ( )i i it it i itE y y x xα δ α ε> = + +  (2) 

 

where xit are regressors, αi ~ N(0, σα2) and εit ~ N(0, σε2) is the idiosyncratic error term and 

both errors are independent of xit. Given that the combined error is uit = αi + εit [with Var(uit)= 

σα2+σε2 = σu
2 and Cov(uit,uis) = σα2, s≠t] it follows that the RE model permits serial correlation 

over time: ρu = Corr(uit,uis)= σα2 / (σα2+ σε2) for all s≠t. In this model is assumed that the 

individual specific effect is uncorrelated with the explanatory variables. 

If (combined) residuals from log medical costs in equation (3) are log-normal and 

homoscedastic, then the retransformation to raw scale medical costs using the exponentiation 

function is not a serious problem. Problems become more evident when we deviate from these 
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circumstances. If the error terms of the logged or transformed model are not normally 

distributed, but are homoscedastic, the usual alternative for the retransformation has been to 

relay on the Duan’s (1983) smearing or retransformation factor applied in several Rand 

Health Insurance Experiment papers (e.g., Duan et al., 1983, 1984; Manning et al. 1987). In 

this case the expected value of medical costs in levels conditional on positive costs is,  

 

( ) ( )' ˆˆ ´ ˆ| 0, , itx
i i itE y y x e Dα δα +
> =  (3) 

 

where α̂  and δ̂  are consistent parameter estimates of equation (2) and D̂  is the smearing 

factor, that is, the average exponentiated OLS residuals of the logged dependent variable 

( ˆ1 ( )

1

ˆ
N

u

i
D N e−

=

= ∑ ) where ' ˆˆˆ log itu y xα δ= − − .5 As the typical value for the smearing factor lays 

between 1.5 and 4.0 in healthcare costs applications, the fact of ignoring the retransformation 

can produce substantial underestimation of mean medical costs. 

 However, according to Manning (1998) and Mullahy (1998) this strategy is 

problematic when transformed errors have a heteroscedastic distribution with a variance that 

depends on regressors in a nontrivial manner (i.e., 2( | ) ( )uVar u x h xσ= , where h(x) is some 

function of the covariates x that determines the heteroscedasticity). These authors point out 

that OLS estimates of ( )| 0,i i itE y y xα>  that ignore the possible dependence of the 

retransformation factor on regressors and, therefore, use instead the (homoscedastic) smearing 

factor are likely to yield biased estimates of key parameters of interest like marginal effects or 

elasticities.  

 Given the presence of heteroscedasticity -detected by means of the Breusch-Pagan or 

White test- if it is produced by several covariates and some of them are continuous (i.e., 

complex heteroscedasticity) one alternative is to assume a parametric structure for the 

heteroscedastic error term. Here we follow Mullahy (1998) and assume the exponential 

conditional mean (ECM) specification accounting for the panel structure of the data: 
2 ( )( ) x
u h x e α γσ +=  which ensures the positivity of the variance function. Therefore, the 

heteroscedasticity adjusted retransformation of the expected response of medical costs on 

explanatory variables is,  

                                                 
5 When errors are lognormally distributed and homoscedastic, u ~ N(0,σu

2), then Equation (3) becomes 

( ) ( )' 2ˆˆ ´ 0.5
| 0, itx u

i i itE y y x e
α δ σ

α
+ +

> = . 
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( )
' ˆ' ( )ˆˆ 0.5

| 0, ,
x

itx e

i i itE y y x e
α γα δ

α
+⎛ ⎞+ +⎜ ⎟

⎝ ⎠> =  (4) 

 

where γ̂  are the estimated coefficients of the logarithmic regression 
2

0 1 1 2 2log( ) ... k ku x x x eα χ γ γ γ= + + + + + +  and their significance indicate which are the main 

variables contributing to the heteroscedasticity. Note that equation (4) rests on the assumption 

of lognormality of residuals.  

 As long as the purpose is to recover the estimation of the conditional expected direct 

medical costs in levels for the entire sample under a 2PM setting, we can write, 

 

( )
' ˆ( )' ˆˆ 0.5

' ˆ| , ( )
xit

itx e

i it i itE y x F x e
α γα δ

α α β
+⎛ ⎞+ +⎜ ⎟

⎝ ⎠= +  (5) 

 

where F(·) is the logistic or standard normal distribution. Notice that equation (5) adopts the 

heteroscedasticity adjusted retransformation of the second part of the 2PM. 

 

ii) Second, a GLM panel regression of (positive) direct medical costs on a set of controls, 

 
'( 0, , ) ( )i i it i i itE y y x f xα μ α δ> = = +  (6) 

 

where the link function f(·), the first component of GLMs, relates the conditional mean of 

costs directly to the covariates. The second component is a distribution function that specifies 

the relationship between the variance and the conditional mean. Often this is specified as a 

power function: ( | 0, , ) ( | 0, , )Var y y x E y y x uυ υα α> = > = . In order to know which specific 

link (e.g., logarithm, square root, linear) and distribution functions (e.g., Gamma, Poisson or 

Gaussian) best fit the data we calculated the Pregibon link test and the Park (1966) test, 

respectively. However, the most popular GLMs specifications in healthcare cost studies 

include the log link function and the Gamma distribution (e.g., Manning and Mullahy, 2001; 

Manning et al., 2005). In this case, the expected value of medical costs for the entire sample is 

computed as, 
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' 'ˆ ˆˆ( , ) ( ) ( )i it i itE y x F x f xα α β α δ= + +  (7) 

 

where F(·) is again the logistic or standard normal cumulative distribution functions. 

In selecting these two competing approaches to analyse the impact of BMI (or obesity 

categories) on mean medical costs, we are aware of the advantages and drawbacks of these 

two methods. For instance, GLM modelling is recommended, instead of log estimation with 

retransformation, when complex heteroscedasticity is present and residuals are not 

lognormally distributed. However, Manning and Mullahy (2001) point out that GLM 

estimation suffers substantial precision losses in face of heavy-tailed log scale residuals or the 

variance function is misspecified (see also Buntin and Zaslavsky, 2004; Baser, 2007). A 

general finding that seems to emerge from the literature that compare the performance of 

these two models for positive expenditures (among other methods) in terms of consistency 

and precision (Manning and Mullaly, 2001; Buntin and Zaslavsky, 2004; Manning et al., 

2005; Baser, 2007; Hill and Miller, 2009) is that no method dominates the other and there are 

important trade-off in terms of precision and bias, mainly when different subgroups of 

population or type of medical costs are analysed (Hill and Miller, 2009; Jones, 2010). 

Notwithstanding, the Mihaylova et al. (2010) review of literature confirms that 2PM models 

have shown better performance.  

 Finally, given the difficulties to find adequate exclusion restrictions in the data, the 

usual procedure, when estimating 2PM models, is to assume the same type of regressors in 

both parts of the equations. Fortunately, we have in our data information on patients’ relatives 

which allows us to construct the binary indicator of living with relatives (value 1) or alone 

(value 0). This indicator is then used as an exclusion restriction since we assume that living 

with relatives influences the decision to seek care and, consequently, on incurring in positive 

healthcare costs (first equation) but it is irrelevant when estimating the amount of medical 

costs (second equation). 

 

3.2 Marginal and incremental effects  in two-part models 

 

The derivation of marginal effects (MEs) and incremental effects (IEs) in non-linear models 

are much more complicated than in linear regression models (see Hertz, 2010). In this paper 

we are interested in estimating the ME of the BMI regressor, xk, and the IE of the obesity 
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regressor, xd, on direct medical costs (measured in levels) under a two-part framework using 

the above specifications for the second part.  

 When we estimate mean medical costs using the adjusted heteroscedasticity 

retransformation model, to calculate the ME (IE) of BMI (obesity) we take the partial 

derivative of equation (5) with respect to xk (xd) holding constant the remaining covariates, 

 

( )
( )'' ( )

'' ( )

0.5

0.5( | , ) ( ' )
( ' )

x

x

x e

x e

k k k

e
E y x F x

e F x
x x x

γ

γ

α δ

α δ
δ

δ α δ α β
α β

δ δ δ

+ +

+ ++
= + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

 (8) 

Now if we assume that F(·) is the cumulative logistic distribution, 
'

'

( )
'

( )
( )

1

x

x

ex
e

α β

α β
α β

+

+
Λ + =

+
, 

then the ME becomes: 
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                     0.5
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x
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k
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x e e

α γ
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α δ α γ

δ α
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δ

α β δ γ

+

+

+ +

+ +
+

= Λ + − Λ +

+ Λ + +

⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠
⎛ ⎞⎛ ⎞ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠

 (9a)

and the IE of the obesity indicator becomes: 

 

 

where the first term in equation (9) is the ME of the probability of positive medical costs with 

respect the BMI and the second term measures the ME of the heteroscedasticity adjusted 

conditional medical costs on positive values respect the same regressor. 

 Now if we calculate the ME using the GLM specification of the second part of the 

two- part model and assume the standard normal cdf for the first part 
'

'( ) ( )
x

x z dz
α β

α β φ
+

−∞
Φ + = ∫ , then the partial derivative of equation (7) is, 

 

( )( ) ( )( )'' ' ' '( | , )
( ) ( )k

k

E y x
x f x x

x
f xδ α

β α α β
δ

φ β δ δ= + ++ Φ  (10)

 

3.3 Econometric issues 
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Some econometric challenges posed by our panel data need to be adequately tackled. First, 

weight and height are not always measured when patients visit their doctors implying that for 

a subset of individuals their BMI may have a missing value in time t. To solve this 

inconvenience, we restricted the sample to those individuals who had at least one weight and 

height measurement. Based on this information we were able to infer individuals’ BMI for the 

analysed period 2004-2010. Second, as long as not having weight and height measurement 

information may induce sample selection we followed Wooldridge’s (2005, page 581) 

proposal to accommodate its impact. That is, we run a robust probit estimation of not having 

measurement on covariates for each period t and then saved the inverse Mills ratios that were 

later added in the two-part model equations. 

Third, another issue is to estimate the models through FE or RE in a panel data 

context. Although FE should control for unobserved heterogeneity at the individual level, we 

preferred the RE option. This decision was driven by the unfeasibility to estimate the same FE 

in the two parts of the two-part model. To our knowledge, no standard procedure can perform 

this. Therefore, we used RE panel estimation which relies on normality of the errors and that 

errors are uncorrelated with observed covariates (xit). Fourth, to allow for the possibility that 

the observed BMI may be correlated with the time-invariant and individual-specific effect (αi) 

we parameterised this association.6 However, we followed here the Mundlak (1978) 

procedure which uses within-individual means of the BMI rather than separate values for each 

year. As a consequence, the original set regressors is augmented with the global BMI mean. 

Fifth, to additionally control for heterogeneity we considered the impact of the previous year 

BMI in our regressions. Notice that although some endogenous effects might be still present 

like for instance a health status shock (e.g., accident or a job loss) producing a clear impact on 

medical spending (on traumatologic or psiquiatric services) we assumed that no other effects 

at the individual level can be controlled for. 

Sixth, as a robustness exercise we specified a dynamic panel regression equation by 

including medical costs incurred in the previous year as an additional regressor to capture 

state dependence. To deal with the known problem of the initial-conditions we followed 

Albouy et al. (2010) proposal which modifies the Wooldridge (2005) approach. In fact, these 

authors proposed to use the generalised residual of a simple model in cross-section at the 

initial date but taking into account the two-part model framework. The latter can be 

considered the best available estimation of over or under propensity to consume at the initial 
                                                 
6 Following Chamberlain (1980), one option could be to assume that 2´  (0, )i i iBMI u idd Nα α σ= + ∼ where 
BMIi = (BMIi1,..,BMIiT) are the values of the BMI for every year of the panel, and α = (α1,....., αT). 
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date. Seventh, another worrying sample selection issue occurs if during the analysed period 

some individuals drop-out from the panel owing to death, immigration, incapacity, etc. We 

found around 4% of total observations induced attrition as a consequence of deceased 

individuals. The strategy here was to simply include a dummy on the death occurrence rather 

than including an additional probability of dropping from the panel. Eighth, to control for 

non-linearity we alternatively modelled the impact of BMI categories (e.g., overweight and 

obese compared to normal weight) on both equations of the two-part model. Finally, marginal 

effects were computed manually as a consequence of having transformed data and were 

conveniently bootstrapped.7 

 

4. Data and variables 

 

The data used are observational and longitudinal data based on administrative and medical 

records of patients followed-up during seven consecutive years in six primary care centres 

(Apenins-Montigalà, Morera-Pomar, Montgat-Tiana, Nova Lloreda, Progrés-Raval and Marti 

i Julià) and two reference hospitals (Hospital Municipal de Badalona and Hospital 

Universitari Germans Trias i Pujol), serving to more than 110,000 inhabitants in the north-

eastern area of Barcelona. This population is mostly urban, of lower-middle socioeconomic 

status and from a predominantly industrial context. Our sample includes patients aged 16+ 

who had at least one contact with the system from 1st January 2004 to 31st December 2010, 

and who were assigned to the above-mentioned healthcare centres during the study period. 

The study also considers those who deceased during the analysed period. However we 

exclude subjects who were transferred or moved to other centres and patients from other areas 

or regions. 

 This dataset incorporates a rich set of information regarding utilization of healthcare 

resources (number of visits to the GP, specialist and emergency care; hospitalizations and bed 

days; laboratory, radiology and other diagnostic tests; or consumption of medicines), clinical 

measurements of weight and height, chronic conditions and other diseases associated with 

each patient (according to the ICPC-2), functional limitations, date of admission and 

discharge, type of healthcare professional(s) contacted and motive of the visit. Moreover, the 

dataset informs on each patient’s age, gender, employment status (active/retired), place of 

birth and habitual residence.  

                                                 
7 We pleasantly thank Partha Deb for having provided us the Stata codes to perform such calculations. 
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 Owing to a unique identifier, the register data is additionally merged with the 

Population Census allowing us to incorporate new variables for each patient (e.g., education 

or marital status) that were not available in the original sample. 

 

4.1 Data on Healthcare Costs 

 

In addition to its longitudinal nature, the dataset used is well suited for our purposes because 

provides a wide array of information on healthcare costs. Such information incorporates the 

specific characteristics of the considered primary and hospital healthcare centres and also the 

degree of development of the available information systems. Apart from this internal source 

of information, when needed costs were calculated using data from invoices of intermediate 

products issued by diferent providers and from prices set by the Catalan Health Service. 

The computation of healthcare costs follows a two stage procedure: first data on the  

incurred expenditures (Financial Accounting) are converted into costs (Analytical 

Accounting), and then costs are allocated and classificed accordingly.8 Depending on volume 

of activity, we consider two types of costs: fixed or semi-fixed costs and variable costs. The 

former include personnel (wages and salaries, indemnifications and social security 

contributions paid by the healh centre), consumption of goods (intermediate products, health 

material and instruments), expenditures related to external services (cleaning and laundry), 

structure (building repair and conservation, clothes, and office material) and management of 

healthcare centres, according to the Spanish General Accounting Plan for Healthcare Centres. 

The latter include those costs related to diagnostic and therapeutic tests and pharmaceutical 

consumption.9  

 As unit of measurement we use the cost per treated patient during the period in which 

the subject is observed and for all direct cost concepts imputed for the set of diagnosed 

episodes. Table 1 shows an estimate of the resulting unitary cost rates considered for the years 

2004 and 2010. Therefore, total medical costs per patient in each period will be derived as the 

sum of fixed and semi-fixed costs (i.e., average cost per medical visit multiplied by the 

number of medical visits) and variable costs (i.e., average cost per test requested multiplied 

by the number of tests + retail price per package at the time of prescription multiplied by the 
                                                 
8 Expenditures not directly related to care (e.g. financial spending, losses due to fixed assets, etc.) were excluded 
from the analysis. 
9 For instance we considered: (i) laboratory tests (haematology, biochemistry, serology and microbiology), (ii) 
conventional radiology (plain films requests, contrast radiology, ultrasound scans, mammograms and 
radiographs), (iii) complementary tests (endoscopy, electromyography, spirometry, CT, densitometry, perimetry, 
stress testing, echocardiography, etc.); iv) pharmaceutical prescriptions (acute, chronic or on demand). 
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number of prescriptions). Note that in this study we do not account for the computation of 

‘out-of-pocket payments’ paid by the patient or family as they are not registered in the 

database. Healthcare costs figures were converted to 2010 Euros using the Consumer Price 

Index (CPI).  

 

[Insert Table 1 around here] 

 

4.2 Other variables 

 

The body mass index (BMI) of each patient, our continuous variable of interest, was 

calculated as weight (in kilograms) divided by the square of height (in metres) using clinical 

or measured information. The traditional problems found in reporting this information are not 

an issue here. Notice that in our sample not all patients are measured when they visit the 

physician, however there are other individuals with several measurements along the observed 

period. We also computed the impact of the BMI categories (obesity and overweight) on 

medical costs by using the WHO classification that distinguishes between normal-weight (18 

≤ BMI ≤ 24.9 kg/m2), overweight (25 ≤ BMI ≤ 29.9 kg/m2) and obesity (BMI of ≥ 30 

kg/m2).10 

 We controlled the estimations of medical costs by demographic characteristics of 

patients such as age and gender but also the status of immigrant since there exists evidence of 

a different pattern of use and access to healthcare services of the immigrant population. 

Notice that non-linear age effects were considered after running the modified Hosmer-

Lemeshow Test. We also added a set of dummies of whether the individual was the main 

beneficiary of the public health insurance, Catalan as a regular spoken language and the 

employment status (active/retired). Regarding the individuals’ health conditions affecting 

medical costs two groups of indicators were employed. On the one hand, we included the 

Charlson comorbidity index for each treated patient as the individual case-mix index obtained 

from the ‘Adjusted Clinical Groups’ (ACG), a patient classification system for iso-

consumption of resources.11 On the other hand we considered the number of medical episodes 

                                                 
10 Although BMI is the most widely used measure of obesity, it poses several problems. For instance, the BMI 
does not take into consideration body composition (adiposity vs. lean weight) or body fat distribution. This 
means it may fail to predict obesity among very muscular individuals and the elderly. 
11 A task force consisting of five professionals (a document administrator, two clinicians and two technical 
consultants) was set up to convert the ICPC-2 episodes to the International Classification of Diseases (ICD-9-
CM). The criteria used varied depending on whether the relationship between the codes is null (one to none), 
univocal (one to one) or multiple (one to many). The operational algorithm of the Grouper ACG ® Case-Mix 
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suffered by each patient during the analysed period as a proxy for the individual’s health 

status. The merging with the Population Census allowed us to control medical costs by the 

distance from the current place of residence to the healthcare centre and the educational level 

and marital status of the patient. 

 We have an initial balanced panel dataset containing 687,218 observations for the 

whole period 2004-2010. However, when we restrict the sample to those who had at least one 

weight and height measurement, we end up with a final sample containing 436,941 

observations, a 63.6% of the original sample size. 

 

5. Results 

 

5.1 Summary statistics 

 

Descriptive statistics for the main set of variables used in the empirical exercise are presented 

in Tables 2-4. Table 2 shows that the unconditional mean annual medical costs per patient 

over the period is 769€ (in 2010 Euros) that is much larger than the unconditional median of 

315€; i.e., less than half the mean cost in our final sample. The skewness statistic is 5.8 

(compared to 0 for symmetric data) and kurtosis is 80.96 (compared to 3 for normal data). 

Thus, the distribution of costs in levels is very right skewed. As expected, the logarithmic 

transformation shrinks the range of variation of costs reducing the above mentioned 

skewness: a mean medical cost of 5.04€ close to the median of 5.76€ and the skewness 

(kurtosis) statistic falls to -0.97 (2.84).12 

 

[Table 2 around here] 

 

In addition, direct medical costs are zero for 16.5% of the sample (71,924 obs.), a non-

negligible portion of zeros, while the number of observations with positive medical costs 

amounts to 365,017. As Table 3 reports the mean positive annual costs per patient rises to 

920.47€, being significantly higher for women (967.72€) than for men (861.84€). As 

                                                                                                                                                         
System consists of a series of consecutive steps to obtain the 106 mutually exclusive ACG groups, one for each 
patient. The application of ACG provides the resource utilization bands (RUB) so that each patient, depending 
on his/her overall morbidity, is grouped into one of five mutually exclusive categories (1: healthy users or very 
low morbidity; 2: low morbidity; 3: moderate morbidity; 4: high morbidity; and 5: very high morbidity). 
12 Compared to the initial sample, Table 2 shows that medical costs have increased which would indicate that 
those patients with no measurement of weight and height when they visit their physician enjoyed a better health 
status and incurred lower costs. 
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expected, medical costs increase as patients’ age, with a higher Charlson comorbidity index 

and with terminal patients. 

 

[Table 3 around here] 

 

Finally, Table 4 summarises the mean and standard deviation values of the variables of 

interests and controls. In our sample, the mean measured BMI over the period 2004-2010 is 

26.88, corresponding to a prevalence of obesity (overweight) of 24% (37%). As expected, 

mean measured BMI is slightly higher for men (26.93) than for women (26.83), although 

obesity is higher for women (26% vs. 22%) and overweight for men (43% vs. 31%). Notice 

that women represent 54% of the sample and are slightly older than men (49.9 vs. 48.6 years-

old). The mean Charlson comorbidity index is significantly higher among men (0.82 vs. 0.65) 

althought the mean number of episodes is larger among women (18.3 vs. 13.7). As for labour 

status, around 66% of the sample are active or labour participating individuals and the share 

of individuals who drop the sample as a consequence of death is relatively higher among men 

(4% vs. 2%). 

 

5.2 BMI, obesity and medical costs 

 

The results of our RE panel data estimations based on a 2PM are presented in Tables 5-7. The 

three tables show the (bootstrapped) estimates of the MEs (IEs) of measured BMI (obesity) on 

medical costs using different econometric specifications. Accompaning such estimates, we 

also report measures of goodness of fit and of predictive performance for each model (i.e., the 

auxiliary R2, RMSE – Root mean squared error and the MAPE – Mean absolute prediction 

error). Notice that all these estimations account for a wide list of controls (see Section 4.2), 

health district dummies and time dummy variables. In addition, as it was previously 

mentioned each fitted model incorporates the inverse Mills ratio of not having weight and 

height measurement, the global BMI mean (i.e., the Mundlak’s correction procedure), one-

year lagged measured BMI, a dummy for the death ocurrence and a dichotomous exclusion 

restriction. The number of the bootstrap replications has been set to 200. 

 The first set of results (Table 5) presents the estimation of the ME of (measured) BMI 

on direct costs in levels (following equation 9) under three different specifications. It is worth 

to note that the first part predicts the probability of any medical cost assuming a panel data 

logit model and the second part, for positive costs, specifies an adjusted-heteroscedasticity 
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retransformed panel OLS estimation on log costs. The Shapiro-Wilk test of normality of (log) 

residuals rejects the null hyphotesis that the residuals are normally distributed (W=18.13, p-

value=0.000). We find evidence of heteroscedasticity when regressing the squared residuals 

of log costs on the set of covariates (Chi-squared=1.18*106, p-value=0.000). A variant of the 

Park test suggests that several covariates contribute to this heteroscedasticity, which justifies 

the adjustment of the retransformed log costs. According to the first specification of Table 5 

we find that one additional unit of BMI causes a (modest) increase of 5.1€ in annual medical 

costs per patient. A dynamic version of the model is also investigated in which (log) medical 

costs incurred in the previous year and/or a one-year lagged cost indicator is(are) included 

into the model (specifications 2 and 3, respectively). Interestingly, while we find roughly 

similar findings (i.e., a ME of 4.7€ and 5.0€) the auxiliary R2 (from a regression of actual log 

costs on the predicted values) notably increases reaching 34.2% and 38.9%, respectively, 

suggesting a reasonable goodness of fit. Notice that the specification which performs 

relatively best based on the lowest RSME and MAPE criterion, which measures precision of 

the predictions, is the second model that includes a lagged measure of log costs. 

 However, as mentioned above a significant drawback of the log OLS approach is that 

the retransformation of the estimates back to the original escale requires knowledge of the 

degree and form of heteroscedasticity. As pointed out by the empirical literature (Hill and 

Miller, 2009; ……..) such regression models tend to perform poorly in terms of bias and 

predictive accuracy, making the GLM more attractive for the second part of the two-part 

model. This alternative approach is additionally favoured by the fact that the Kurtosis index 

of log residuals from a panel OLS regression of direct medical costs has an average value of 

2.9 in the data. Although this is slightly lower than the normal distribution (3) we believe that 

GLMs should be reasonably efficient under this degree of skewness (Manning and Mullahy 

2001).13 

 We thus estimate in Table 6 the ME of (measured) BMI on annual direct medical costs 

according to equation (10). Notice that the first part specifies a panel data probit model to 

estimate positive medical costs while the second part uses GLM panel data regression. 

According to the first specification based on Gamma GLM with log link (widely used in the 

literature on health care costs)14 we find that one additional unit of BMI causes an increase of 

8.3€ in annual medical costs per patient, a significant higher impact than the one estimated in 
                                                 
13 Cawley and Meyerhoefer (2011) follow the same strategy for estimating their models. 
14 The Pregibon link test gives an estimated value of -0.591*10-5 (p-value=0.000) which is practically 0, 
suggesting the logarithm as the link function. The Park (1966) test gives a coefficient 1.79υ =  (p-value=0.000) 
which is consistent with a gamma-class distribution. 
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Table 5. Notice that in our data the GLM model performs much better than the OLS log costs 

estimation as long as the RMSE and MAPE (auxiliary R2) measures decrease (increase). A 

dynamic approach is also examined by including both the level of (log) costs and an indicator 

of whether costs were incurred in the previous year. The second specification shows a lower 

marginal impact, almost 7€, on annual medical costs caused by BMI, but a relatively better 

performance is achieved compared to the non-dynamic specification. In the last two 

regressions of Table 6 we estimate the ME of BMI by running a GLM with a gamma 

distribution but allowing flexibility regarding the shape of the conditional mean function. This 

is estimated through the extended estimating equations (EEE) approach of Basu and Rathouz 

(2005) where a Box-Cox transformation for the link function is applied.15 Based on the third 

specification we find a statistically significant marginal impact on annual costs in levels of 

9.1€, which is larger compared to the estimation when the log link function is assumed. 

Similarly, the dynamic version predicts a significant although slightly lower ME of almost 

8.4€. Interestingly, notice that under these two modelling strategies we obtain a better 

performance in terms of both higher accuracy (i.e., lower values of the RMSE and MAPE) 

and higher goodness of fit (i.e., larger auxiliary R2). 

 

6. Discussion 

 

7. Conclusions 

                                                 
15 We obtain an estimated value of the link parameter ˆ 0.189λ =  (p-value=0.000). This estimate is then used to 
run the GLM with a gamma distribution function. 
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Table 1. Estimates of unitary costs per patient in 2004 and 2010 

Healthcare resources 
Unitary costs (€) 

Year 2004 
Unitary costs (€) 

Year 2010 
Medical visits:   

    Visit to Medical Primary Care 16.09 24.37 
    Visit to Emergency Care 79.49* 123.48 
    Hospitalization (per day) 217.03* 337.13 

    Visit to Specialist Care 71.30* 110.76 
Complementary tests:   

    Laboratory tests 18.33 22.64 
    Conventional radiology 14.64 18.79 

    Diagnostic/therapeutic tests 21.37 37.76 
Pharmaceutical prescriptions PVP PVP 
Note: Figures for years 2004-2010 are estimated from linear interpolation based on observed data in 2003 and 
2009. Figures for the year 2010 are derived using the same growth rates. (*) These figures were estimated using 
the growth rate experienced by primary care visits during the period 2003-2009. PVP is retail price. 
Source: BSA analytical accounts.  
 
Table 2. Mean of Annual Direct Medical Costs per Patient 2004-2010 (Euros year 2010) 
 
 Initial Sample Final Sample 

 
Costs  

(in Euros) 
Log Costs Costs 

(in Euros) 
Log Costs 

Unconditional Mean 550.47 4.00 769.08 5.04 
Unconditional Median 138.97 4.94 315.00 5.76 

Standard Deviation 1,146.69 2.94 1,321.01 2.56 
     

Skewness 6.60 -0.35 5.8 -0.97 
Kurtosis 101.44 1.60 80.96 2.84 

N (Number of obs.) 687,218 687,218 436,941 436,941 
 
Table 3. Mean of Positive Annual Direct Medical Costs per Patient 2004-2010 (Euros 
year 2010) 
 
 Final Sample with Positive Costs 
 Both Genders Males Females 
Full sample 920.47 (1,393.34) 861.84 (1,384.30) 967.72 (1,398.80) 
  
 By subgroups of the population: 
Age 16-24 320.90 (423.74) 307.90 (410.92) 332.63 (1,354.43) 
Age 24-40 390.40 (607.38) 380.78 (664.52) 398.32 (555.83) 
Age 40-54 624.72 (852.38) 574.61 (855.90) 664.21 (847.53) 
Age 54-65 1,049.15 (1,246.88) 974.56 (1,212.95) 1,113.64 (1,271.99)
Age + 65 1,906.11 (2,079.87) 1,851.67 (2,129.86) 1,945.51 (2,042.05)
Female 967.72 (1,398.80) - - 
Immigrant status 420.36 (717.71) 392.74 (790.12) 443.42 (650.24) 
Active (labour status) 499.67 (688.79) 473.00 (683.09) 522.72 (692.84) 
Charlson index (>0) 1,096.07 (1,264.48) 947.93 (1,133.44) 1,223.69 (1,354.43)
Deceased individuals 3,131.10 (4,543.03) 3,153.66 (4,754.65) 3,104.64 (4,283.44)
N (Number of obs.) 365,017 162,891 202,126 



Table 4. Descriptive statistics of control variables. Period 2004-2010 
 
 Final Sample 
 Both Genders Males Females 
    
BMI 26.88 (5.12) 26.93 (4.45) 26.83 (5.64) 
Obesity 0.24 (0.43) 0.22 (0.41) 0.26 (0.44) 
Overweight 0.37 (0.48) 0.43 (0.50) 0.31 (0.46) 
Age 49.28 (18.70) 48.62 (18.28) 49.86 (19.03) 
Female 0.54 (0.50) - - 
Immigrant status 0.05 (0.22) 0.05 (0.22) 0.05 (0.22) 
Active (labour status) 0.66 (0.47) 0.69 (0.46) 0.64 (0.48) 
Charlson comorb. index 0.73 (1.39) 0.82 (1.50) 0.65 (1.28) 
Average number episodes 16.18 (11.19) 13.67 (9.59) 18.33 (11.99) 
Deceased individuals 0.03 (0.17) 0.04 (0.19) 0.02 (0.15) 
N (Number of obs.) 436,941 202,073 234,868 
Note: Figures are mean values over 2004-2010. Standard deviations are reported in parenthesis. 
 
 



 
Table 5. Bootstrapped Marginal Effects of Measured BMI on Annual Direct Medical 
Costs (in Euros year 2010): OLS log costs panel data estimation 
 

Two-Part Model ME of BMI RMSE MAPE Auxiliary 
R2 

OLS on Log(y) + Heteroskedasticity-
adjusted Retransformed Model 
(N=365,017) 

5.063 (0.84)*** 413,166 5,667 0.061 

OLS on Log(y) + Heteroskedasticity-
adjusted Retransformed Model + Lagged 
Costs 
(N=310,780) 

4.732 (0.99)*** 335,540 2,340 0.342 

OLS on Log(y) + Heteroskedasticity-
adjusted Retransformed Model + Lagged 
Costs + Lagged Costbin  
(N=310,780) 

5.003 (0.95)*** 388,302 2,693 0.389 

Notes: Auxiliary R2 denotes the R-squared from a regression of actual costs on the predicted values; RMSE 
denotes the root mean squared error; MAPE is the mean absolute prediction error. Estimations account for an 
extensive list of covariates, health district dummies and time dummy variables. In addition, all regressions 
contain one-year lagged measured BMI, Mundlak’s correction and a dichotomous exclusion restriction. 
 
 
Table 6. Bootstrapped Marginal Effects of Measured BMI on Annual Direct Medical 
Costs (in Euros year 2010): GLM panel data estimation 
 

Two-Part Model ME of BMI RMSE MAPE Auxiliary 
R2 

GLM- Log link + Gamma distr. 
(N=365,017) 8.251 (1.54)*** 307,422 1,986 0.432 

GLM- Log link + Gamma dist. + Lagged Costs 
& Costbin 
(N=310,780) 

6.955 (1.19)*** 260,577 2,172 0.582 

GLM- link (power 0.189) + Gamma distr. 
(N=365,017) 9.101 (1.62)*** 295,885 1,883 0.541 

GLM- link (power 0.189) + Gamma distr. + 
Lagged Costs & Costbin 
(N=310,780) 

8.355 (1.52)*** 256,683 2,019 0.624 

GLM- Log link + Poisson dist. 3.972 (1.94)*** 294,615 1,738 0.567 
Notes: Auxiliary R2 denotes the R-squared from a regression of actual costs on the predicted values; RMSE 
denotes the root mean squared error; MAPE is the mean absolute prediction error. Estimations account for an 
extensive list of covariates, health district dummies and time dummy variables. In addition, all regressions 
contain one-year lagged measured BMI, Mundlak’s correction and a dichotomous exclusion restriction. 
 



Table 7. Bootstrapped Marginal Effects of Measured Obesity on Direct Medical Costs 
(2004-2010): GLM procedure 
 

Econometric Modelling ME of Obesity RMSE MAPE Auxiliary 
R2 

(1) Standard normal cdf 
(2) GLM- Log link + Gamma dist. 16.169 (5.54)*** 307,394 1,985 0.433 

     
     
     
     
Note: All regressions contain lagged-measured BMI, Mundlak’s correction and a dichotomous exclusion 
restriction. Estimations account for an extensive list of covariates, health district dummies and time dummy 
variables. N in the 2nd part = 310,780 whereas for the imputed value is 405,872. 
 
 
 


