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Abstract

We develop a twofold analysis of how the information provided by several economic

indicators can be used in Markov-switching dynamic factor models to identify the

business cycle turning points. First, we compare the performance of a fully non-

linear multivariate speci�cation (one-step approach) with the �shortcut� of using a

linear factor model to obtain a coincident indicator which is then used to compute

the Markov-switching probabilities (two-step approach). Second, we examine the role

of increasing the number of indicators. Our results suggest that one step is generally

preferred to two steps, although its marginal gains diminish as the quality of the

indicators increases and as more indicators are used to identify the non-linear signal.

Using the four constituent series of the Stock-Watson coincident index, we illustrate

these results for US data.
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1 Introduction

The view in the two decades leading up to 2007 was that macroeconomic policy had

advanced to the point of guaranteeing smooth business cycles, considerably decreasing

the probability of tail risks associated with sharp reductions in output and employment.

However, this buoyant view was called into question when a �nancial crisis erupted during

the second half of 2007, leading to one of the sharpest, longest and most generalized

downturns since the Great Depression. With some lag after the trough, governments and

central banks embarked on aggressive �scal and monetary policies to limit in advance the

fall of economic activity. Soon after the peak, the economic authorities were progressively

abandoning their economic stimulus packages as the adverse symptoms of the recession

abated. Since the decisions about the size and timing of these policies were conducted in

real time, the 2008-2009 recession has been the source of a revival of econometric methods

that help policymakers in the early tracking of economic developments.

With the aim of producing readily interpretable signals about the ongoing economic

evolution, some of these methods were based on statistical algorithms that try to cap-

ture the course of the two business cycle features embedded in the seminal description

developed by Burns and Mitchell (1946) and observed in the dynamics of the economic

indicators during the Great Recession. The �rst feature of the business cycle is the co-

movement among individual economic indicators. The models proposed to capture this

feature usually follow the lines initiated by Stock and Watson (SW, 1991), who proposed

a single-index linear dynamic factor model to analyze the comovements among industrial

production, employment, income and sales. These four series have a common element that

can be modeled by an underlying unobserved variable representing the overall economic

activity, as in the Composite Index of Coincident Economic Indicators (CEI) of the Bureau

of Economic Analysis (currently published by the Conference Board). Recent extensions

of their dynamic factor model are the Aruoba, Diebold and Scotti (ADS, 2009) index of

business conditions and the Chicago Fed National Activity Index (CFNAI), which also

provide accurate signals about the current state of the business cycle.1

1The Euro-STING model of Camacho and Perez Quiros (2010) is the European extension of these

models.
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The second feature of the business cycle is the existence of two separate business

cycle phases, and the models proposed to capture this notion frequently follow the lines

suggested by Hamilton (1989). This author proposed a statistical method that can be

applied to economic indicators whose dynamics evolve according to the outcome of a two-

state Markov process with occasionally discrete shifts. The model has the advantage of

automating the dating of business cycle turning points by inferring recession probabilities

from the evolution of the economic indicators. Recent extensions of Markov-switching

techniques used to infer the probability that economy is in recession can be found in the

survey by Hamilton (2011).

In this context, two alternative approaches have been used in the literature to unify

the notions of comovements and business cycle asymmetries. The description of the �rst

approach dates back to the mid-nineties in the seminal proposal of Diebold and Rudebusch

(1996) and consists of a two step estimation procedure. The �rst step is based on comput-

ing a coincident indicator, such as SW, CEI, ADS, or CFNAI, by applying linear factor

models to a set of coincident indicators. In the second step, univariate Markov-switching

techniques are applied to the coincident indicator to infer the underlying business cycle

probabilities. Examples of recent applications of Markov-switching techniques to linear

factors are Diebold and Rudebusch (1996) in the case of SW; Brave and Butters (2010) in

the case of a high frequency index such as ADS; Davig (2008) in the case of CFNAI; and

Paap, Segers, and van Dijk (2009) in the case of CEI.

The second approach, which was initially proposed by Kim and Yoo (1995), Chauvet

(1998) and Kim and Nelson (1998), is based on the natural extension of full dynamic-

factor/Markov-switching models which is estimated in one step. In their Markov-Switching

Dynamic Factor Model (MS-DFM), comovements and business cycles are modeled with a

nonlinear dynamic factor model whose common component is governed by an unobservable

regime-switching variable which controls the business cycle dynamics. Recently, Chauvet

and Hamilton (2006) and Chauvet and Piger (2008) examined the empirical reliability of

these models in computing real-time inferences of the US business cycle.

Although the uni�ed representation of the MS-DFM estimated through the one-step

approach to infer recession probabilities is conceptually appealing, it is very tempting to �t
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a linear DFM to the economic indicators and a univariate Markov-switching model to the

resulting linear coincident indicator. One reason is that the linear coincident indicators,

such as ADS, CFNAI and CEI, are already constructed by several agencies and it seems

straightforward to use univariate Markov-switching �lters to compute state probabilities

from them. Another reason is that the numerical algorithms used to evaluate the likelihood

functions of the (one-step) MS-DFM usually su¤er from curse of dimensionality problems,

which may hamper its empirical implementation, especially in real time.

In spite of the coexistence of the two approaches, the analysis of the performance of

the one-step procedure with respect to the two-step approach has not still been addressed

in the literature. To provide some light to help us to �ll in this gap, we examine the

sources of misspeci�cation of applying Markov-switching models to the common factor of

a linear DFM when the data generating process is a nonlinear MS-DFM. Our conjecture

is that the two-step procedure faces greater di¢ culties to infer business cycle probabilities

when the Kalman �lter used to compute the linear factor model in the �rst step assigns

large weights to the past observations of the economic indicators used in the business

cycle analysis. Using the Riccati equation for the misspeci�ed linear Kalman �lter, we

show that this typically occurs when the quality of the indicators used in the analysis is

relatively limited, which basically occurs when the indicators are noisy. However, when

the economic indicators are carefully selected to have large signal-to-noise ratios in the

Kalman �lter, the empirical performance of the one-step procedure is not expected to be

highly superior to that of the two-step method. These theoretical results are con�rmed

by means of a Monte Carlo experiment.

In addition, we examine the extent to which inferences about the state of the economy

from nonlinear MS-DFM can be improved upon by including additional variables. In a

linear framework, the recent literature provides mixed evidence about how many series to

consider for forecasting. Although consistency results are available when using principal

components as estimators of the common factors, as both N (the number of series) and T

(the sample size) tend to in�nity, Boivin and Ng (2006) were among the �rst to show that

the empirical forecasting performance of these models does not necessarily improve upon

with N . In the nonlinear context of this paper, we show that the precision of the inference
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about the business cycle is expected to grow by including additional indicators, with larger

growth for less noisy indicators. However, regarding the quality of the new indicators, the

expected gains from the additional indicators are progressively lower as the number of

indicators already included becomes large. In empirical applications, this result implies

that the gains from using large sets of indicators can be deceptively low compared to the

computational complexity of dealing with nonlinear models that use many indicators.

Finally, we evaluate the empirical relevance of our results by evaluating the perfor-

mance of the one step and two step estimation procedures to infer the US business cycles

from the four coincident economic indicators highlighted by Stock and Watson (1991) con-

sidered together and individually. Our main results are the following. First, we show that

although the individual component indicators track the business cycle fairly well, their

performance is inferior to that of the two versions of the multivariate coincident indica-

tors. Second, as expected, since the indicators exhibit very high signal-to-noise ratios,

the dynamics of the coincident indicators estimated from the two estimation procedures

are both in close agreement. Third, the �ltered probabilities estimated from the two esti-

mation procedures are also in striking accord with the NBER business cycle chronology.

Meanwhile, the two methods exhibit similar mean square error measures when comparing

the recession probabilities with a dummy that takes the value of one in the NBER reces-

sions. Interestingly, when the analysis is restricted to the �rst month of the new state

after a business cycle phase shift, the relative errors achieved by the full Markov-switching

dynamic-factor model (the one step model) imply considerable reductions of mean square

errors of about 20%. Notably, the reductions stand at about 30% when the comparative

analysis focuses on the �rst month of each new expansion. This result is con�rmed in a

real-time exercise, where the recursively increasing databases used in each month incor-

porate only data that would have been available in the month being considered. In this

case, the relative gains of the one-step estimation procedure when interpreting the signals

of business cycle phase shifts in the �rst months after the troughs are even larger.

The structure of this paper is organized as follows. Section 2 describes the sources of

misspeci�cation of a two-step estimation procedure when the data generating process is a

nonlinear MS-DFM. In addition, it examines the extent to which the model performance
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can be improved upon by using additional indicators. Section 3 proposes a Monte Carlo

experiment to analyze the ability of the models in computing business cycle inferences.

Section 4 shows the empirical analysis of US business cycles. Section 5 concludes.

2 Two-step versus one-step approaches

This section examines the performance of two-step versus one-step estimation procedures

of dynamic factor models with Markov-switching to accurately detect the probability of

a given business cycle phase. For this purpose, the section investigates the sources of

misspeci�cation of the two-step estimation method and examines the extent to which the

accuracy to infer the business cycle state can be improved upon by enlarging the number

of indicators.

2.1 Sources of misspeci�cation

This section examines the sources of misspeci�cation of the two-step estimation method

when the procedure is used to infer the probability of a given business cycle phase. For

this purpose, let us assume that the data generating process is a nonlinear MS-DFM

but that an analyst erroneously �ts a linear single-index DFM and tries to infer the

recession probabilities from the resulting common factor with univariate Markov-switching

techniques.

Let yt = (y1;t; :::; yN;t)
0 be the vector of N economic indicators which admits a fac-

tor decomposition into a non-observed common factor ft and N speci�c or idiosyncratic

components:

yt = � ft + ut

N � 1 N � 1 1� 1 N � 1
; (1)

where � = (�1; �2; :::; �N )
0 is the vector of factor loadings. Let us assume that ut is a

multivariate Gaussian white noise with mean equal to 0 and covariance matrix �u. As in

classical factor analysis, �u is assumed to be a diagonal matrix with the vector of variances

(�21; �
2
2; :::; �

2
N ) in its main diagonal.

To complete the speci�cation of the data generating process, the factor is assumed to
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be governed by an unobserved regime-switching mean plus a noise

ft = �st + at; (2)

where at is univariate Gaussian white noise (0; �2a):
2 Within this framework, one can label

st = 0 as expansions and st = 1 as recessions at time t if �0 > �1. In these cases,

the common dynamics of the coincident economic indicators are expected to exhibit high

(usually positive) growth rates in expansions and low (usually negative) growth rates in

recessions. In addition, st is assumed to evolve according to an irreducible 2-state Markov

chain whose transition probabilities are de�ned by

p(st = jjst�1 = i; st�2 = h; :::; It�1) = p(st = jjst�1 = i) = pij ; (3)

where i; j = 0; 1, and It is the information set up to period t:

Instead of �tting the one-step MS-DFM described above, let us assume that the analyst

erroneously applies a two-step MS-DFM as follows. In the �rst step, the analyst estimates

a linear DFM to the set of N economic indicators whose common factor is assumed to

follow a simple autoregressive process of order one to facilitate the analysis. Accordingly,

the analyst computes a misspeci�ed common factor, which is denoted with an asterisk,

f�t = d+ �f�t�1 + a
�
t : (4)

In this expression, a�t is a univariate white noise with zero mean and variance �
2
a� = 1,

which agrees with the standard identi�cation assumption. The intercept d is added to

take into account the possibility of a non-zero unconditional mean. The autoregressive

parameter, �, captures the serial correlation induced by the switching mean of the common

factor described in (2).

Once f�tjt is estimated in the �rst step, the analyst applies a univariate Markov-

switching model to the common factor in the second step. Hence, the analyst estimates the

nonlinear model by approximate maximum likelihood techniques and obtains the �ltered

2Qualitatively similar results were obtained from more complex dynamics of the common factor. In

particular, we performed simulations by assuming autoregressive processes for the series at, as well as for

the idiosyncratic noises ui;t, i = 1; :::; N: Some of the Monte Carlo results are reported in Section 3.
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state probabilities which are computed to extract informative insights about the business

cycle. Following Hamilton (1989), these probabilities can be expressed as

prob(st = jjI�t ) =
f(f�tjtjst = j; I�t )prob(st = jjI�t�1)

f(f�tjtjI
�
t )

; (5)

where f(�) is the Gaussian density function and I�t =
n
(f�� j� )

�=t
�=1

o
. Therefore, the two-

step estimation procedure faces a misspeci�cation problem which might be of potential

considerable importance in the detection of business cycle turning points.3 Since f�tjt is

a linear combination of past and present values of yt, the density functions used in the

univariate Markov-switching model depend not only on the current state but on all past

and present states. Accordingly, the simple two-step method might underweight the signals

of imminent changes in business cycle phases, implying longer delays in signaling a new

business cycle phase.

To understand this statement, recall that the �ltered linear common factor can be

expressed as a weighted sum of past and present observations

f�tjt =
tX

�=1

wt;�y� ; (6)

where the weights wt;� are the N -dimensional row vectors given by:

wt;t =
1

ct
�0��1u ;

wt;� =
1

c�

1

V� j��1
�wt;�+1 = B��wt;�+1; (7)

for � = t � 1; :::; 1. In the last expression, V� j��1 is the mean squared error of the mis-

speci�ed state estimated at � with information up to � � 1, c� = 1
V� j��1

+ �0��1u �, and

B� =
1
c�

1
V� j��1

.

Since the weights are decreasing in the signal extraction of an autoregressive stationary

process through the Kalman �lter, the misspeci�cation problem of the one-step estimation

procedure is expected to be high when the weights decay relatively slow. In these cases,

the approximation of the univariate Markov-switching model applied to the linear common
3To facilitate the analysis, we assume known population parameters and that the only source of mis-

speci�cation comes from the way the common factor is extracted. Our simulations con�rm that this is a

very reasonable assumption.
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factor will lead to important reductions in the timely detection of current turning points

since the information of a potential regime switch contained in yt diminishes its impact

on f�tjt. Hence, a good strategy to examine the sources of misspeci�cation of the two-step

estimation procedure is to analyze the sources of persistence of the linear common factor

which, according to expression (7), depends on B� and �.

Focusing on B� , the larger it is, the stronger the misspeci�cation of the two-step

procedure becomes. To �nd the coe¢ cients governing B� , it is worth noting that the

linear �lter reaches its steady state and Vtjt�1 = V since � < 1. Hence, the solution of the

algebraic Riccati equation for the misspeci�ed �lter is

V =

PN
i=1

�2i
�2i
� (1� �2) +

r�PN
i=1

�2i
�2i
� (1� �2)

�2
+ 4

PN
i=1

�2i
�2i

2
PN

i=1
�2i
�2i

; (8)

which implies that B� is

B� =
2PN

i=1
�2i
�2i
+ (1 + �2) +

r�PN
i=1

�2i
�2i
� (1� �2)

�2
+ 4

PN
i=1

�2i
�2i
)

: (9)

This expression reveals that the greater the autoregressive parameter � and the sumPN
i=1

�2i
�2i
, the smaller B� . To interpret the ratios

�2i
�2i
, it is worth writing the common factor

as

f�tjt =
1

ct

 
1

Vtjt�1
f�tjt�1 +

NX
i=1

�2i
�2i
(
yi;t
�i
)

!
; (10)

with ct = 1
Vtjt�1

+
PN

i=1
�2i
�2i
: This expression states that f�tjt is the weighted sum of two

components. The �rst component, f�tjt�1, is the estimation of the factor at time t with the

information up to time t � 1, and it has a weight which is proportional to the precision

of this estimation. The second component is the weighted sum of the new information

incorporated by the indicators observed at t, yi;t
�i
.4 The weights , �2i

�2i
; i = 1; :::; N; are

called signal-to-noise ratios since they measure the precision of the indicators (inverse

of the conditional variances var(ftjyi;t), i = 1; :::; N). Hence, the signal-to-noise ratios

assign more weight to compute f�tjt to the less noisy economic indicators. In addition,

when the signal-to-noise ratios are low, the weights to the past information, wt;� , become

4Notice that yi;t
�i

is the conditional expectation of the common factor from the i-th indicator E(ftjyi;t):
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large. Summing up, using economic indicators with low signal-to-noise ratio leads the

approximation of univariate Markov-switching dynamics of the common factor used in the

linear DFM estimation of the common factor to become increasingly more inappropriate

to detect business cycle turning points in advance.

The in�uence of � on the weights is twofold. According to expression (7), this parame-

ter increases past weights directly. At the same time, it reduces the past weights through

B� . Hence, the net e¤ect of � on business cycle identi�cation is complex and we refer the

readers to the simulation experiment developed in Section 3 for a more detailed analysis.

In spite of this unclear e¤ect, Timmerman (2000) showed that

� =
(�0 � �1)2 �1�0(p00 + p11 � 1)

(�0 � �1)2 �1�0 + �2a
; (11)

where �i is the steady state probability of state i, such that �1 + �0 = 1, and

�i =
1� pjj

2� pii � pjj
; (12)

with i; j = 0; 1. Accordingly, the autoregressive parameter is an increasing function on the

di¤erence of the within-state means and on the persistence of the business cycle states.5

Assuming that �0 > �1, this means that the larger the di¤erence between the two condi-

tional means (that is, if �0 >> �1), the larger � should be and this will help to identify

the business cycle regimes since it separates the Gaussians of the mixture (see Chauvet

and Hamilton, 2006).

The e¤ects of relaxing the assumptions about the dynamics of the idiosyncratic com-

ponents, ut, deserve a �nal comment. In expression (1), we assumed that the idiosyncratic

components followed a multivariate white noise. However, this assumption can be relaxed

by appropriately de�ning �u in the previous expressions. For instance, let us assume that

the idiosyncratic components follow the diagonal VAR(1) process

ut = 	ut + �t; (13)

where var(�t) = diag(�21; :::; �
2
N ), and	 = diag( 1; :::;  N ): In this case,�u = diag(

�21
1� 21

; :::;
�2N
1� 2N

):

Notice that the conditional densities of the observed series will depend on the hidden state
5 It can be easily checked that for given probabilities, pii; i = 0; 1, the derivative of � with respect to

(�0 � �1)
2 is always positive.
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contemporaneously and through its �rst lags. We check how this a¤ects our results on the

simulations presented on Section 3.

2.2 The role of N

Empirical applications of MS-DFM frequently exhibit the typical curse of dimensionality

problems of nonlinear estimates. This precludes the analysts from considering the case

of large values of N . In spite of this comment, the question of how many economic

indicators are useful to compute accurate inferences of business cycle turning points still

holds. If an analyst starts with a set of N�1 economic indicators that provides reasonable

turning point signals, the problem reduces to the question of under which circumstances

the additional N -th variable may be incorporated into the model leaving the dimension

of the resulting nonlinear model manageable.

For this purpose, we consider that the set of N indicators is preferred to the set of

N � 1 indicators if the former su¢ ciently increases the ability to appropriately detect

true turning points and reduces the rate of false signals. Let us denote the set of N � 1

indicators by I1;t = fy1;1; :::; y1;t; y2;1; :::; y2;t; :::; yN�1;1; :::; yN�1;tg, and the N -th indicator

by I2;t = fyN;1; :::; yN;tg. Hence, we �nd it useful to include the last indicator in inferring

the state of the economy at time t whenever prob(st = 1jI1;t; I2;t) > prob(st = 1jI1;t) when

st = 1 (for instance, recessions) and prob(st = 1jI1;t; I2;t) < prob(st = 1jI1;t) when st = 0

(for instance, expansions). Since it is straightforward to show that if prob(st = ijI1;t) = 1,

then prob(st = ijI1;t) = prob(st = ijI1;t; I2;t) = 1, let us assume that 0 < prob(st =

ijI1;t) < 1:

To start with, let us consider that the quality of the N -th indicator is similar to that

of the set that contains the N � 1 �rst indicators, i.e., that it is not a noisier time series.

Let us focus the analysis on the identi�cation of a given regime, for example on st = 1.6

According to the Markov-chain properties of the model described in (1) to (3), prob(st =

1jI1;t; I2;t) = prob(st = 1jy1;t; :::; yN;t) and prob(st = 1jI1;t) = prob(st = 1jy1;t; :::; yN�1;t):
6The treatment of regime st = 0 is symmetric.
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Then, the inference computed from the set of N indicators can be expressed as

prob(st = 1jI1;t; I2;t) =
prob(st = 1; yN;tjI1;t)

f(yN;tjI1;t)

=
f(yN;tjst = 1; I1;t)

f(yN;tjI1;t)
prob(st = 1jI1;t)

= wtprob(st = 1jI1;t); (14)

where wt =
f(yN;tjst=1;I1;t)
f(yN;tjI1;t) : Therefore, the information of the last indicator yN;t will be

useful to compute inferences about the business cycle at time t if the weight wt > 1 given

that the true regime is st = 1.

It is useful to express the weights as

wt =
f(yN;tjst = 1; I1;t)

f(yN;tjst = 1; I1;t)� prob(st = 1jI1;t) + f(yN;tjst = 0; I1;t)(1� prob(st = 1jI1;t))
:

(15)

Then, there exists informational content in the N -th indicator, i.e, wt > 1 when st = 1, if

f(yN;tjst = 1; I1;t) > f(yN;tjst = 1; I1;t)�prob(st = 1jI1;t)+f(yN;tjst = 0; I1;t)(1�prob(st = 1jI1;t)):

(16)

This occurs whenever
f(yN;tjst = 1; I1;t)
f(yN;tjst = 0; I1;t)

> 1: (17)

Since the inequality in (17) does not necessarily hold for all possible values of yN;t (for

instance, in the case of overlapping density functions) it will be useful to evaluate if this

condition holds on average. Taking natural logarithms of this expression, the set of N

indicators outperforms on average the set of N � 1 indicators if

ln f(yN;tjst = 1; I1;t)� ln f(yN;tjst = 0; I1;t) > 0 (18)

when st = 1. Taking into account all possible outcomes of yN;t when st = 1, the expected

value of the di¤erence between the two conditional densities under conditional Gaussianity

is given by Z
ln f(yN;tjst = 1; I1;t)f(yN;tjst = 1; I1;t)dyN;t � (19)

�
Z
ln f(yN;tjst = 1; I1;t)f(yN;tjst = 1; I1;t)dyN;t > 0:
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Therefore, one could evaluate if condition (17) is ful�lled on average.

The next proposition, whose proof appears in the Appendix, quanti�es the expected

gains in terms of business cycle identi�cation of adding a new economic indicator yN;t

when st = 1 to a given set of N � 1 indicators. The magnitude of the change is a measure

of the averaged informational content of yN;t about the two states (its ability to separate

them) and uses the concept of conditional entropy (or Kullback-Leibler divergence).

Proposition 1 The Kullback-Leibler (KL) divergence of f(yN;tjst = 0; I1;t) with respect

to f(yN;tjst = 1; I1;t) under the MS-DFM assumptions described in (1) to (3), is given by

KL =
�2N (�0 � �1)2

2�2N

1
�2a

1
�2a
+
PN�1

i=1
�2i
�2i

1
�2a

1
�2a
+
PN

i=1
�2i
�2i

: (20)

This expression implies that (i) if there are separate business cycles regimes, in the

sense that �1 6= �0 and �
2
a < 1; and (ii) if the new indicator is informative, in the sense

that �N 6= 0 and �2N <1, then the divergence is strictly positive. This implies that adding

a new indicator is (on average) always useful in terms of business cycle identi�cation.

In spite of this result and due to the curse of dimensionality problem of nonlinear

models, it is interesting to quantify the informational content of the new indicator which

is measured by the magnitude of the KL divergence. Two interesting results deserve

special comments from this proposition. First, the informational content of the additional

N -th indicator increases with the signal-to-noise ratio of this indicator �2N
�2N
. Hence, the

accuracy of the model to provide clear business cycle signals increases with the quality of

the new indicator. Second, assuming that the signal-to-noise ratio is the same for all the

economic indicators, the divergence is a decreasing function of the number of indicators.

According to these two comments, it is worth emphasizing that the gains of adding new

indicators can be lower than proportional to the number of indicators which have already

been included to infer the business cycle probabilities. Hence, the decreasing ability to

improve upon the accuracy of the model cannot always be compensated with the quality

of the new indicator. This implies that the gains in terms of divergence from using large

sets of indicators can be deceptively low compared with the computational complexity of

handling with many indicators in empirical applications of nonlinear models.
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Figure 1 helps us to interpret the size of the gains as a function of both the signal-

to-noise ratio of the new indicator and the number of indicators already included in the

model. To facilitate comparisons we set �0 � �1 =
p
2 and �2a = 1, and we assume that

the signal-to-noise indicators included in I1;t is 1 for all of its N � 1 indicators. Using

these assumptions, the �gure plots the KL divergence of f(yN;tjst = 0; I1;t) with respect

to f(yN;tjst = 1; I1;t) when the additional indicator exhibits potential signal-to-noise ratios

from 0:1 to 40. Given a number of indicators, for instance N = 2, the �gure shows that

the divergence increases rapidly when the new indicator exhibits signal-to-noise ratios of

up to about six times the signal-to-noise ratios of the existing indicators. However, the

divergence becomes hump-shaped at these values, implying that using less noisy indicators

does not help to increase the divergence by a large amount.

To evaluate the role of the number of indicators, the �gure also plots the results from

repeating the previous exercise when the �nal number of indicators is also N = 5 and

N = 8. The �gure shows that the divergence functions are shifted down by increasing N .

This implies that although enlarging the original set of indicators with a new indicator of

�xed signal-to-noise ratio leads to improve the accuracy to infer the business cycle phases,

the gains are low when the initial set of indicators becomes large.

3 Monte Carlo simulations

In this section, we set up several Monte Carlo experiments to study how the data might

a¤ect the empirical performance of one-step versus two-step estimation procedures as well

as the role of N to infer business cycle probabilities. For this purpose, we generate a total

ofM = 1000 sets of N idiosyncratic components umt of length T = 200 and equal variances

�2i = �2. The dynamics of these time series are assumed to follow autoregressive processes

of order one with autoregressive parameters equal to 0:3.

Besides, we generate M = 1000 dummy variables bmt of zeroes and ones of length

T = 100 which are used to simulate di¤erent sequences of expansions and recessions.

To ensure that the dummies share the US business cycle properties, we assume that bmt

follows Markov chains with p00 = 0:9 and p11 = 0:7, which are the percentage of quarters

14



classi�ed as expansions that are followed by expansions and the percentage of quarters

classi�ed as recessions that are followed by recessions in the period 1959.3-2010.3 by the

NBER, respectively. Hence, we generate M = 1000 common factors that follow Markov-

switching processes fmt by using the business cycle sequences bmt and by assuming that

�2a = 1.

Using factor loadings equal to one for all the series, we add the idiosyncratic compo-

nents to the switching mean factors to generate M = 1000 sets of time series ymt . Then,

we apply both the two-step and one-step estimation procedures to extract the �ltered

probabilities of state 1, pmt;i, with i = I; II in the cases of using one-step and two-step

estimation procedures, respectively. The Monte Carlo experiment is developed for N = 3

indicators of di¤erent quality. In particular, we generate indicators of di¤erent di¤erences

of the within-state means (�0 � �1 = 1; 2; 4 and 10), and di¤erent variances (�2 = 0:5; 1:5

and 4:5).

For each m-th replica, we quantify the ability of these two estimation procedures to

detect the actual state of the business by computing the Quadratic Probability Score

(QPS, from now on):

QPSi =
1

M

MX
m=1

1

T

TX
t=1

(pmti � bmt )2; (21)

where i = I in the case of the one-step estimation procedure, and i = II in the case of

the two-step estimation procedure. This measure can be interpreted as the average over

the M replications of the squared deviation from the generated business cycles.

To examine the sources of misspeci�cation of the two-step estimation method when

the procedure is used to infer the business cycle probabilities instead of the one-step pro-

cedure, Table 1 displays the QPS statistics which are computed for the di¤erent scenarios

described above. To examine the ability of each model to detect turning points, the table

shows in parentheses the scores when QPS is calculated only for those t that refer to the

�rst period after the phase shifts.7

The main message of this table is that the one-step estimation procedure unequivo-

cally performs better than the two-step estimation procedure. However, the relative per-

7Recall that turning point detection is a key business cycle question in the forecasting arena. The

empirical section also devotes special attention to this topic.
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formance gains depend on the quality of the indicators used in the business cycle analysis.

For a given idiosyncratic variance, higher di¤erences of within-state means (from 1 to 10)

improve the performance of both one-step and two-step estimation procedures. In spite

of this result, it is worth pointing out that when the di¤erences of within-state means

become large enough, although the one-step approach improves proportionally more than

the two-step procedure, the gains are statistically important but not economically mean-

ingful since the misspeci�ed two-step approach is already very accurate. For example,

for a variance of �2 = 1:5, the ratio of the QPS statistics between the two-step and the

one-step procedures when �0��1 = 1 is 1:21 (QPSII = 0:246 versus QPSI = 0:202) while

the ratio is more than 4000 when �0��1 = 10 (QPSII = 0:019 versus QPSI = 4:22E-06).

However, the QPS of the two-step approach was very low already (0:019).8 The results

also hold for the turning point detection whose results are displayed in parentheses in

Table 1. In this case, the table also shows that when the set of indicators included in

the analysis are very precise in terms of signal-to-noise ratios, there is less room for the

one-step method to improve the empirical performance of the two-step procedure. On

the contrary, if the indicators are not so good, the empirical performance of the one-step

procedure can signi�cantly outperform that of the two-step procedure.

>From Table 2, which examines the role of N in the one-step estimation procedure

performance, there are two noteworthy �ndings that deserve comments. First, the table

shows that the number of indicators used to infer the business cycle phases matters since

increasing the number of time series leads to business cycle identi�cation improvements,

i.e,., QPS reductions. However, the usefulness of new indicators in terms of business

cycle identi�cation re�nements dramatically decreases when the number of indicators al-

ready used becomes large. For example, for �2 = 1:5; a model of N = 1 indicator

exhibits QPSN=1I = 0:168, and adding two more indicators implies an improvement of

26% (QPSN=3I = 0:124). However, the improvement falls to 12% when the set of indica-

tors is extended from N = 3 to N = 5, and it is only 9% when the number of indicators

is enlarged from N = 5 to N = 7. Second, the table highlights that the quality of the

8To make the QPS results more readable, recall that the inference that gives probability of recession

equals to zero for all t leads to a QPS of 0:20.
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indicators matters when one is interested in quantifying the expected gain from enlarging

the model. In that sense, when the indicators are very precise (for instance, �2 = 0:5),

the gain of enlarging the model from N = 3 to N = 7 indicators is only 9%. However,

when the indicators are not very precise (for instance, �2 = 4:5), using N = 7 instead of

N = 3 indicators increases the expected accuracy by more than 27%. The intuition for

this result is that the model with N = 3 noiseless indicators is able to infer the business

cycle with considerable accuracy. Hence, a model that uses these three indicators does

not leave too much room for any improvement when the number of indicators is enlarged.

In the case of computing business cycle inferences from noisier indicators, there are larger

potential accuracy gains from a model with increased dimension.

4 Empirical results

The purpose of this section is to examine the empirical performance of the one-step versus

the two-step estimation procedures and the role of combining information from a set of

economic indicators by using an updated real-time version of the dataset previously used

by Stock and Watson (1991), Chauvet (1998) and Chauvet and Piger (2008). The four

indicators used in the empirical analysis, whose logarithms are plotted in Figure 2, are

monthly industrial production index (IP), nonfarm payroll employment (EMPL), personal

income less transfer payments (INC) and real manufacturing and trade sales (SALES) from

1967.01 to 2010.11.

Clearly, the behavior of these series clearly shows the comovements that were des-

ignated by Burns and Mitchell (1946) as the �rst business cycle feature. Based on the

notion that these comovements have a common element that can be captured by a single

underlying unobserved variable, Stock and Watson (1991) adopted a single-index linear

dynamic factor model to estimate these particular dynamics. Along these lines, we �t

a factor model to one hundred times the change in the natural logarithm of these four

macroeconomic variables.9

Interestingly, the maximum likelihood estimates, which are displayed in Table 3, show

9According to Stock and Watson (1991), all the linear autoregressive processes are estimated with two

lags. According to Camacho and Perez Quiros (2007), the nonlinear factor is estimated with no lags.
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that the signal-to-noise ratios, which we de�ned as �2=�2; are in line with the values used in

our simulations. Recalling that the simulations were made with � = 1, the signal-to-noise

ratio of IP, EMPL, INC and SALES are 1:83; 1:04; 0:09; and 0:34, which would correspond

in the simulations to the cases of �2 = 0:5 (IP), �2 = 1:5 (EMPL) and �2 = 4:5 (INC

and SALES). The fact that the magnitude of the parameters chosen in the simulations

exercise matches the data reinforces the learnings of the simulations exercise whose results

can directly be applicable to the empirical analysis. In addition, the estimates show

that the factor loadings are positive and statistically signi�cant. Hence, the indicators

are positively correlated with the estimated common factor, which in Burns-Mitchell�s

terminology represents the reference cycle. In line with this statement, Figure 3 shows that

the coincident index describes a behavior that closely agrees with the NBER-designated

US business cycles.10

Figure 2 can also be used to illustrate the second attribute of the business cycle de-

scribed by Burns and Mitchell (1946): the distinction of two separate business cycle phases.

Clearly, the variables depicted in this �gure present an upward trend. However, this trend

does not seem to be a smooth curve but rather a sequence of upturns and downturns that

are closely related to the NBER business cycles phases. In this respect, although the over-

all average monthly growth rates of production, employment, income and sales are positive

(0:19, 0:13, 0:25, 0:21, respectively), they are negative during the NBER recessions (-0:70,

-0:18, -0:06 and -0:56, respectively) which correspond to periods of negative growth.

The common factor depicted in Figure 3, which is a linear combination of the four key

indicators, exhibits a remarkable business cycle pattern. Accordingly, Diebold and Rude-

busch (1996) suggested that the Markov-switching model proposed by Hamilton (1989)

might be considered a reasonable nonlinear alternative to capture these asymmetric dy-

namics. Notably, the maximum likelihood estimates, which are reported in Table 3, show

that the transition probabilities are very persistent (p00 = 0:98; p11 = 0:89) and that the

within-state means are separate from each other (�0 = 0:32; �1 = �1:78). According

to our simulation results, this would help the two-step estimation procedure to compute

10 In the empirical analysis, we take it as given that the NBER correctly identi�es the dates of business

cycle turning points.
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accurate inferences of the US business cycle dates as Figure 4 actually reveals. This �gure,

which plots the probabilities that the coincident indicator is in the negative growth rate

based on currently available information, shows that the �ltered probabilities are in strik-

ing accord with the professional consensus as to the history of US business cycles. During

periods that the NBER classi�es as expansions, the probabilities of recession are usually

close to zero. At around the beginning of the NBER-dated recessions the probabilities rise

and remain high until around the times the NBER dates the end of the recessions.

In contrast to this two-step procedure, Kim and Yoo (1995), Chauvet (1998) and Kim

and Nelson (1998) propose a multivariate dynamic factor model with regime switching

in which the two key features of the business cycle are encompassed and estimated in

one step. In this alternative model, the numerical maximization of the conditional log

likelihood function led to the maximum likelihood estimates that are reported in Table 3

along with their standard errors. Figure 5 plots the nonlinear coincident indicator, which

also tracks the business cycle well, with pronounced drops that synchronously correspond

to the NBER-designated recessions. In fact, the �ltered probabilities that the coincident

indicator is in the negative growth rate, which are plotted in Figure 6, also show remarkable

success in matching the NBER reference dates.

Interestingly, the dynamics of the estimated coincident indicator from the one-step esti-

mation procedure is in close agreement with the dynamics of the estimated common factor

from the linear dynamic factor model. A visual inspection of Figures 3 and 5 suggests

that the similarity between the two is striking since they move together synchronously,

particularly over business-cycle horizons. The comparative ability of the model to repro-

duce the US business cycle dates can also easily be evaluated by a visual inspection of

Figures 4 and 6, which plot their respective estimated �ltered probabilities of recessions.

These similarities of the �ltered probabilities are also associated with similarities in the

estimated coe¢ cients for both models as shown in Table 3.

Although the �ltered probabilities seem to indicate that both estimation procedures

reproduce the NBER chronology very closely, Table 4 displays the QPS statistics to

formally evaluate the performance of the models.11 The entries of the table reveal the

11 In the empirical analysis, QPS is de�ned as in the Monte Carlo analysis with M = 1.
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high performance score of both models (QPSI = QPSII = 0:048), which implies that

there is similar correspondence between the probabilities inferred from the models and the

business cycle realizations.

Since the previous results are computed as averages over the entire sample, the analysis

may fail to identify the ability of the forecasting models to evaluate the odds of the

occurrence of important events such as the turning point dates. To gain some insight into

how quickly the last business cycle turning points are identi�ed, the probability scores are

also computed on a restricted sample that only includes the �rst month of each expansion

and the �rst month of each recession. The results are also displayed in Table 4. In

this reduced sample, the highest performance score is now achieved by the full Markov-

switching dynamic-factor model which assesses QPS reductions of about 20% (QPSII =

0:535 versus QPSI = 0:453).

The improvements on business cycle performance of the one step procedure are even

clearer when the analysis is restricted to the �rst month after the recessions (next month

after the trough)12 In this cae, the reductions are of almost 30% (QPSII = 0:50 versus

QPSI = 0:36). This result can be connected with the literature that �nds rapid growth

in the recoveries and that makes it di¢ cult to compute accurate business cycle inferences

at the very beginning of expansions. Examples are Sichel (1994), Kim and Nelson (1999),

and Morley and Piger (2006).

Additionally, the role of the number of indicators used to compute inferences emerges

in Figure 7, which plots the �ltered probabilities of negative growth for each of the four

coincident indicators. Although the �gure captures the ability of the individual component

indicators to track the business cycle, their performance is inferior to that of the coincident

index, as shown in Table 4. Hence, enlarging the set of indicators used to compute

inferences from N = 1 to N = 4, implies a gain in QPS that oscillates between 30%

in the case of IP to a 65% in the case of INC. Accordingly, moving to a multivariate

framework enables more precise tracking of the cycle.

12The di¤erences between recessions and the beginning of the expansions are the highest in the business

cycle as documented in papers related to the Friedman´s plucking model, Kim and Nelson (1999), the

Third Phase of the business cycle, Sichel (1994) or the bounce back e¤ect, Morley and Piger (2006).
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Finally, to assess the actual empirical reliability of the models, their real-time perfor-

mance in tracking the US business cycles is now evaluated by using a real-time dataset.

That is, the inferences are computed monthly over the past 35 years by using only data

that would have been available at the month being considered. This is accomplished by

estimating the models recursively with new data vintages and evaluating the evidence for a

new turning point at the one-period ahead forecast in every period, following the examples

of Chauvet and Piger (2008). This method provides a more realistic assessment of how

the model would have performed, as it does not assume the knowledge of data revisions

that were not available at the time the model would have been used. The sample has to

be reduced due to the availability of data and the real-time forecasts are for the period

1976.10-2010.11.

Figures 8 and 9 show that the real-time results are of the same nature as the in-sample

results. Overall, the two-step and the one-step procedures exhibit similar forecasting

accuracy. However, there is a reduction of about 5% in QPS when the analysis is restricted

to examining the ability of the models to compute turning points inferences from the one-

step method with respect to the two-step method. As in the in-sample analysis, this gain

is concentrated in the recoveries since the reductions in QPS are of more than 40% when

analysis is restricted to the periods right after the troughs. According to the theory, the

abruptness of these changes in the recoveries is in contrast to the misspeci�cation described

in the case of the two-step procedure.13

Again, the overall relative real-time performance of multivariate models with respect

to univariate models reveals that the former outperform the latter. According to Table

4, the QPS increase from 0.09 in the case of multivariate models to 0.08, 0.12, 0.16, and

0.09 in the case of univariate Markov-switching models of IP, EMPL, INC, and SALES,

respectively. Hence, the real-time gains of mixing information from several economic

indicators are of the same order of magnitude as the in-sample gains. Accordingly, there

is de�nitely a gain in mixing information even when the analysis accounts for the problems

associated with data revisions and real-time forecasting.

13We acknowledge that the real-time analysis is developed with �ve recessions only. However, the analysis

helps us not to compute formal inferences but to illustrate the results obtained in the simulations.
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5 Conclusions

Business cycle probabilities may be inferred from a set of economic indicators that exhibit

comovements and business cycle asymmetries. We show that mixing information helps

to �t the nonlinear dynamic behavior even in a real-time out-of-sample analysis. When

analyzing the way of mixing information, there are two options in the literature. The

�rst is to compute Markov-switching probabilities from a coincident indicator which is the

outcome of a linear dynamic factor model. The second is to compute the probabilities

directly from a full Markov-switching dynamic-factor model. Although the �rst is easier

to implement in real time, the second is conceptually more appealing. We examine in this

paper the circumstances under which one is preferred to the other.

We point out that the full Markov-switching dynamic-factor model exhibits higher

business cycle performance, specially in the turning points. However, we show that the

larger the quality of the business cycle indicators used in the analysis, the closer the

ability of the two approaches to track the business cycles. This implies that, when the set

of indicators included in the analysis are good indicators of the business cycle, the overall

di¤erences between the two approaches diminish considerably.. In this case, the superior

ability of the full Markov-switching dynamic-factor model appears in the turning points

only. In addition, we also show that the more variables that we include in the model, the

better the �t. However, the improvements of adding new indicators in terms of business

cycle identi�cation dramatically decrease when the number of indicators already used

becomes large, even in the case of incorporating indicators of high quality. This implies

that the gains from using large sets of indicators can be deceptively low compared with

the computational complexity of dealing with nonlinear models that use many indicators.

Using the four constituent indicators of the Stock and Watson (1991) coincident index,

production, employment, income and sales, we examine the empirical performance of the

models to assess the US business cycle. Since these indicators are of very high quality,

we expected a high business cycle performance of the two methods. According to this

prior, we show that the coincident indicators obtained from the two alternative estimation

procedures track the business cycle well, with obvious and pronounced drops corresponding
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to the NBER-designated recessions. In addition, the business cycle dates obtained from

their respective �ltered probabilities are in both cases almost identical to the o¢ cially

recognized US business cycle chronology. However, we obtain some relative gains of the

full Markov-switching dynamic-factor model when the analysis is focused on turning points

detection. We con�rm this result in a real-time analysis of the models�performance over

the past 35 years.

6 Appendix

Proof of Proposition 1:

The conditional distribution of the N -th indicator , f(yN;tjst = i; I1;t), is given by

f(yN;tjst = i; I1;t) =
1q

2��2N j1

exp

 
� 1

2�2N j1

�
yN;t � y(i)N;tjt

�2!
; (A1)

where y(i)N;tjt and �
2
N j1 are its mean and variance which can be derived by using the well-

known expressions for the conditional �rst two moments of a multivariate normal random

vector. Let y(N�1);t = (y1;t; :::; yN�1;t)
0 be the vector of the N � 1 �rst observed series,

let �N1 = cov(yN;t;y(N�1);tjst = i) be the 1 � (N � 1) vector of conditional covariances

between yN;t and the elements of the vector y(N�1);t, let �11 = var(y(N�1);tjst = i) be the

(N � 1) �(N � 1) conditional covariance matrix of y(N�1);t, let e� = (�1; :::; �N�1)0 be the
(N � 1) �1 vector of factor loadings associated with the elements of the vector y(N�1);t,

and let e�u = diag(�21; :::; �
2
N�1) be the (N � 1) �(N � 1) diagonal covariance matrix

associated with the observation equation for the �rst N � 1 variables as well. Taking into

account that

�N1 = �2a�N
e�0; (A2)

and that

�11 = �2a
e�e�0 + e�u; (A3)

one can use the expression for the inverse of the sum of two matrices to compute the
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inverse of �11 as

��111 = e��1u � e��1u e��e�0 e��1u e�+ 1

�2a

��1 e�0 e��1u
= e��1u � 1

1
�2a
+
PN�1

i=1
�2i
�2i

e��1u e�e�0 e��1u : (A2)

Hence, the conditional mean y(i)N;tjt can be expressed as

y
(i)
N;tjt = E(yN;tjst = i; I1;t) = E(yN;tjst = i; y1;t; ::::; yN�1;t)

= E(yN;tjst = i) +�N1�
�1
11 (y(N�1);t � E(y(N�1);tjst = i))

= �N�i + �
2
a�N

e�0
0@e��1u � 1

1
�2a
+
PN�1

i=1
�2i
�2i

e��1u e�e�0 e��1u
1A (y(N�1);t � e��i)

= �N

0B@�i + 1

1
�2a
+
PN�1

j=1

�2j
�2j

e�0 e��1u (y(N�1);t � e��i)
1CA ;

= �Nf
(i)
tjt ; (A3)

where

f
(i)
tjt =

0B@�i + 1

1
�2a
+
PN�1

j=1

�2j
�2j

e�0 e��1u (y(N�1);t � e��i)
1CA : (A4)

The conditional variance, �2N j1, can be expressed as

�2N j1 = var(yN;tjst = i; I1;t) = var(yN;tjst = i; y1;t; ::::; yN�1;t) =

= var(yN;tjst = i)��N1�
�1
11 �1N

= �2N�
2
a + �

2
N � �4a�2N e�0

0@e��1u � 1

1
�2a
+
PN�1

i=1
�2i
�2i

e��1u e�e�0
1A e�

= �2N�
2
a + �

2
N � �4a�2N

0B@N�1X
i=1

�2i
�2i
�

�PN�1
i=1

�2i
�2i

�2
1
�2a
+
PN�1

i=1
�2i
�2i

1CA
= �2N +

�2N
1
�2a
+
PN�1

i=1
�2i
�2i

: (A5)
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Finally, then the KL divergence is given by

KL =

Z
ln
f(yN;tjst = 1; I1;t)
f(yN;tjst = 0; I1;t)

f(yN;tjst = 1; I1;t)dyN;t

=
1

2��2N j1

Z ��
yN;t � �Nf (0)tjt

�2
�
�
yN;t � �Nf (1)tjt

�2�
f(yN;tjst = 1; I1;t)dyN;t

=
1

2�2N j1

Z �
2yN;t�N

�
f
(1)
tjt � f

(0)
tjt

�
+ �2N

��
f
(0)
tjt

�2
�
�
f
(1)
tjt

�2��
f(yN;tjst = 1; I1;t)dyN;t

=
1

2�2N j1

�
2�2Nf

(1)
tjt

�
f
(1)
tjt � f

(0)
tjt

�
+ �2N

��
f
(0)
tjt

�2
�
�
f
(1)
tjt

�2��
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�2N
2�2N j1

��
f
(1)
tjt

�2
� 2f (1)tjt f

(0)
tjt +

�
f
(0)
tjt

�2�
=

�2N
2�2N j1

�
f
(1)
tjt � f

(0)
tjt

�2
: (A6)

Using the expressions of �2N j1 and f
(i)
tjt , one can easily obtain expression (20).
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Table 1. Two-step versus one-step estimation procedures 

 

 One step  Two steps 

µ0-µ1 σ2
 

1 2 4 10 1 2 4 10 

0.5 
0.201 

(0.332) 

0.097 

(0.255) 

0.016 

(0.070) 

5.09E-08 

(1.29E-08) 

0.233 

(0.354) 

0.098 

(0.264) 

0.0453 

(0.245) 

0.013 

(0.089) 

1.5 
0.202 

(0.326) 

0.124 

(0.275) 

0.027 

(0.095) 

4.22E-06 

(2.67E-05) 

0.246 

(0.356) 

0.131 

(0.296) 

0.055 

(0.276) 

0.019 

(0.120) 

4.5 
0.204 

(0.320) 

0.171 

(0.307) 

0.061 

(0.169) 

4.02E-04 

(1.47E-03) 

0.2897 

(0.366) 

0.211 

(0.344) 

0.088 

(0.331) 

0.031 

(0.186) 

 

Notes. Entries show the average over the replications of the averaged squared deviation of 

filtered probabilities of low-mean state from the 1000 generated business cycle sequences. 

The results when the analysis restricted to the first month after phase shifts are in 

parentheses. “One step” refers to a MS-DFM and “two steps” refers to a MS to a linear 

common. The replications use three indicators (�=3). 

 

 

 

Table 2. The role of � on MS-DFM 

 

� σ2
 

1 3 5 7 

0.5 0.122 0.097 0.092 0.088 

1.5 0.168 0.124 0.109 0.099 

4.5 0.202 0.171 0.141 0.124 

 

Notes. Entries show the average over the replications of the averaged squared deviation of 

filtered probabilities of low-mean state from the 1000 generated business cycle sequences. 

� denotes the number of variables included in the model, and σ2 the variance of the 

idiosyncratic shocks. The model has been generated with µ0-µ1=2 
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Table 3. Maximum likelihood estimates 

 

Two-step procedure 

  Factor IP Empl Inc Sales 

λi - 
0.69 

(0.03) 

0.50 

(0.03) 

0.28 

(0.03) 

0.45 

(0.03) 

φ1 

0.47 

(0.06) 

-0.26 

(0.07) 

0.23 

(0.03) 

-0.20 

(0.02) 

-0.36 

(0.04) 

φ2 
0.22 

(0.05) 

-0.21 

(0.08) 

0.53 

(0.04) 

-0.05 

(0.04) 

-0.15 

(0.05) 

DMF 

2

iσ  1 
0.26 

(0.04) 

0.24 

(0.02) 

0.85 

(0.03) 

0.59 

(0.03) 

µ1 µ2 
2
*

a
σ  p00 p11 

MS 0.32 

(0.04) 

-1.78 

(0.14) 

0.80 

(0.05) 

0.98 

(0.01) 

0.89 

(0.04) 

One-step procedure 

   IP Empl Inc Sales 

λi 

0.69 

(0.03) 

0.42 

(0.02) 

0.28 

(0.04) 

0.46 

(0.03) 

φ1 

-0.18 

(0.08) 

0.24 

(0.03) 

-0.20 

(0.02) 

-0.34 

(0.04) 

φ2 
-0.16 

(0.08) 

0.54 

(0.04) 

-0.05 

(0.04) 

-0.15 

(0.05) 

Indicators 

2

iσ  
0.26 

(0.04) 

0.27 

(0.02) 

0.85 

(0.03) 

0.57 

(0.03) 

µ1 µ2 
2
*

a
σ  p00 p11 

Factor 0.32 

(0.07) 

-2.00 

(0.20) 
1 

0.98 

(0.01) 

0.85 

(0.05) 

 

                    Note: Standard errors are in parenthesis.
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Table 4. Empirical performance 

 

 1-step 2-steps IP Empl Inc Sales 

In sample (1967.01-2010.11) 

Total 0.05 0.05 0.07 0.12 0.13 0.09 

Turning points 0.31 0.39 0.54 0.67 0.42 0.33 

Real time (1976.10-2010.11) 

Total 0.06 0.06 0.08 0.12 0.16 0.09 

Turning points 0.51 0.54 0.49 0.73 0.39 0.36 

 

Note. Entries labeled as “total” refer to QPS statistics. In the case of entries labeled as 

“turning points”, the QPS is computed by using the first month after the phase shifts.  
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Figure 1. KL divergence
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Note. This figure measures the gains of adding a new indicator (the initial set contains 

�-1 indicators) to infer the probability of recession when a recession occurs as a 

function of its signal-to-noise ratio. 

Notes: Constants were added to facilitate graphing. Shaded areas correspond to 

recessions as documented by the NBER. 

Figure 2. Logs of monthly economic indicators
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Figure 3. Common factor from linear DFM 

Notes: Shaded areas correspond to recessions as documented by the NBER. 
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Notes: Shaded areas correspond to recessions as documented by the NBER. 

Figure 4. Filtered probabilities from linear common factor
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Note: Shaded areas correspond to recessions as documented by the NBER. 

Common factor

Figure 5. Common factor from MS-DFM

Note: Shaded areas correspond to recessions as documented by the NBER. 
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Figure 6. Filtered recession probabilities from MS dynamic factor
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Figure 7. Filtered recession probabilities from each indicator
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Figure 8. Real-time one-period-ahead forecasts from MS-DFM

Note: The graph shows the one-period ahead out of sample forecast of the probability 

of being in recession. Shaded areas correspond to recessions as documented by the 

NBER. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1976.10 1980.12 1985.02 1989.04 1993.06 1997.08 2001.10 2005.12 2010.02

Figure 9. Real-time one-period-ahead forecasts from linear common factor


