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Abstract

In this study, we revisit the cointegration relation between output, physical capital, human
capital, public capital and labor for 17 Spanish regions observed over the period 1964-2000.
The novelty of our approach is that we allow for cross-section dependence between the mem-
bers of the panel. To see if the variables are cointegrated or not, we employ two different
techniques at the panel level. More exactly, we compare the statistics from the single equa-
tion method of Banerjee and Carrion-i-Silvestre (2011) with those from the VAR framework
of Carrion-i-Silvestre and Surdeanu (2011). Moreover, using the VAR method, we identify at
least one common cointegrating relation among output, physical capital, human capital, public
capital and labor. Finally, we use several estimators to estimate the long-run relation between
these variables.
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1 Introduction
Ever since Aschauer (1989) added the stock of public capital to the Cobb-Douglas production
function, the interest in this �eld rose considerably. The production function relates the output of a
�rm, region or country to different combinations of factors of production, usually physical capital
and labor. It is one of the key concepts in economics, making it attractive in the empirical work.
Early studies of production function employ time series data, focusing on an individual region

or country. For example, for the case of the aggregated Spanish economy, Serrano (1997) uses
annual data observed over the period 1964-1991 and �nds no evidence of cointegration between
gross value added, human capital, private physical capital and labor. Sosvilla-Rivero and Alonso
(2005) obtain a different result and �nd that in Spain, gross domestic product, physical capital,
human capital and labor de�ne a cointegration relationship. They employ annual data that is ob-
served over the period 1910-1995. The contradictory results indicate that the empirical evidence
from the time-series studies is mixed. One plausible explanation is the low power of the univariate
unit root and cointegration tests that were used in these studies.
More recent studies show that the power of unit root and cointegration test statistics can be

improved if we consider panel data techniques. Thus, another category of studies that estimate
long-run production functions using panel data tools. Some examples for Spanish data are Serrano
(1996), Bajo and Díaz (2005) and Márquez, Ramajo and Hewings (2011). Serrano (1996) employs
a panel of regional data observed over the years 1980-1991 and simply avoids the risk of a spurious
regression working with a model that relates the gross value added, human capital, physical capital
and labor in �rst difference.1 Bajo and Díaz (2005) go one step further and add public capital to the
production function. The authors investigate the relation between gross domestic product, private
capital, public capital, human capital and labor using data for the 17 Spanish regions over 1965-
1995. They �nd that these variables are cointegrated. Recently, Márquez, Ramajo and Hewings
(2011) investigate the relation between gross value added, public capital, private capital and labor
for the 17 Spanish regions observed over the period 1972-2000. The authors �nd that indeed, there
is cointegration between these variables.
One critical problem with the earlier panel data studies for the Spanish regions is the assump-

tion of cross-section independence that they make. This is an unrealistic and far too restrictive
assumption, especially since regions are so closely related to each other. If the independence
assumption is violated then we might expect to have, on the one hand, biased and inconsistent
estimates and, on the other hand, spurious statistical inference � see Andrews (2005). More specif-
ically, in the case of non-stationary panel data, the unaccounted cross-section dependence might
lead to conclude that panel data is actually stationary when in fact it might be non-stationary �
see Banerjee, Marcellino and Osbat (2005). Similarly, the panel data cointegration test statistics
might indicate than there are more cointegrating relations than there exist � see Carrion-i-Silvestre
and Surdeanu (2011). Consequently, accounting for the presence of cross-section dependence is
crucial to draw meaningful conclusions from the analysis.
Cross-section dependence is more a recurrent than a rare characteristic that is present in macro-

economic time series of different units � i.e., countries, regions or sectors. There is different
sources of cross-section dependence that can be expected to affect the units of a panel data set.

1Note that this leads to the estimation of a short-run relationship among the variables since the long-run one would
require to use cointegration techniques.
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For instance, cross-section dependence is usually caused by the presence of common shocks (oil
price shocks or �nancial crises) or the existence of local productivity spillover effects. Further,
the economic literature on output stochastic convergence implies the existence of a long-run re-
lation (cointegration relation) among the different economies, so that the use of macroeconomic
variables such as the output or production should account for the presence of this long-run rela-
tion across the cross-section � the so-called cross cointegration concept, as de�ned in Banerjee,
Marcellino and Osbat (2005). This implies that cross-section dependence is more the rule than the
exception. Therefore, in country or regional level studies is practically impossible to ignore the
effect of cross-section dependence in the analysis of the models that are to be estimated. Bai and
Ng (2002, 2004) recognized early on this problem and laid down the foundation of the theoretical
panel framework with common factors.The use of common factor models is particularly useful
to capture the presence of cross-section that is pervasive or strong, i.e., the sort of cross-section
dependence that affects all units of the panel data.
However, as Banerjee, Eberhardt and Reade (2010) mention, the empirical work on the estima-

tion of production function in panel data using the common factor technique is relatively limited.
The most relevant example to our study is the work by Costantini and Destefanis (2009). They
analyze the production function for the Italian regions over the 1970-2003 period and �nd that the
regional value added, physical capital and human capital augmented labor are cointegrated. They
also �nd that ignoring the cross-section dependence biases upward the estimates for the returns
to scale. Note that the authors use the single equation framework while our paper focus on both
the single equation and vector autoregressive (VAR) frameworks. The advantage of a VAR model
is knowing exactly how many cointegration relations or, conversely, how many stochastic trends
exist among the units of the panel. To the best of our knowledge, none of the existing studies for
the Spanish economy take into consideration the cross-section dependence among the members of
the panel in a VAR model.
In this paper, we reexamine the cointegration relation among the output, physical capital, hu-

man capital, public capital and labor for the 17 Spanish regions observed over the period 1964-
2000. We model the cross-section dependence through the speci�cation of a common factor model.
In order to analyze the order of integration of the variables in our model we apply the panel data
unit root test statistics in Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007) and
the panel data stationarity test statistics in Hadri (2000). All these test statistics account for the
existence of cross-section dependence in different ways. In general, the application of these sta-
tistics leads to the same qualitative conclusion, i.e., that all panel data sets are characterized as
non-stationary panels. We then use the panel cointegration statistics recently proposed in Carrion-
i-Silvestre and Surdeanu (2011) using a VAR framework and in Banerjee and Carrion-i-Silvestre
(2006, 2011) for the single equation framework. All the cointegration statistics allow for cross-
section dependence through the use of common factors. By using the vector autoregressive model
we are able to determine the exact number of cointegrating vectors that exist in the model. Finally,
we compute the panel data estimators proposed in Pesaran (2006), Bai, Kao and Ng (2009) and
Kapetanios, Pesaran and Yamagata (2011) to estimate the long-run production function for the
Spanish regions.
The structure of this paper is as follows. Section 2 presents the model for panel data and the

data used in this study. In the Section 3 we present the econometric methodology while the results
are presented in Section 4. Finally, the paper concludes with Section 5.
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2 Speci�cation of the model and the data
This section presents the production function and the data used in this study. We use a modi�ed
Cobb-Douglas production function used also by Bajo and Díaz (2005) that has the following form:

Yi;t = Ai;t F (Ki;t ;Gi;t ;Hi;t ;Li;t) ; (1)

where i = 1; : : : ;N represents the cross-section dimension and t = 1; : : : ;T represents the time-
series dimension. The variable Yi;t is the output that depends on the private capital (Ki;t), the public
capital (Gi;t), the human capital (Hi;t) and the labor (Li;t). The variable Ai;t is the total factor
productivity (TFP), which is the part of the output not explained by the inputs. Next, we express
the production function in per worker terms, obtaining:

Yi;t=Li;t = Ai;t=Li;t f (Ki;t=Li;t ;Gi;t=Li;t ;Hi;t=Li;t) : (2)

As it is well known, TFP represents the unobservable part of the production function and usu-
ally re�ects the technological progress of the respective country or region. Further, if the technol-
ogy represent the cumulation of the innovations and progress efforts made by economic agents, we
should expect the TFP to be a non-stationary stochastic process. However, since the TFP cannot be
measured directly, the empirical researchers estimate it as the residual of the estimated production
function. Although intuitive, this approach causes serious econometric and interpretation prob-
lems. First, if not appropriately accounted for, the non-stationarity nature of the TFP would imply
that the estimation of the production function is, in fact, a spurious regression. Therefore, panel
data cointegration test statistics would lead to conclude that the variables involved in the produc-
tion function are not cointegrated. Second, the issue that part of the technology that is available
is common to all the economies implies a source of cross-section dependence, which needs to be
accounted for in order to obtain meaningful conclusions of the panel cointegration test statistics.
As can be seen, the speci�cation of a common factor model can capture this unobservable variable
that is dif�cult to approximate.
We take advantage of the recent developments in the �eld of non-stationary panel data and

decompose the TFP into an unobserved common factor component F 0t λ i and an idiosyncratic com-
ponent ei;t . The common factor approach allows us to capture the effect of common shocks that
affect the countries or regions, making it a desirable way to model the cross-section dependence.
Therefore, following Costantini and Destefanis (2009) and Banerjee et al. (2010), TFP is modeled
through the common factor speci�cation given by:

Ai;t=Li;t = eDi;t+F
0
t λ i+ei;t ; (3)

where Di;t denotes the deterministic component being either a constant (Di;t = µ i) or a linear time
trend (Di;t = µ i+δ it). Assuming a Cobb-Douglas function and taking the natural logarithm of the
variables from (2) and (3), we obtain the single equation model:

yi;t = ai;t+(α+β + γ+δ �1) li;t+αki;t+βgi;t+δhi;t (4)
ai;t = Di;t+F 0t λ i+ ei;t ;

where yi;t = ln(Yi;t=Li;t), ai;t = ln(Ai;t=Li;t), li;t = lnLi;t , ki;t = ln(Ki;t=Li;t), gi;t = ln(Gi;t=Li;t) and
hi;t = ln(Hi;t=Li;t). Following the existing contributions in the literature, we have essayed two
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alternative measures for public and human capital. First, we have used the total public capital
(gi;t) or the productive public capital (gpi;t = ln(Gpi;t=Li;t)). Second, the human capital has been
proxied by the rate of employes with at least a secundary school studies over the total number of
employes (hi;t) and the average number of schooling years (hsi;t = ln(Hsi;t=Li;t)) � see Serrano
(1996). The use of these variables de�nes up to four different model speci�cations depending on
whether total or productive public capital is used and on whether we use hi;t or hsi;t to proxy the
human capital. For a detailed description of the variables and the sources, see the appendix. These
are the variables that we will be using throughout the rest of the paper.
The data employed in our study contains annual observations for the N = 17 Spanish regions

observed over the T = 37 year period from 1964 to 2000. We collect the data from the BD.MORES
database provided by the Spanish Ministry of Economy and Finance and from the Instituto Valen-
ciano de Investigaciones Económicas (IVIE). The Spanish regions are: Andalucía, Aragón, As-
turias, Baleares, Canarias, Cantabria, Castilla y León, Castilla-La Mancha, Catalonia, Comunidad
Valenciana, Extremadura, Galicia, Madrid, Murcia, Navarra, País Vasco and La Rioja. The picture
of the variables can be found in Figure 1, which evidences, �rst, the clear trend pattern shown by
the four variables of the model and, second, the comovement (cross-section dependence) that seem
to be present in their evolution.

3 Econometric methodology
In this section we describe the tools that are used throughout the paper in order to analyze our
dataset. The order in which we present the econometric procedures is the one that will be followed
when applying them in the empirical estimation of the regional Spanish production function. Since
the validity of the panel data unit root, stationarity and cointegration test statistics requires to as-
sess whether the units in the panel data set are cross-section dependent, we �rst start the discussion
describing Pesaran's (2004) CD test statistic that test the null hypothesis of cross-section indepen-
dence against the alternative hypothesis of cross-section dependence. It should be bear in mind that
in our case we are analyzing macroeconomic time series of highly economic integrated regions,
provided that the regions belong to the same economy � see Figure 1. Therefore we can expect the
presence of cross-section dependence among the units of the panel. Second, we present the panel
unit root and stationarity tests that control for the presence of cross-section dependence in different
ways. To be speci�c, we apply the panel data unit root tests in Bai and Ng (2004), Moon and Perron
(2004) and Pesaran (2007), and the panel stationarity tests in Hadri (2000). Finally, we summarize
recent developments in panel cointegration testing and estimation that take into consideration the
cross-section dependence. In this regard, we �rst focus on the system-based approach in Carrion-
i-Silvestre and Surdeanu (2011) and in the single-equation-based procedures proposed in Banerjee
and Carrion-i-Silvestre (2006, 2011) to test whether there exist a cointegration relationship among
the variables of the model. Second, we proceed to estimate the cointegration relationships using
the proposals in Bai, Kao and Ng (2009) and Kapetanios, Pesaran and Yamagata (2011).

3.1 Cross-section dependence
In this subsection we test the null hypothesis of cross-section independence against the alterna-
tive hypothesis of cross-section dependence using the approach suggested in Pesaran (2004). For
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notational convenience, throughout this and the next section, we will use yi;t as the variable of
interest, although the same applies for the other variables of the system � i.e., ki;t , gi;t , gpi;t , hi;t
and hsi;t . The test statistic is based on the average of pair-wise Pearson's correlation coef�cients
�p j, j = 1;2; : : : ;n, n = N (N�1)=2, of the residuals ε i;t obtained from the following augmented
Dickey-Fuller (ADF) type regression equation:

∆yi;t = µ i+δ it+α i;0yi;t�1+
pi
∑
j=1

α i; j∆yi;t� j+ ε i;t ; (5)

i= 1; : : : ;N. Pesaran's CD test is based on averaging all pair-wise correlation coef�cients ( �ρ i; j) of
the Ordinary Least Squares (OLS) estimated residuals �ε i;t in (5):

CD=

s
2T

N (N�1)

 
N�1
∑
i=1

N

∑
j=i+1

�ρ i; j

!
; (6)

with i= 1; : : : ;N�1 and j= i+1; : : : ;N . Under the null hypothesis of cross-section independence,
the CD statistic of Pesaran (2004) converges to the standard normal distribution. Pesaran (2004)
shows that the CD statistic has the correct size and satisfactory power even in small samples,
making it attractive in the empirical research.

3.2 Panel data unit root and stationarity test statistics
The panel data unit root tests that are applied in this paper are those of Bai and Ng (2004), Moon
and Perron (2004) and Pesaran (2007), which that take into account the presence of cross-section
dependence by specifying a model of common factors. Of the three approaches the most general
one is the one in Bai and Ng (2004), provided that it allows to test the order of integration of
the idiosyncratic and common components in a separate way. For exposition convenience, we
�rst present Pesaran (2007) approach, then Moon and Perron (2004) and, �nally, we discuss the
proposal in Bai and Ng (2004). In addition and as a con�rmatory analysis, we also compute the
panel data stationarity test statistics in Hadri (2000).

3.2.1 Pesaran (2007) panel data unit root test statistic

The approach in Pesaran (2007) assumes that the cross-section dependence is driven by one unob-
servable stationary common factor, which can be proxied using cross-section averages of the units
that de�ne the panel data set. For the case of uncorrelated residuals, the starting regression has the
following form:

∆yi;t = µ i+δ it+α iyi;t�1+λ i ft+ ε i;t ;

where ∆yi;t = yi;t � yi;t�1, ft denotes the unobserved common factor and ε i;t is the idiosyncratic
error. The common factor ft can be proxied by the cross-section mean of yi;t (or ȳt = N�1∑Ni=1 yi;t)
and its lagged values (ȳt�1; ȳt�1:::). Pesaran (2007) notes that ȳt and ȳt�1 (or ȳt�1 and ∆ȳt) are
suf�cient for eliminating the effect of the common factor. Therefore, after substituting the proxies
we obtain the modi�ed cross-sectionally ADF (CADF) regression:

∆yi;t = µ i+δ it+α i;0yi;t�1+ξ iȳt�1+η i;0∆ȳt+ ei;t :
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In the case of correlated disturbance terms, the CADF regression equation is given by:

∆yi;t = µ i+δ it+α i;0yi;t�1+
p

∑
j=1

α i; j∆yi;t� j+ξ iȳt�1+
p

∑
j=0

η i; j∆ȳt� j+ ei;t : (7)

One of the panel unit root statistics proposed by Pesaran (2007) consists of the average of the
individual CADF statistics:

CIPS(N;T ) = N�1
N

∑
i=1
CADFi;

where CADFi is the cross-sectionally augmented Dickey�Fuller statistic for the i-th cross-section
unit given by the t-ratio of the OLS estimate of α i;0 in (7).
Pesaran (2007) also proposes a truncated version of CIPS test, denoted CIPS�. This statistic

is useful when T is small, usually between 10 and 20. The author presents the simulated critical
values of CIPS and CIPS� in his paper. If the value of the CIPS and CIPS� statistics is smaller
than the critical value, then the null hypothesis of a panel unit root is rejected. Although Pesaran
(2007)'s framework allows for only one stationary common factor, Smith, Pesaran and Yamagata
(2010) show that it is also valid when there is either more than one common factor and/or the
common factors are stationary or non-stationary.

3.2.2 Moon and Perron (2004) panel data unit root test statistics

Moon and Perron (2004) propose two statistics that test for the presence of a unit root while ac-
counting for cross-sectional dependence among the units of the panel. Their approach is based
on an approximate common factor model and tests for the unit root in the defactored series. The
authors consider an autoregressive process in which the error term follows a factor structure:

yi;t = µ i+δ it+ y0i;t
y0i;t = ρ iy

0
i;t�1+ui;t

ui;t = F 0t λ i+ ei;t :

Moon and Perron (2004) �rst transform the model in order to eliminate the common factors and
obtain a defactored data that has no cross-sectional dependence. In the second step, they construct
the panel unit root tests ta and tb using the defactored data. Then the null hypothesis H0 : ρ i = 1
for all i against the alternative hypothesis H1 : ρ i < 1 for some i, i = 1; : : : ;N, is tested, using the
following pooled test statistics:

ta =
T
p
N
�
�ρ�pool�1

�
q
2 �φ4e= �ω

4
e

tb = T
p
N
�
�ρ�pool�1

�r 1
NT 2

tr
�
Z�1QZ0�1

� �ωe
�φ2e

!
;

where, under the null hypothesis of panel unit root, both test statistics converge to the standard
normal distribution. The terms �ρ�pool , �φ e, �ωe, Z�1 and Q are de�ned in Moon and Perron (2004).
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The null hypothesis of a unit root is rejected if the value of the ta or tb statistics is smaller than the
critical value drawn from the standard normal distribution. Moon and Perron (2004) also show that
estimating the common factors by principal components lead to feasible statistics with the same
limiting distribution as if they were observable.

3.2.3 Bai and Ng (2004) panel data unit root test statistics

Bai and Ng (2004) decompose the observable variable yi;t into a deterministic component Di;t , a
common component λ

0
iFt and an idiosyncratic component ei;t :

yi;t = Di;t+λ
0
iFt+ ei;t (8)

(1�L)Fj;t = C j (L)w j;t ; j = 1 : : : ;r (9)
(1�ρ iL)ei;t = Hi (L)ε i;t ; (10)

where Di;t denotes the deterministic part of the model � either a constant or a linear time trend �
Ft is a (r�1)-vector that accounts for the common factors that are present in the panel, and ei;t is
the idiosyncratic disturbance term, which is assumed to be cross-section independent. The vector
of loading parameters λ i measures the effect that the common factors have on the i-th time series.
Unobserved common factors and idiosyncratic disturbance terms are estimated using principal
components on the �rst difference model. The estimation of the number of common factors is
obtained using the panel BIC information criterion in Bai and Ng (2002).
Once both the idiosyncratic and common components have been estimated, we can proceed to

test their order of integration using unit root tests. On the one hand, it is possible to test whether
there are stationary or non-stationary common factors (Ft) using the ADF (for the one common
factor case) or theMQ test statistics in Bai and Ng (2004) (for the general case where there are more
than one common factor ) � either in its parametric (MQ jf (m)) and/or non-parametric (MQ

j
c (m))

version, where j = c for the model that includes a constant, j = τ for the model that includes a
linear time trend and m denotes the number of stochastic trends under the null hypothesis. The
critical values for up to six factors for the MQ tests can be found in Table 1 of Bai and Ng (2004),
whereas the usual critical values of the Dickey-Fuller test can be used in the case of one common
factor. Therefore, using these statistics we will be able to conclude how many (if any) of the r
common factors that have been estimated are the stationary (r0) and how many are non-stationary
(r1), so that r = r0+ r1. On the other hand, we can test the panel unit root hypothesis focusing
on the idiosyncratic shocks (ei;t). In this case, Bai and Ng (2004) propose to compute the usual
ADF pseudo t-ratio statistic applied to the idiosyncratic component. If the model contains only an
intercept, the pseudo t-ratio statistic is denoted as ADFc�e and its asymptotic distribution coincides
with the Dickey-Fuller distribution for the case of no constant. If the model has an intercept and
a linear trend that the statistic is denoted as ADFτ

�e , which asymptotic distribution is function of a
Brownian bridge.
As can be seen, this technique can determine the source of the non-stationarity. It is possible

that the non-stationarity of the observed variables (yi;t) is the result of the presence of I(1) common
factors � or a combination of I(0) and I(1) common factors � which implies that the panel data set
is non-stationary and that the source of non-stationarity is a common cause for all the units that
de�ne the panel. In this case, we should conclude that there are global permanent shocks affecting
the whole panel. It could also be the case that source of non-stationarity of the panel is that the
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idiosyncratic disturbance terms are I(1) non-stationary processes, a fact that implies that shocks
that affect only each time series � i.e., not the global shocks � have a permanent character.
The approach of Bai and Ng (2004) nests the ones in Moon and Perron (2004) and Pesaran

(2007). As noted by Bai and Ng (2010), Moon and Perron (2004) and Pesaran (2007) control the
presence of cross-section dependence allowing for common factors, although the common factors
and idiosyncratic shocks are restricted to have the same order of integration. Therefore, it is not
possible to cover situations in which one component (e.g., the common factors) is I(0) and the other
component (for example, the idiosyncratic shocks) is I(1) and vice versa. In practical terms, the
test statistics in Moon and Perron (2004) and Pesaran (2007) turn out to be statistical procedures
to make inference only on the idiosyncratic shocks, where the dynamics of both the idiosyncratic
and the common components are restricted to be the same.

3.2.4 Hadri (2000) panel data stationarity test statistics

The panel data stationarity test statistic in Hadri (2000) speci�es the null hypothesis that the units
in the panel data set are I(0) against the alternative hypothesis that there are some units that are
I(1). The test is based on the OLS estimation of the following regression equation:

yi;t = Di;t+ui;t ; (11)

where Di;t denotes the deterministic component. The estimated residuals from (11) are used to
de�ne the partial sum processes �Si;t = ∑tj=1 �ui; j for each unit. Using this individual information,
Hadri (2000) proposes a panel stationarity test:

LM j = N�1
N

∑
i=1

η
j
i ;

where η
j
i = �ω�2

i T�2∑Tt=1 �S2i;t , i = 1; : : : ;N, denotes the individual stationarity test statistic pro-
posed in Kwiatkowski, Phillips, Schmidt and Shin (1992) � KPSS henceforth � where j = c for
the model that only includes a constant (Di;t = µ i) and j = τ for the one that includes a linear time
trend (Di;t = µ i+ δ it), with �ω2i being a consistent estimate of the long-run variance of the error
term ei;t � Carrion-i-Silvestre et al. (2005) suggest to estimate the long-run variance following the
procedure described by Sul et al. (2005), using the Quadratic spectral kernel. At this stage, we
should mention that it is possible to compute two different LM statistics, depending on whether
the long-run variance is allowed to be heterogeneous across i (LM j

HET ) or homogeneous for all
individuals (LM j

HOM) � in the latter case we use �ω
2 = N�1∑Ni=1 �ω

2
i . After standardizing the LM

statistic by its mean and variance and assuming that ui;t in (11) are cross-section independent, the
authors derive the new test Z jk , k = fHOM;HETg, that has the following distribution under the
null hypothesis of panel stationarity:

Z jk =
p
N(LM j

k �ξ
j)

ς j
) N(0;1);

j = fc;τg, k= fHOM;HETg. The terms ξ
j and ς j are the cross-section average of the mean and

the variance of the individual KPSS statistic de�ned in Hadri (2000), j = fc;τg. Finally, it should
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be mention that the test in Carrion-i-Silvestre et al. (2005) bases on Hadri's (2000) proposal but
uses bootstrapped p-values following the lines given in Maddala and Wu (1999) to deal with the
cross-section dependence among the time series in the panel. Note thus that the statistic does not
account for the presence of cross-section dependence using a common factor model.

3.3 Panel data cointegration test statistics
3.3.1 Carrion-i-Silvestre and Surdeanu (2011) panel data cointegration test statistics

The �rst category of testing for cointegration in panel data is based on a system-based approach.
As mentioned above, the main advantage of the system-based approach is allowing more than one
cointegrating relation among the variables for each individual system. Let us de�ne the vector
Xi;t = (yi;t ;ki;t ;gi;t ;hi;t)0 that collects the observable variables of our model, for which we de�ne
the following VAR representation:

Xi;t = Di;t+λ iFt+ ei;t (12)�
Iq�L

�
Ft = C (L)wt (13)

(Ik�L)ei;t = Hi (L)ε i;t ; (14)

where i= 1; : : : ;N and t = 1; : : : ;T . In this setupDi;t is de�ned as a (k�1) vector that cointains the
deterministic component of each of the variables in the vector Xi;t , i.e., k= 4 in our case. The term
Ft is a (q�1) vector of common factors, λ i is a (k�q)matrix of factor loadings and ei;t is a (k�q)
vector that collects the idiosyncratic stochastic term. The estimation of the unobservable common
factors is made using the principal component approach suggested in Bai and Ng (2002, 2004).
Once the effects of the common factors are removed, cointegration analysis is then performed
focusing on both the idiosyncratic and common factor components. This gives us further insight
on the cointegration analysis, since the inference on the cointegrating rank can be distorted if
common factors are not accounted for in the model � see Carrion-i-Silvestre and Surdeanu (2011)
for further details.
The determination of the number of stochastic trends in the system relies on a sequential testing

procedure that starts assuming that the cointegrating rank is zero � i.e., there is m = k stochastic
trends � and, de�ning the multivariate MSB test statistic MSB j;i (m), j = fc;τg, we can proceed
to test whether there is m = k stochastic trends or less than k. Using the MSB j;i (m), j = fc;τg,
test statistic we can estimate the number of stochastic trends for each individual system using the
critical values in Carrion-i-Silvestre and Surdeanu (2011).
It is also possible to combine the individual information and de�ne panel data cointegrating

rank tests. Assuming the same number of stochastic trends m in all individual systems, Carrion-
i-Silvestre and Surdeanu (2011) test the null hypothesis that all N individual systems have m sto-
chastic trends against the alternative hypothesis that there are m�1 stochastic trends:�

H0 : m stochastic trends 8i= 1; : : : ;N
H1 : m�1 stochastic trends 8i= 1; : : : ;N: (15)

The �rst panel data statistic is based on the standardized mean of the individual statistics:

PMSBZj (m) =
p
N(MSB j (m)�E(MSB j (m)))p

Var(MSB j (m))
;
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where MSB j (m) = N�1∑Ni=1MSB j;i (m), and E(MSB j (m)) and Var(MSB j (m)) are the mean and
the variance of theMSB j (m) statistic given in Carrion-i-Silvestre and Surdeanu (2011). Under the
null hypothesis of m stochastic trends PMSBZj (m)) N(0;1). The remaining tests are based on the
combination of the p-values (ϕ i) of the individual MSB statistic:

PMSBFj (m) = �2
N

∑
i=1
lnϕ i

PMSBCj (m) =
�2∑Ni=1 lnϕ i�2Np

4N
;

where under the null hypothesis of m stochastic trends PMSBFj (m)) χ22N and PMSBCj (m))
N (0;1). In this paper we use another test, PMSBCZj , in order to test for cointegration among the
cross-sections of the panel. The PMSBCZj statistic, originally proposed by Choi (2001), is based on
the p-values of the individual MSB tests and has following form:

PMSBCZj (m) =
1p
N

N

∑
i=1

Φ�1 ( �ϕ i) ;

where Φ(�) denotes the standard Normal cumulative distribution function. Although Carrion-i-
Silvestre and Surdeanu (2011) do not prove it, they conjecture that the limiting distribution of this
statistic is also standard normal, a claim that is supported by the Monte Carlo simulations. Like the
previous panel cointegration tests, the null hypothesis of PMSBCZj is that of no panel cointegration.

3.3.2 Banerjee and Carrion-i-Silvestre (2006) panel data cointegration test statistics

Banerjee and Carrion-i-Silvestre (2006) deal with the following model speci�cation:

yi = Di+ xiβ i+Fλ i+ ei; (16)

where the common factors and factor loadings are estimated using principal components following
the approach in Bai and Ng (2004). In order to do so, orthogonal projections on the �rst difference
of (16) are taken:

Mi∆yi = Mi∆Fλ i+Mi∆ei
y�i = fλ i+ zi; (17)

with Mi = IT�1�∆xdi
�
∆xd0i ∆xdi

��1∆xd0i being the idempotent matrix, ∆xdi = [∆Di ∆xi] a matrix
that contains the �rst difference of the deterministic component and the stochastic regressors,
y�i =Mi∆yi, f =Mi∆F and zi =Mi∆ei.2 The estimation of the common factors and factor loadings
is done as in Bai and Ng (2004) using principal components. Speci�cally, the estimated principal
components of f = ( f2; f3; : : : ; fT ), denoted as �f , are

p
T �1 times the r eigenvectors correspond-

ing to the �rst r largest eigenvalues of the (T �1)� (T �1) matrix y�y�0. Under the normalization
�f �f 0=(T �1) = Ir, the estimated loading matrix is �Λ = �f 0y�=(T �1). Therefore, the estimated
residuals are de�ned as:

�zi;t = y�i;t� �f 0t �λ i: (18)

2It should be understood that ∆xdi = ∆xi for Models 0 and 1 provided that ∆Di = 0.
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Using these estimates, the idiosyncratic disturbance term is recovered and the common factors
are computed through cumulation, i.e., �e�i;t = ∑tj=2 �zi; j and �Ft = ∑tj=2 �f j. Then we proceed to the
estimation of the ADF-type regression equation:

∆ �e�i;t = α i;0 �e�i;t�1+
p

∑
j=1

α i; j∆ �e�i;t� j+wi;t ; (19)

so that the null hypothesis of no cointegration can be tested using the pseudo t-ratio of α i;0
(t �α i;0). Banerjee and Carrion-i-Silvestre (2006) de�ne the panel cointegration test statistic Z j =
(N�1∑Ni=1 t �α i;0 �Θej)(Ψ

e
j=N)�1=2, where j = c refers to the model that includes a constant and

j = τ to the model that includes a linear time trend, with Θej and Ψe
j the mean and variance of the

relevant functionals of Brownian motions.3 As T;N!∞ the Z j, j= fc;τg, test statistic converges
in the limit under the null hypothesis of no panel cointegration to a standard normal distribution.
If there is only one common factor, its order of integration can be tested using the ADF-type re-
gression equation in (19) with �e�i;t replaced by �Ft , while in the case where more than one factor is
estimated, the number of stochastic trends among the common factors can be estimated using the
MQ test statistics as in Bai and Ng (2004).4

3.3.3 Banerjee and Carrion-i-Silvestre (2011) panel data cointegration test statistics

Banerjee and Carrion-i-Silvestre (2011) propose a panel cointegration test based on the common
correlated effects (CCE) estimation approach developed by Pesaran (2006). The idea behind the
CCE estimation is relatively simple. Since the cross-section dependence is sometimes caused by
unobservable common factors, Pesaran (2006) uses cross-section averages of the dependent and
the explanatory variables as proxies for common factors. Banerjee and Carrion-i-Silvestre (2011)
use the following model:

yi;t = Di;t+ x
0
i;tβ i+ z̄

0
tη i+ ei;t ;

where z̄0t =
�
ȳt ; x̄

0
t

�0
is the vector of cross-section means of the dependent and explanatory vari-

ables. Following Pesaran (2006), Holly, Pesaran and Yamagata (2010) and Kapetanios, Pesaran
and Yamagata (2011), Banerjee and Carrion-i-Silvestre (2011) use the pooled estimator:

�βCCEP =

 
N

∑
i=1
x
0
iM̄xi

!�1 N

∑
i=1
x
0
iM̄yi

!
;

where xi = (xi;1;xi;2; :::;xi;T )
0
, yi = (yi;1;yi;2; :::;yi;T )

0
and the matrix M̄ is de�ned in Holly et al.

(2010). In the next step, Banerjee and Carrion-i-Silvestre (2011) de�ne the variable �yi;t = yi;t �
x0i;t �βCCEP and then estimate the regression below using the OLS procedure:

�yi;t = Di;t+ ei;t : (20)
3Banerjee and Carrion-i-Silvestre (2006) approximate the moments of the limiting distribution of the statistics by

means of Monte Carlo simulation, which are (Θec;Θeτ) = (�0:424;�1:535) and (Ψe
c;Ψe

τ) = (0:964;0:341).
4The limiting distribution of the ADF test statistic when there is one common factor is the one obtained in Dickey

and Fuller (1979), so that the standard critical values for the ADF test statistic can be used in this case. The critical
values for the MQ test can be found in Table I in Bai and Ng (2004).
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Both individual (t �α i;0) and panel cointegration (CADFCP) test statistics are based on the OLS resid-
uals �ei;t from (20). The individual cointegration test statistic is the pseudo t-ratio of the estimated
parameter �α i;0 in the following regression:

∆ �ei;t = α i;0 �ei;t�1+
s

∑
j=1

α i; j∆ �ei;t� j+ζ i �̄et�1+
s

∑
j=0

θ i; j∆ �̄et� j+κ i;t :

Finally, the panel cointegration statistic is de�ned as:

CADFCP = N�1
N

∑
i=1
t �α i;0:

The critical values for both individual and panel cointegration test statistics are presented in Baner-
jee and Carrion-i-Silvestre (2011). The null hypothesis of no cointegration is rejected if the value
of the corresponding test statistic is smaller than the critical value.

4 Empirical results
We start the empirical analysis by checking whether cross-section dependence exists among the
variables of our model. Note that while it is convenient to think of cross-section independence
as the ideal case, in real world this is not likely to hold in most situations. It should be natural
to assume that the regions of Spain are dependent of each other. We employ the CD statistic of
Pesaran (2004) and present the results of the statistic for each variable for different augmentation
orders (p= 0;1; : : : ;5) at the top of Table 1. The values of the CD test statistic indicate that we can
easily reject the null hypothesis of cross-section independence in favor of cross-section dependence
for all variables regardless of the augmentation order that is used.

4.1 Panel data unit root and stationarity test statistics
Let us �rst focus on the results obtained using Pesaran's (2007) statistics. Table 2 presents the
CIPS(p) test statistic for different augmentation orders (p = 0;1; : : : ;5). The 5% critical value
of the statistic for the case with intercept and time trend is �2:72 � see Table II(c) in Pesaran
(2007). The results indicate that, in almost all cases, the idiosyncratic component of the variables
that we consider in the paper are non-stationary � the null hypothesis of unit root is marginally
rejected for yi;t with p = 0 and p = 1 and for ki;t with p = 1. In general, these results suggest the
non-stationarity of the idiosyncratic component of the variables in our model.
Since the cross-section dependence is accounted for through the speci�cation of an approx-

imate common factor model, it is important to estimate the number of common factors. It is
interesting to note that the number of common factors (estimated by Bayesian information criteria
(BIC) as in Bai and Ng (2002)) equals the maximum number of common factors permitted. This
seems a rather typical problem encountered by Basher and Carrion-i-Silvestre (2007), Sul (2005)
and Holly, Pesaran and Yamagata (2010), among others. One reasonable explication, sustained by
Bai and Ng (2002) as well, is that for small number of cross-sections (less than 20), the number of
common factors is dif�cult to estimate. We then determine the number of non-stationary factors
using the three criteria (IPC1, IPC2 and IPC3) proposed by Bai (2004) and the MQ test statistics
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by Bai and Ng (2004) while setting the maximum number of factors at 6. The IPC1 and IPC2
criteria yield 4 non-stationary factors, IPC3 criteria suggests 3 non-stationary factors and the MQ
test statistics indicate that all 6 factors are non-stationary. Therefore, for the rest of our analysis
we calculate the statistics described previously for 3, 4 or 6 factors.
Next, we compute the Moon and Perron (2004) panel data unit root test statistics. As can be

seen in Table 2, regardless of the number of factors considered, for the variables gi;t and hi;t the
two statistics of Moon and Perron (2004) do not reject the null hypothesis of panel unit root at the
5% level of signi�cance. For the rest of the variables, the results are somewhat mixed, depending
on the number of factors taken into account � for more than half of the cases, the idiosyncratic
component of these seven variables is I(1).
However, we cannot conclude anything about the order of integration of the common factors

from the application of these statistics since we are focusing only on the idiosyncratic component
� note that we wipe out the effect of the common factors, so that we are just focusing on the
idiosyncratic disturbance terms. A more informative picture is thus obtained from Bai and Ng
(2004) approach, provided that separate inference can be conducted on the idiosyncratic and the
common factor components of the observable variable. Table 2 reports the ADF statistic for the
idiosyncratic component of each variable and the MQ test statistics on the estimated common
factors.5 The null hypothesis of panel unit root cannot be rejected at the 5% level of signi�cance
for the idiosyncratic component of yi;t , hi;t and hsi;t for any number of factors considered. The
rest of the variables are I(1) for the case of 3 and 4 factors, and I(0) when 6 factors are taken into
account. Besides, the application of the MQτ

f (m) and MQ
τ
c (m) statistics of Bai and Ng (2004)

characterize the 6, 4 or 3 estimated common factors as stochastic trends � see the critical values for
these statistics in Table I in Bai and Ng (2004). These two set of results leads to conclude that the
seven observable variables are I(1). When we consider 3 or 4 factors, the source of non-stationarity
is of global and idiosyncratic nature for all seven variables. However, when we consider 6 factors,
the source of non-stationarity comes from a global nature for ki;t , gi;t , li;t and gpi;t and of a global
and idiosyncratic nature for yi;t , hi;t and hsi;t .
In the next step, we look at the stationarity of the variables. First, we employ the panel sta-

tionary test of Hadri (2000) assuming that the long-run variance is either homogeneous or hetero-
geneous. Since the variables of our model present a linear trend, we estimate a model where the
deterministic term consists of both the constant and the linear time trend. The results of the panel
stationary test of Hadri (2000) and bootstrapped critical values computed as in Carrion-i-Silvestre
et al. (2005) are presented in Table 3. It is easy to see that with the exception of the calculated value
for li;t , all values of the stationarity test of Hadri (2000) are greater than the 95% bootstrapped crit-
ical values. Therefore, we reject the null hypothesis of stationarity for six out of seven variables at
the 5% level of signi�cance and we imply that these six variables are I(1) regardless of the way in
which the long-run variance is estimated. As noted in the previous section, while the stationarity
test of Hadri (2000) allows for cross-section dependence, it does not accommodate for the common
factors.

5Following Ng and Perron (1998), the maximum number of lags that is used to compute the ADF statistic is set at
T 1=3.

14



4.2 Panel data cointegration tests
The model for the production function involves �ve observable variables that are driven by global
and idiosyncratic stochastic trends. Since we consider two types of public capital and two types
of human capital, we analyze four different combinations of variables. The �rst combination
consists of yi;t , ki;t , gi;t , hi;t and li;t � hereafter, we denote this model speci�cation as Combination
1. The variables that we test secondly are yi;t , ki;t , gpi;t , hi;t and li;t (Combination 2). The third
combination consists of yi;t , ki;t , gi;t , hsi;t (Combination 3) and li;t and the last one consists of yi;t ,
ki;t , gpi;t , hsi;t and li;t (Combination 4). The non-stationarity of these variables implies that the
estimation of the model that links these macroeconomic aggregates needs to restore on the use of
the cointegration analysis. Thus, as a �rst stage, we should test whether cointegration is present
among these variables, accounting for the feature that global stochastic trends are present. To this
end, we �rst analyze how many cointegration relations exist among these variables applying the
VAR approach devised in Carrion-i-Silvestre and Surdeanu (2011).
The individual MSB based statistic and its respective cointegration rank for the �rst combina-

tion of variables are shown in the upper part of Table 4. The most common selected rank for the
individual Spanish regions is one, suggesting the existence of one cointegrating relation among
the variables of the model. For almost half of the regions, the univariate statistic detects no coin-
tegration at all. For two regions, namely Andalucía and La Rioja, the rank is two indicating two
cointegrating relations. Overall, the results are mixed indicating the low power of the univariate
statistic.
The bottom part of Table 4 presents the Carrion-i-Silvestre and Surdeanu (2011) PMSBZτ ,

PMSBFτ and PMSBCτ panel data statistics. Since the panel cointegrating test PMSBCHτ also used
in this paper is based on the same MSB statistic as the previous three panel statistics, we present
its results in the same table with the Carrion-i-Silvestre and Surdeanu (2011) statistics. The panel
cointegration ranks are presented in the last column of Table 4. All panel data statistics strongly
reject the null hypothesis of no cointegration at the 5% level of signi�cance. Moreover, with the
exception of PMSBZτ test, all panel data cointegration test statistics indicate that the cointegration
rank is two. This result implies the existence of two common cointegrating relations between out-
put, physical capital, human capital, public capital (all in per worker terms) and labor. Table 5
presents both univariate and panel data cointegration statistics for the second combination of vari-
ables. At the univariate level, cointegrating rank is 0 for seven regions, 1 for six regions and 2 for
four regions. The panel data results are similar to the previous combination of variables. More
exactly, three panel data statistics detect two cointegration relations while only one statistic detects
one cointegration relation. The results of the cointegration tests both for univariate and panel data
for the third combination are presented in Table 6. The univariate statistic indicates the absence
of any cointegrating relation for seven regions, one cointegrating relation for nine regions and two
cointegrating relations for one region (Canarias). At the panel level, the results indicate the ex-
istence of one common cointegrating relation. Finally, the results from the univariate and panel
data cointegration statistics for the last combination of variables are presented in Table 7. There
are seven regions for which the univariate statistic does not detect any cointegration between the
variables. The univariate cointegrating rank is one for nine regions and two for only one region
(Galicia). The results from the panel cointegration tests indicate the existence of one cointegration
relation between this combination of variables. Overall, we can infer that the results from the in-
dividual MSB based statistic are mixed. Approximately half of the time the test statistic detects no
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cointegration at all and this can be due to the low power of the univariate test. However, the panel
cointegration statistics indicate with overwhelming evidence that there exist at least one common
cointegrating relation, depending on the variables presented in the model.
The next part of the empirical analysis examines the results from the single-equation-based

framework of Banerjee and Carrion-i-Silvestre (2006, 2011). Let us �rst focus on the results for
the approach based on principal components. In this case, we have allowed a maximum of six
common factors and the BIC information criterion in Bai and Ng (2002) selects two, three or four
common factors depending on the combination of variables that we consider. In all cases, the
estimated common factors are characterized as I(1) processes � see Table 8. The panel ADF test
statistic computed using the idiosyncratic disturbance terms (Zc test statistic) leads to the rejection
of the null hypothesis of spurious regression for all four combinations of variables. Therefore,
from the application of the test statistic in Banerjee and Carrion-i-Silvestre (2006) we conclude
that there is a long-run relationship among the variables of all four combinations that we have
considered once the presence of common factors are accounted for. Notice that this results imples
that the observable economic variables of the model do not cointegrate alone, they take part of
a cointegration relationship that includes the presence of non-stationary global stochastic trends.
This result is in line with the theoretical arguments that claim that the TFP is a non-stationary
stochastic process.
The results from panel cointegration test statistic in Banerjee and Carrion-i-Silvestre (2011)

are presented in Table 9 for all four combinations of variables. At the individual level, we are able
to reject the null hypothesis of no cointegration for only a few regions. Therefore, at the individual
level, for the majority of Spanish regions there is not enough evidence that the variables cointegrate,
regardless of the combination of variables used � the results from the individual statistics are not
shown in order to save space but they are available upon request.
Let's turn our attention to panel statistic CADFCP presented for up to 10 lags. For p =

0;5;6;7;8;9, the panel statistic detects no cointegration at any acceptable levels of signi�cance,
regardless of the combination of variables used. For p = 1;2;3, the statistic is able to reject the
null hypothesis of no cointegration at either the 5% or 10% level of signi�cance for every combi-
nation. For the augmentation orders p= 4 and p= 10, we obtain mixed results. The statistic �nds
evidence in favor of no cointegration for the �rst two combinations and the opposite conclusion for
the last two combinations of variables. Although these results might seem contradictory with the
evidence provided by the Zc test statistic, it should bear in mind that the CADFCP tends to show
mild under-rejection size distortions problem when the common factors and the idiosyncratic com-
ponent have different orders of integration, as this is the case if we rely on the previous test statistic
� see Banerjee and Carrion-i-Silvestre (2011) for further details.
When we compare the results of single-equation-based and system-based cointegration analysis

approaches, the results are similar at the individual level, provided that little evidence is found in
favor of cointegration. However, if we compare the results at the panel level, we obtain mixed
results. In general, Banerjee and Carrion-i-Silvestre (2011) statistic �nds evidence of cointegration
for lower lags and no cointegration for higher lags. On the other hand, the test statistics proposed
in Banerjee and Carrion-i-Silvestre (2006) and Carrion-i-Silvestre and Surdeanu (2011) are able to
reject the null hypothesis of no cointegration with overwhelming evidence for every combination
of variables that is used.
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4.3 The estimation of the long-run production function relationship
Once the presence of a long-run relationship among the different combination of variables that
we have considered has been established, we proceed to estimate the panel cointegration rela-
tionship allowing for common factors. There are few theoretical proposals in the literature that
�t our requirements. First, we apply the continuously-updated and fully-modi�ed (CupFM) and
the continuously-updated and bias-corrected (CupBC) estimators proposed in Bai, Kao and Ng
(2009), which rely on the use of principal components to jointly estimate the cointegrating vector,
the factor loadings and the common factors of the model speci�cation.6 Both estimation proce-
dures render consistent estimates of the cointegrating vector regardless of whether we have I(0)
and/or I(1) common factors. Second, we also use the pooled CCE estimator in Pesaran (2006)
that, as established in Kapetanios, Pesaran and Yamagata (2011), produces a consistent estimator
of the cointegrating vector. In this case, the common factors are proxied by the use of cross-section
averages of the variables of the model. Finally, it is worth pointing out that it is possible to conduct
statistical inference on the parameters estimated by any of these procedures.
Table 10 reports the estimated cointegrating vectors for the different combinations and estima-

tion procedures. For the combinations 1 and 2, the number of factors estimated according to the
information criteria in Bai, Kao and Ng (2009) is two. For the combinations 3 and 4, the number of
factors estimated is three. The last estimator in Table 10 is the CCEP estimator of Pesaran (2006).
When we look at the estimation results presented in Table 10, we see that the CupFM and CupBC
estimators yield similar results and all the estimated parameters are statistically signi�cant. The
CCEP estimator, on the other hand, shows that only half the estimated parameters are statistically
signi�cant. Also, the estimated parameters of both forms of human capital (hi;t and hsi;t) are not
statistically signi�cant, regardless of the combination of variables used.
The values for the estimated parameter of ki;t (log of physical capital per worker) range from

0.206 (CupBC) to 0.402 (CCEP). These results are similar with those obtained in other studies. For
example, the values obtained by Serrano (1996) range from 0.38 to 0.45, those obtained by Bajo
and Díaz (2005) range from 0.59 to 0.68 while that obtained by Márquez, Ramajo and Hewings
(2011) is 0.31.7 The estimated coef�cient of the log of total public capital per worker (gi;t) range
from 0.118 (CCEP) to 0.173 (CupFM), while that of gpi;t range from 0.111 (CCEP) to 0.153
(CupFM). Similar results were obtained by Bajo and Díaz (2005), 0.09, and Márquez, Ramajo
and Hewings (2011), 0.10. The estimates for the parameter of hi;t range from 0.213 (CupFM)
to 0.272 (CupBC) while those for hsi;t range from 0.205 (CupFM) to 0.339 (CupBC). Again, the
results are similar with those of Serrano (1996), who obtained a value of 0.216, or Bajo and Díaz
(2005), who obtained a value of 0.14. What is somehow surprising is the negative and highly
signi�cant coef�cient for li;t in all three estimators, which indicates that the constant returns to
scale assumption cannot be accepted � the negative sign indicates diminishing returns to scale on
the factors that have been considered in the model.

6We thank Chihwa Kao, Takashi Yamagata and Mauro Costantini for providing the Gauss code.
7Note that speci�cation of the variables, the model, the data and estimation techniques differ from one study to

another.
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4.4 Spatial dependence
Another way to deal with cross-section dependence is through the spatial econometrics approach.
Until nowwe assumed that the cross-section dependence between the Spanish regions was captured
through the (unobserved) common factors. Examples of such common shocks are oil price, stock
market or technological shocks. However, it is possible that one Spanish region is affected by its
neighbors � i.e., weak dependence as opposed to the strong dependence induced by the common
factors. One obvious example is the labor mobility between the regions. Therefore, it makes
sense to consider the tools developed by the spatial econometrics as a way to model the weak
dependence that might be affecting the Spanish regions. The spatial dependence in econometric
studies is carried out by de�ning a weight matrix,W , which indicates whether any pair of regions
share a common border. If region i and j share a common border, then W (i; j) = 1 and zero
otherwise. The testing for spatial dependence is typically done by maximum likelihood technique
or generalized method of moments (Pesaran and Tosetti (2011)).
We follow Holly, Pesaran and Yamagata (2010) and we start the analysis with the following

model:

yi;t = ai;t+(α+β + γ+δ �1) li;t+αki;t+βgi;t+δhi;t
ai;t = Di;t+ui;t
ui;t = F 0t λ i+ ei;t ;

We decompose the term �ui;t into

�ui;t =
r

∑
j=1

�λ i; j �f j;t+ �ei;t ;

where �λ i; j are the factor loadings and �f j;t denote the common factors, j= 1; : : : ;r. We perform the
OLS regression of �ui;t on the estimated factors and obtain the idiosyncratic components �ei;t . For
each factor we compute:

�ei;t = Γ
N

∑
j=1
wi; j �e j;t+ vi;t ;

where Γ is the spatial autoregressive parameter, wi; j is the (i; j) element of the spatial weight matrix
W and vi;t � iid

�
0;σ2v

�
. We then calculate the log likelihood function:

L=�
�
NT
2

�
ln(σ2v)+T ln jIN�ΓW j� 1

2σ2v

T

∑
t=1
( �et�ΓW �et)0 ( �et�ΓW �et) ;

where �et = ( �e1;t ; �e2;t ; :::; �eN;t)0. Since Baleares and Canarias are islands, they have no neighbors and
we eliminate their data for this analysis. Thus, we made the calculation considering N = 15 and
T = 37. The maximum likelihood estimates of Γ are presented in Table 11. It is easy to see that
the results are mixed and vary depending on the numbers of factors considered. When we consider
2 or 3 factors for all the combinations of variables or 6 factors for the combinations 1 and 2, the
estimates are signi�cant at the 5% level. This indicates that, even after controlling for the strong
cross-section dependence, there exists spatial (weak) dependence between the Spanish regions.
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5 Conclusions
This papers reexamines the evidence of cointegration between the output, physical capital, human
capital, public capital, and labor. We consider annual data for N = 17 Spanish regions observed
over the T = 37 year period from 1964 to 2000.
The empirical analyses that focus on the estimation of Spanish production functions usually

assume cross-section independence, which is a restrictive assumption especially at the regional
level. Our empirical analysis shows that the variables involved in the model are non-stationary,
so that the application of panel data cointegration techniques are required to obtain a consistent
estimate of the parameters of interest. The paper takes advantage of the recently developed non-
stationary panel methodology, in both single-equation and system-equations based framework, that
are general enough to permit the cross-section dependence across the units of the panel via common
factors. The results reveal evidence of cointegration among the variables of the model up to the
presence of non-stationary common factors. Consequently, the observable economic variables
alone do not generate a long-run relationship, we need to consider the, otherwise, expected global
stochastic common trends that de�nes the TFP of the regions. The procedures applied in the
paper detect between one and two cointegration relation among output, physical capital, human
capital, public capital (all in per worker terms) and labor. Finally, we estimate the Spanish regional
production function using Pesaran (2006) and Bai, Kao and Ng (2009) panel data cointegration
estimators.
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A Appendix
The description of the variables that are used in the data base is the following:

� Yi;t = the output, measured by GVA at factor cost of region i in the year t at 1980 constant
prices, from the BD.MORES data base, Spanish Ministry of Finance and Public Adminis-
trations.

� Ki;t = the stock of private capital of region i in the year t at 1980 constant prices, from the
Stock de Capital data base, IVIE.

� Gi;t = the stock of total public capital of region i in the year t at 1980 constant prices, from
the Stock de Capital data base, IVIE.

� GPi;t = the stock of productive public capital of region i in the year t at 1980 constant prices,
from the Stock de Capital data base, IVIE.

� Hi;t = the stock of human capital, measured as a share of the employed population with sec-
ondary and university education of region i in the year t, from the Stock de Capital Humano
data base, IVIE.

� HSi;t = the stock of human capital, measured as an average years of schooling, from the
Stock de Capital Humano data base, IVIE, and Serrano (1996)
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Figure 1. Time series variables of the seventeen Spanish regions
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Table 1: Pesaran's (2004) cross-section dependence tests
yi;t ki;t gi;t hi;t li;t gpi;t hsi;t

CD(0) 8.505 29.191 27.233 21.061 36.083 26.488 16.978
CD(1) 9.205 19.378 19.309 18.386 21.965 17.727 17.661
CD(2) 8.291 18.669 17.501 18.359 21.724 16.010 18.370
CD(3) 7.984 19.232 16.918 18.278 22.240 15.741 15.687
CD(4) 8.307 18.403 16.121 17.858 21.629 15.019 15.075
CD(5) 7.592 18.361 16.776 17.354 21.528 15.632 15.243
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Table 2: Panel data unit root tests
Pesaran (2007)

yi;t ki;t gi;t hi;t li;t gpi;t hsi;t
CADF(0) -2.730 -2.687 -1.934 -2.293 -2.677 -1.844 -2.122
CADF(1) -2.916 -2.817 -2.197 -2.553 -2.716 -2.065 -2.713
CADF(2) -2.522 -2.407 -1.922 -2.123 -2.222 -1.809 -2.276
CADF(3) -2.416 -2.306 -1.929 -2.065 -2.039 -1.846 -1.990
CADF(4) -2.254 -2.088 -2.097 -1.646 -1.817 -2.075 -1.641
CADF(5) -2.271 -2.170 -1.804 -1.614 -1.648 -1.805 -2.156

Moon and Perron (2004)
yi;t ki;t gi;t hi;t li;t gpi;t hsi;t

6 factors ta -1.267 -0.844 -0.146 -0.955 -1.414 -0.301 -4.707
p-value (0.103) (0.199) (0.442) (0.170) (0.079) (0.382) (0.000)
tb -1.225 -0.743 -0.119 -0.818 -1.379 -0.253 -4.307

p-value (0.110) (0.229) (0.453) (0.207) (0.084) (0.400) (0.000)
4 factors ta -1.621 -0.397 -0.793 -0.928 -1.719 -0.515 -2.470

p-value (0.052) (0.346) (0.214) (0.177) (0.043) (0.303) (0.007)
tb -1.604 -0.354 -0.771 -0.837 -2.006 -0.478 -1.762

p-value (0.054) (0.362) (0.220) (0.201) (0.022) (0.316) (0.039)
3 factors ta -1.761 -1.985 -1.073 -1.176 -2.015 -1.531 -1.539

p-value (0.039) (0.024) (0.142) (0.120) (0.022) (0.063) ( 0.062)
tb -1.610 -1.886 -1.212 -1.082 -2.511 -1.759 -1.220

p-value (0.054) (0.030) (0.113) (0.140) (0.006) (0.039) (0.111)

Bai and Ng (2004)
yi;t ki;t gi;t hi;t li;t gpi;t hsi;t

6 factors ADFτ
�e 0.410 -1.770 -3.513 -0.219 -1.774 -2.707 2.210

p-value (0.659) (0.038) (0.000) (0.413) (0.038) (0.003) (0.986)
MQτ

f (6) -31.907 -30.099 -27.514 -34.730 -30.349 -26.869 -31.790
MQτ

c (6) -35.406 -27.884 -23.257 -33.837 -25.857 -24.339 -35.729
4 factors ADFτ

�e -0.733 -0.540 -0.026 -0.593 1.466 -0.313 0.199
p-value (0.232) (0.294) (0.490) (0.276) (0.929) (0.377) (0.579)
MQτ

f (4) -27.996 -27.129 -13.887 -21.437 -24.762 -13.888 -5.911
MQτ

c (4) -22.761 -26.854 -20.255 -20.019 -20.248 -19.498 -7.870
3 factors ADFτ

�e 0.360 -1.221 0.544 -0.373 1.855 1.231 0.199
p-value (0.641) (0.111) (0.707) (0.355) (0.968) (0.891) (0.579)
MQτ

f (3) -17.847 -24.356 -9.758 -20.501 -23.963 -8.660 -5.911
MQτ

c (3) -15.914 -26.647 -13.875 -19.851 -18.138 -13.758 -7.870
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Table 3: Hadri (2000) panel stationarity tests
Variable Long-run Zτ

j Bootstrapped critical values
variance Statistic 90% 95% 99%

yi;t Homogeneous 17.359 6.894 8.911 12.403
Heterogeneous 26.744 8.590 11.034 17.607

ki;t Homogeneous 38.494 7.444 9.836 15.575
Heterogeneous 44.574 9.428 12.136 20.319

gi;t Homogeneous 21.396 5.737 7.207 11.470
Heterogeneous 21.762 7.102 8.738 13.455

hi;t Homogeneous 11.421 6.895 8.791 13.027
Heterogeneous 19.596 8.606 11.441 17.954

li;t Homogeneous 5.456 5.890 7.363 10.961
Heterogeneous 6.868 7.830 9.678 14.177

gpi;t Heterogeneous 17.534 5.520 6.998 10.596
Heterogeneous 13.752 7.051 8.833 12.781

hsi;t Heterogeneous 9.220 6.019 7.663 11.580
Heterogeneous 12.081 7.617 9.732 15.976
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Table 4: Individual and panel data cointegration tests of Carrion-i-Silvestre and Surdeanu (2011).
Results for the combination (1)

Individual statistic
Region m= 5 m= 4 m= 3 m= 2 m= 1 Rank
Andalucía 0.017** 0.021** 0.070 0.081 0.258 2
Aragón 0.029 0.036 0.048 0.060 0.257 0
Asturias 0.025** 0.034 0.037 0.038 0.162 1
Baleares 0.028 0.033 0.034 0.047 0.150 0
Canarias 0.036 0.058 0.070 0.111 0.120 0
Cantabria 0.026** 0.029 0.035 0.050 0.122 1
Castilla y León 0.024** 0.033 0.059 0.091 0.062 1
Castilla-La Mancha 0.016** 0.033 0.068 0.073 0.107 1
Cataluña 0.030 0.038 0.045 0.132 0.105 0
Comunidad Valenciana 0.026 0.027 0.056 0.055 0.198 0
Extremadura 0.017** 0.033 0.100 0.099 0.207 1
Galicia 0.021** 0.041 0.051 0.086 0.306 1
Madrid 0.029 0.029 0.044 0.070 0.193 0
Murcia 0.026 0.026 0.062 0.073 0.087 0
Navarra 0.019** 0.033 0.047 0.104 0.166 1
País Vasco 0.025** 0.037 0.048 0.078 0.061 1
La Rioja 0.021** 0.027** 0.050 0.063 0.057 2

Panel statistics
m= 5 m= 4 m= 3 m= 2 m= 1 Rank

PMSBZτ -6.807** -1.493 2.948 1.189 -0.611 1
PMSBFτ 134.862** 61.071** 15.798 19.579 29.308 2
PMSBCτ 12.231** 3.283** -2.207 -1.749 -0.569 2
PMSBCHτ -7.434** -2.170** 2.840 1.701 0.016 2

m represents the number of stochastic trends. ** denotes that the test is signi�cant at the 5% level.
The variables consisting of combination (1) are yi;t , ki;t , gi;t , hi;t and li;t .
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Table 5: Individual and panel data cointegration tests of Carrion-i-Silvestre and Surdeanu (2011).
Results for the combination (2)

Individual statistic
Region m= 5 m= 4 m= 3 m= 2 m= 1 Rank
Andalucía 0.019** 0.023** 0.071 0.071 0.103 2
Aragón 0.028 0.037 0.062 0.067 0.226 0
Asturias 0.027 0.033 0.039 0.039 0.112 0
Baleares 0.029 0.032 0.036 0.051 0.055 0
Canarias 0.030 0.067 0.079 0.116 0.122 0
Cantabria 0.024** 0.028 0.034 0.104 0.120 1
Castilla y León 0.026 0.044 0.061 0.089 0.055 0
Castilla-La Mancha 0.014** 0.031 0.070 0.087 0.090 1
Cataluña 0.029 0.038 0.058 0.095 0.089 0
Comunidad Valenciana 0.026** 0.027** 0.036 0.074 0.167 2
Extremadura 0.018** 0.034 0.115 0.124 0.159 1
Galicia 0.022** 0.037 0.052 0.113 0.167 1
Madrid 0.027 0.027 0.048 0.076 0.210 0
Murcia 0.025** 0.025** 0.072 0.072 0.095 2
Navarra 0.018** 0.037 0.082 0.088 0.163 1
País Vasco 0.025** 0.037 0.053 0.066 0.064 1
La Rioja 0.020** 0.025** 0.050 0.068 0.078 2

Panel statistics
m= 5 m= 4 m= 3 m= 2 m= 1 Rank

PMSBZτ -7.207** -1.006 4.683 1.901 -1.624 1
PMSBFτ 137.166** 70.158** 14.216 15.236 36.389 2
PMSBCτ 12.511** 4.385** -2.399 -2.275 0.290 2
PMSBCHτ -7.889** -2.290** 3.849 2.444 -1.107 2

m represents the number of stochastic trends. ** denotes that the test is signi�cant at the 5% level.
The variables consisting of combination (2) are yi;t , ki;t , gpi;t , hi;t and li;t .
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Table 6: Individual and panel data cointegration tests of Carrion-i-Silvestre and Surdeanu (2011).
Results for the combination (3)

Individual statistic
Region m= 5 m= 4 m= 3 m= 2 m= 1 Rank
Andalucía 0.021** 0.030 0.030 0.320 0.108 1
Aragón 0.025** 0.031 0.052 0.082 0.101 1
Asturias 0.025** 0.029 0.036 0.075 0.295 1
Baleares 0.031 0.033 0.062 0.071 0.282 0
Canarias 0.025** 0.027** 0.070 0.100 0.221 2
Cantabria 0.023** 0.035 0.066 0.101 0.101 1
Castilla y León 0.028 0.032 0.086 0.086 0.082 0
Castilla-La Mancha 0.033 0.037 0.037 0.118 0.112 0
Cataluña 0.032 0.047 0.064 0.106 0.091 0
Comunidad Valenciana 0.024** 0.031 0.045 0.088 0.371 1
Extremadura 0.021** 0.028 0.115 0.173 0.229 1
Galicia 0.030 0.028 0.053 0.053 0.146 0
Madrid 0.031 0.044 0.051 0.082 0.202 0
Murcia 0.022** 0.030 0.062 0.062 0.161 1
Navarra 0.018** 0.036 0.082 0.106 0.504 1
País Vasco 0.034 0.036 0.037 0.073 0.179 0
La Rioja 0.019** 0.033 0.045 0.079 0.081 1

Panel statistics
m= 5 m= 4 m= 3 m= 2 m= 1 Rank

PMSBZτ -5.300** -1.496 4.214 4.846 0.611 1
PMSBFτ 120.704** 45.451 18.137 9.435 21.565 1
PMSBCτ 10.514** 1.389 -1.924 -2.979 -1.508 1
PMSBCHτ -6.125** -1.605 3.325 3.973 1.193 1

m represents the number of stochastic trends. ** denotes that the test is signi�cant at the 5% level.
The variables consisting of combination (3) are yi;t , ki;t , gi;t , hsi;t and li;t .
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Table 7: Individual and panel data cointegration tests of Carrion-i-Silvestre and Surdeanu (2011).
Results for the combination (4)

Individual statistic
Region m= 5 m= 4 m= 3 m= 2 m= 1 Rank
Andalucía 0.018** 0.031 0.032 0.370 0.095 1
Aragón 0.025** 0.033 0.059 0.087 0.087 1
Asturias 0.025** 0.029 0.038 0.069 0.303 1
Baleares 0.030 0.034 0.065 0.077 0.256 0
Canarias 0.026 0.028 0.075 0.104 0.235 0
Cantabria 0.021** 0.036 0.082 0.097 0.204 1
Castilla y León 0.027 0.031 0.086 0.087 0.082 0
Castilla-La Mancha 0.032 0.037 0.038 0.116 0.099 0
Cataluña 0.032 0.042 0.069 0.116 0.075 0
Comunidad Valenciana 0.024** 0.032 0.037 0.096 0.346 1
Extremadura 0.021** 0.029 0.117 0.189 0.221 1
Galicia 0.025** 0.028** 0.048 0.050 0.257 2
Madrid 0.041 0.044 0.051 0.098 0.203 0
Murcia 0.018** 0.037 0.043 0.064 0.155 1
Navarra 0.018** 0.036 0.080 0.126 0.536 1
País Vasco 0.033 0.035 0.035 0.070 0.212 0
La Rioja 0.018** 0.031 0.044 0.083 0.066 1

Panel statistics
m= 5 m= 4 m= 3 m= 2 m= 1 Rank

PMSBZτ -5.618** -1.276 4.342 5.826 0.917 1
PMSBFτ 127.145** 38.686 18.590 9.104 22.399 1
PMSBCτ 11.295** 0.568 -1.869 -3.019 -1.407 1
PMSBCHτ -6.326** -1.096 3.275 4.292 1.325 1

m represents the number of stochastic trends. ** denotes that the test is signi�cant at the 5% level.
The variables consisting of combination (4) are yi;t , ki;t , gpi;t , hsi;t and li;t .

Table 8: Banerjee and Carrion-i-Silvestre (2006) panel data cointegration test statistic
Combination 1 Combination 2
Test �r �rNP1 �rP1 Test �r �rNP1 �rP1

Zc -2.863 2 2 2 Zc -2.609 3 3 3
MQcc (2) -10.031 MQcc (3) -23.306
MQcf (2) -8.447 MQcf (3) -24.115

Combination 3 Combination 4
Test �r �rNP1 �rP1 Test �r �rNP1 �rP1

Zc -2.578 4 4 4 Zc -2.797 3 3 3
MQcc (4) -21.995 MQcc (3) -19.798
MQcf (4) -20.807 MQcf (3) -17.876
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Table 9: Panel data cointegration test statistic of Banerjee and Carrion-i-Silvestre (2011)
CADFCP

p (1) (2) (3) (4)
0 -2.062 -2.057 -2.125 -2.121
1 -2.307* -2.300* -2.385** -2.378**
2 -2.347** -2.338** -2.465** -2.456**
3 -2.461** -2.459** -2.635** -2.630**
4 -2.106 -2.122 -2.249* -2.260*
5 -1.802 -1.823 -1.925 -1.940
6 -1.748 -1.768 -1.842 -1.857
7 -1.593 -1.621 -1.710 -1.735
8 -1.608 -1.650 -1.558 -1.583
9 -1.539 -1.621 -1.004 -1.025
10 -1.734 -1.804 -2.326** -2.210*

** denotes that the test is signi�cant at the 5% level and * denotes that the test is
signi�cant at the 10% level. p is the number of lags. The dependent variable is
yi;t . The exogenous variables for the combination (1) are ki;t , gi;t , hi;t and li;t . The
exogenous variables for the combination (2) are ki;t , gpi;t , hi;t and li;t . The exogenous
variables for the combination (3) are ki;t , gi;t , hsi;t and li;t . The exogenous variables
for the combination (4) are ki;t , gpi;t , hsi;t and li;t .
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Table 11: Spatial MLE estimates
Nr. of factors (1) (2) (3) (4)

1 -0.010 0.005 -0.051 -0.045
2 0.167** 0.176** 0.136** 0.143**
3 0.185** 0.183** 0.142** 0.151**
4 0.004 0.003 -0.045 -0.048
5 -0.020 -0.022 -0.041 -0.044
6 -0.220** -0.218** -0.038 -0.037

** denotes signi�cance at the 5% level. The dependent variable
is yi;t . The exogenous variables for the combination (1) are ki;t ,
gi;t , hi;t and li;t . The exogenous variables for the combination
(2) are ki;t , gpi;t , hi;t and li;t . The exogenous variables for the
combination (3) are ki;t , gi;t , hsi;t and li;t . The exogenous variables
for the combination (4) are ki;t , gpi;t , hsi;t and li;t .
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