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Abstract

This paper is concerned with the welfare properties of a rational microe-
conomics model on traffic congestion for an existing infrastructure and modal
system. Maximizing commuter behavior may result in undesirable levels of
congestion, an externality that increases travel time and travel costs and,
hence, reduces welfare. The main contributions of this paper are the fol-
lowing. First, we provide an acute definition of traffic congestion treated as
an externality. Second, we determine the Pareto efficient level of congestion;
in particular, we find a threshold, which depends on the infrastructure level
and the number of users, that distinguishes two regions: one region without
congestion, where decentralized allocations are Pareto efficient, and another
region with congestion, where the decentralized individual allocations differs
from the centralized ones. Third, there may exist a social optimum conges-
tion level. Finally, we present an unifying environment to study efficiency for
transportation policy implementation.
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1 Introduction

Motivation Traffic congestion is considered as one of the greatest problems in
cities, which daily affects citizens moving within towns. It recurrently appears at
certain time slots of the day, mainly determined by the working schedule. Local
authorities are aware about this issue, and they keep rethinking new policies to
alleviate intercity congestion. Build a new infrastructure, or even improving the
existing ones, used to be expensive in terms of public resources and takes a long;
they are more popular in respect with less appealing political measures that affects
commuters’ behaviour despite cheaper and easier to implement. However, although
traffic congestion is a negative externality, it is not clear that removing or even
reducing traffic congestion be a social efficient policy due to the implementation of
a transportation policy could result in benefits lower than costs for city commuters.
Consequently it is relevant for local policymakers to achieve the optimal allocation
of commuters among travel modes at minimum congestion cost; that is, to find
the optimal level of congestion. It can vary from city to city, and depends on the
infrastructures available, alternative modes of transportation and city commuters
preferences.

Goal The purpose of this paper is to determine the aggregate level of traffic in a
city as the result of individual modal decisions when commuters travel for working
purposes at an inelastic peak-hour schedule.

Model To do this, we make use a microeconomic decision link flow model of the
traffic stream where commuters must undertake a trip from the suburbs to the city
center along some existing road infrastructure, which presents particular features
(e.g., capacity, number of lanes, etc.). Trips are undertaken for working purposes,
so commuters are restricted to travel at some slot of the day, denoted by “trip to
work peak-hour,” and consequently there is no possibility to divert trips to off-peak
slots. Two imperfectly substituted transportation modes are available: own car and
collective bus, where congestion interaction between both modes exists. Commuters
have exogenous monetary and time endowment, as well as they all are one-seater car
owners. Time is devoted to leisure and/or travel activities; the exogenous monetary
resources are spent consuming a good inelastically supplied by the productive sector,
and on travel expenses. In addition, commuters enhance welfare by consuming and
developing leisure activities, but they dislike traveling: trip time, whether by car or
bus, reduces their welfare, and the uncomfortable trips are additionally qualified by
the transportation mode they travel. The mode chosen and the time traveling are
input variables to produce the idiosyncratic bad. Heterogeneity among commuters
regards their valuation of the trip time, and we will assume that the distribution of
these valuations is uniform.

Transportation modes require monetary and temporal resources: monetary cost
is fixed for buses, while cars costs more the more trip time. With respects of temporal
resources, they will depend on the features of the infrastructure, the transportation
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modal system, and the amount of vehicles in road. We assume a free-flow trip time
for cars and buses traveling along the link when no congestion exists. We define
traffic flow as the total number of vehicles on roads at the peak period; that is,
the total number of individual cars plus the total number of buses. Consequently,
each commuter’s trip time spent traveling in some transportation mode along a
particular road is the output of a technology that makes use free-flow trip time,
gathering the exogenous infrastructure and modal features, and the traffic flow as
inputs. Whenever the traffic flow increases beyond certain threshold, it will affect
commuters’ travel time and become a negative externality, called traffic congestion.

We first analyze the social planner problem, and characterize the Pareto optimal
level of traffic flow, as well as the resulting level of the congestion externality, if any.
Next, we present the decentralized equilibrium.

The literature. There is a vast literature in engineering and economics on traf-
fic congestion dealing with policy prescriptions for reducing or removing congestion,
most of them aimed to empirical research.1 The economic literature treats the mis-
allocation inherent in roads when private rather than social costs are considered by
a commuter to take his travel decision. This justify the introduction of congestion
tolling to equalize each commuter’s private and marginal social costs.2 However, the
optimal toll is determined by using an “ad hoc” demand for traffic function and “ad
hoc” private and social cost traffic functions, which both lack any microeconomics
foundation. As Arnott (2000) critiques, in this literature the congestion function
is treated as a technological datum, and do not incorporate commuters’ behaviour.
In contrast, our paper explicitly presents the behavior of commuters, who are af-
fected by the congestion externality. Hence, the Pareto-optimal and decentralized
levels of traffic, and then the congestion level, can be obtained in a unified rational
microeconomics equilibrium set-up.

The closest works to ours are Marchand (1968), Sherman (1971) and more re-
cently Parry (2002), who are few exceptions in the literature by considering the
congestion issue on individual travel decision grounds (see table 1). Marchand was
the first to derive explicitly the optimal level of congestion within a general equi-
librium model. Sherman extended Marchand’s work in two ways: transportation
modes contribute to each other’s congestion, and there is an imperfect substitutabil-
ity between modes by considering that commuter preferences are differently affected
when traveling in alternative modes. Both papers consider heterogeneity of agents
on income and preferences (on consumption and number of trips), and congestion
increases monetary trip costs, lowering consumption and the number of trips.

With regards to Parry (2002), he compares numerically the economic efficiency

1For an overview see Lindsey and Verhoef (2000a,b) and Arnott (2001).
2The literature used to consider “congestion” as a problem, something to solved up. It mainly

focus on overcoming the congestion externality by finding second-best policies for welfare improving
assessments under different tax policies (see Lindsey and Verhoef, 2000a, b, Parry and Bento,
2000, or Kveiborg, 2001). Consequently, congestion is treated as a market failure that results in
an inefficient allocation, despite no theoretical foundation supports this statement.
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Marchand(68) Sherman(71) Parry(02) Model
Subst. modes Perfect Imperf. Imperf. Imperf.

(prefer.) (prefer.) (prefer.)
Cong.interact. NO YES NO YES
(modes) (peak-hour) (peak-hour) (peak-hour& off ) (peak-hour)
Heterogeneity:
•Prefer. c(+) c(+) c(+),l(+) c(+),l(+)

n.trips(+) n.trips(+) n.trips(+) trip time(−)
•Monetary income income wages income
Temp.const. NO NO YES YES
Congestion increases: increases: increases: increases:
technology expend. expend. expend., time expend., time

Table 1: Main differences and analogies with close literature

of alternative transportation policy measures to reduce congestion, using a general
equilibrium model. The environment is similar to Marchand’s and Sherman’s, but
considering a time constraint and that commuters can undertake both peak-hours
trips, on several transportation modes, or off-peak trips. It shares Marchand’s no
interaction of modes in terms of congestion (Parry explicitly excludes traveling by
bus), as well as Sherman’s imperfect substitutability among modes. Agents are only
heterogeneous in wages, and congestion increases monetary and time costs, affecting
consumption, leisure, labor time and the number of trips.

In the present paper we consider that transportation modes are imperfect substi-
tutes for commuters by considering that preferences depends on the transportation
mode chosen, analogous to Sherman and Parry. We also share Sherman’s consider-
ation of the congestion interaction between modes, and commuters’ heterogeneity
of preferences and income. Besides, our model consider explicitly a time constraint,
as in Parry.

Our model differs from these works in three ways that will be shown to be es-
sential. First, we consider that time involved in travel activities decreases welfare
for commuters. Transportation is a required intermediate good to allow individuals
to obtain monetary resources, so travel trips are a medium to achieve this goal, a
waste of individual’s time and resources. Accordingly, we do not consider trans-
portation as a good that increases commuters welfare. Second, traffic congestion
affects commuters not only by increasing monetary and time costs, like in Parry
(2000), but it also affects negatively on commuter preferences due to congestion
increases trip time. Finally, we focus on peak-hour trips, like in Marchand and
Sherman, so Parry’s possibility to transfer trips to off-peak slots does not exist.

In addition, and more important, this paper aims to solve the internal incon-
sistency of the way the above authors model the congestion externality. Marchand
(1968), Sherman (1971) and Parry (2002) treat congestion as a kind of aggregate good
along the period considered, for example, a day, a month or a year. Their commuters
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choose the number of trips to undertake in each of the different transportation modes
at the period considered, and the total number of trips of all commuters determines
the traffic flow. Then traffic congestion is defined as the influence of traffic flow on
travel time, and the “peak-hour congestion” can be interpreted as the ratio of ag-
gregate congestion over the number of times the peak-hour slot is reproduced within
the period. However, it is not clear why a commuter chooses several transportation
modes that all affects simultaneously the peak-hour congestion in so short period
of time. One possibility is that each commuter takes different modal choices along
each shorter peak-hour slots through the period. However new difficulties arise.
First, it is not clear why repeated environments results in different modal choices.
Second, due to commuters choose to undertake trips in different modes, it is difficult
to understand in this set-up why different commuter allocations between alternative
modes result in the same peak-hour congestion unless a unrealistic assumption on
overall commuters coordination is realized. In addition, in Sherman’s case where
congestion interaction among modes exists, the commuter’s decision to undertake a
number of trips by car will affect the (aggregate) congestion which interacts with
the number of trips he decides to undertake by bus, and vice versa. But, this two-
direction interaction can only be possible if commuter undertakes simultaneously
several modal trips which is no realistic.

These problems stem on two facts. First, commuters are allowed to travel among
several modes and, as the period of time is shrunk, it is difficult to understand why
a commuter takes different modal choices under identical network environment and
preferences. Unlike these authors, in our model each commuter can only choose one
transportation mode to trip at a specific slot of time of the day where congestion
may occur (“peak-hour”). Second, and conceptually more relevant, these authors do
not provide a clear definition of congestion, but a vaguely description of its effects.3

Our contribution. The main contributions of this paper are the following.
First, we provide an acute definition of traffic congestion treated as an externality.
Second, we study whether the level of traffic becomes a congestion externality or
not, so we analyze if a certain level of congestion may be socially optimal, relying
on transportation and road network features, as well as on citizens characteristics.
In particular, we find a threshold, which depends on the infrastructure level and
the number of users, that distinguishes two regions: one region without congestion,
where decentralized allocations are efficient, and another region with congestion,
where the decentralized individual allocations differs from the centralized ones. In
addition, the congestion externality may result in a non-Pareto efficient decentralized
allocation, as the previous literature seems to point out, and second-best policies
are required to improve social welfare. An interesting feature of our model is that it
allows us to gauge the magnitude of this inefficiency. Third, we present an unifying
environment to study efficiency for transportation policy implementation.

3For example “There is congestion [...] at peak travel time [meaning] that the presence of an
extra vehicle slows down the average speed of other drives, hence raising their travel times.” (Parry,
2000, p.337).
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Road map of the paper This work develops through the following sections.
In Section 2 we present a definition of congestion. In Section 3 the primitives of
the model. The social planner problem is solved in Section 4. Section 5 displays
the decentralized equilibrium and we show that the resulting allocations may not be
optimal. Finally, Section 6 summarizes conclusions and indicates further research.

2 A definition of congestion.

Surprisingly, the literature of transportation economics does not display an acute
definition of congestion. For example, reference works like Walters (1987) just in-
dicates that the “common usage” of congestion is used to “denote circumstances
where there is some interaction and slowing of vehicle below their traffic-free speed.”
(p.571).

Before defining congestion, we must have in mind two issues. First, it has both a
spatial and temporal component. In terms of space, it may occur along both short
and long sections of roadway, while temporally, it may occur for a few minutes, a few
hours or the entire day. Second, there are three key elements in play for congestion
to occur: two of them are technological, the features of the infrastructure and the
transportation modal system; while the third falls into the economics realm: the
modal allocation of commuters resulting from their own choice.

In what respects commuters decisions, we consider that, in Debreu’s spirit, com-
muters demand the commodity “transportation from A to B at a particular period
of time.” This commodity is produced with a combination of three inputs: i) travel
time; ii) one of the existing alternative transportation modes (car, bus, rail, etc.)
that makes use; and, iii) one of the existing network with its specific features linking
A to B. Next, we display several definitions on traffic flow, traffic free-flow, and
finally, congestion.

Definition 1 Given a number of users, we define traffic flow of a particular
link at a particular moment of time as the number of vehicles simultaneously
using it.

Definition 2 Given the technological elements, we define traffic free-flow at a
particular link referring to the case where the technological combination between
travel time and transportation modes is not affected by the number of vehicles using
the link.

Definition 3 Congestion at a particular link from A to B at a period of

time is present whenever the well-being of every commuter is directly affected by the
travel decision of any other commuter disturbing her technology combination between
travel time (output) and transportation mode with respect to the traffic free-flow case,
and the number of vehicles in the link.4

4Our definition is in tune with the workable definition of traffic congestion provided by Lomax,
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Consequently, congestion is thought as an externality of all commuters when using
the congested link that affects the technological production of the transportation
commodity.

3 The model.

Our main concern is to study the mutual vehicle interaction in a given road infras-
tructure at a particular slot of the day brought by the simultaneous commuters’
modal decision. We present a simple model of transportation that gathers the three
main features regarding congestion: two of them technological –the infrastructure
and the different transportation mode characteristics–, and the third dealing with
the individuals modal decision.

3.1 Ingredients: the primitives of the economic model

The main features of the model are the following,

• There is a road infrastructure that links A and B;

• There are a number of commuters I ≡ [0, I] that travels along the infrastruc-
ture; and,

• Two transportation modes are available to undertake the trip: car and collec-
tive bus.

The commodities of this economy are the following,

• leisure time at a particular slot;

• a consumption good; and,

• transportation services from A to B at a particular slot of time.

Next, we enumerate several assumptions.

3.1.1 Assumption on the road infrastructure

Assumption 1 The road infrastructure that links A and B is represented by several
given characteristics: capacity, number of lanes, etc. No alternative itinerary, such
as back-roads, exists.

Turner, Shunk et al (1997) who defined two terms: “Congestion is travel time or delay in excess of
that normally incurred under light or free-flow travel conditions; and, unacceptable congestion is
travel time or delay in excess of an agreed-upon norm. The agreed-upon norm may vary by type of
transportation facility, travel mode, geographic location and time of day.” Of course, “agreed-upon
norm” falls into what economists call preferences. There are other definitions such as ECMT (1999)
“congestion is the impedance vehicles impose on each other, due to the speed-flow relationship, in
conditions where the use of a transport system approaches its capacity.”

6



bus car
capacity B 1

resources

{
temporal
monetary

tib
ki

b

tic
kc(t

i
c) = k0

c + kct
i
c

Table 2: Transportation mode features.

3.1.2 Assumption on the transportation modes

Car and collective bus, termed as c and b respectively, are the only two transporta-
tion modes available that link A and B.

Assumption 2 Each transportation mode is fully characterized by its capacity in
passengers, and by the temporal and monetary resources spent in each.

2.1. Capacity. We will assume that only one-seater cars exist, while buses can
transport B passengers.

2.2. Temporal resources. To reach B from A, the commuter i is required to spent tic
units of time when traveling by car, or tib when traveling by bus.

2.3. Monetary resources. The bus fare kb is fixed. In contrast, the cost for car
commuters is an increasing convex function of the time spent traveling. We
will assume that this function is linear, i.e.,

kc

(
tic

)
= k0

c + kct
i
c,

where kc is a constant that includes several costs per unit of travel time such
as fuel, tires, breaks, etc.; and k0

c represents fixed costs such as the parking
fare.

3.1.3 Assumptions on the commuters

There are a number of commuters I, who must undertake a trip along the existing
road infrastructure at a particular slot of time.

The trip features
Consumers are compelled to travel from A to B in order to undertake working

activities at destiny taking one modal decision.

Assumption 3 Trips are developed for working purposes, and commuters will suffer
an infinite cost whether arriving at work early nor late.
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Assumption 4 Commuters travel at a particular slot of the day making use only one
transportation mode.

The former assumption brings about traveling activities are undertaken at the
slot of time denoted by (trip-to-work) peak-hour, just before the working timetable.
It also entails the impossibility to divert trips to off-peak slots. The assumption 3
means that each commuter takes just one modal discrete choice to attend to work,
whether by car or bus. For auxiliary purposes we will introduce two indicatrix
variables that can only take two values, one or zero, representing whether commuter
i choses or not mode m: vi

m ∈ {0, 1} with m = c, b, where at least and at most one
mode is used, that is, vi

cv
i
b = 0 and vi

c + vi
b = 1. Then, the number of cars is given

by c =
∫

i∈[0,I]
vi

c di, while the number of buses is b =
∫

i∈[0,I]
1
B

vi
b di.

Commuter’s features
Every commuter has to make a single modal choice, subject to her own individual

features.

Assumption 5 Endowments. Commuters have some monetary and time exoge-
nous endowments, as well as they all are one-seater car owners:

5.1. Each commuter i ∈ I is endowed with T units of time at the slot just before the
working schedule, which can only be devoted to traveling or leisure activities
(e.g., sleep more and wake up later).

5.2. Commuters are heterogeneous in their (per day) monetary wages, yi.5

5.3. Each consumer is a one-seater car owner, all about the same brand.6

Assumption 6 Preferences. Each commuter i’s welfare is enhanced by

• increasing the consumption of a good inelastically supplied by the productive
sector, ci;

• increasing the leisure time not devoted to traveling at the peak-hour slot, li;
and,

• reducing an idiosyncratic bad θi concerning traveling, whose input variables
are the following:

i) travel time, both by car or bus, i.e., tim, with m = c or b;

5We must note that in this model the labor income of the commuter is fixed, as the working
schedule was set at a previous decision stage.

6In practice, vehicle occupancy for vehicle for trips is very low, about 1.1 (see Parry, 2002, ft.
7).
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ii) travel uncomfortably because of taking a particular transportation mode,
i.e., βi

m with m = c or b, where βi
c/β

i
b is the commuter i’s exogenous

mode disliked ratio between car and bus; and,

iii) the commuter i’s valuation of the trip time, a heterogeneous variable with
a distribution function f(i) on the set of commuters I.

We will assume that all commuters have identical disliked parameters, βi
m =

βm for all i ∈ I and m = c, b; and that bus trips are more uncomfortable than
car trips, βc < βb. Besides, we will assume a uniform distribution function
f(i) for the heterogeneous valuation of trip time, so f(i) = 1/I for i ∈ I.
Then, the idiosyncratic production function of this bad for each commuter
i ∈ I will be assumed to be

θi = θ(tic, t
i
b, β

i
c, β

i
b, i) = [βcv

i
ct

i
c + βbv

i
bt

i
b]i/I.

Finally, we will assume that commuter i’s preferences can be represented by the
continuous utility function

U i
(
ci, li, θi

)
= ci + φli −

i

I

[
βcv

i
ct

i
c + βbv

i
bt

i
b

]
, (1)

and we will assume that travel time is more valuable than leisure time, i.e., βm > φ
for m = c, b.

Observe that consumption and leisure are not perfectly substitutes in (1). The
reason is that we cannot reduce leisure to increase labor –and, then, resources–, so
that consumption can be risen. That is, the opportunity cost of leisure at trip-to-
work peak hour is not labor, since leisure activities are developed off the working
schedule.7

Finally, the treatment of the transportation services as a bad in our model de-
serves some comments. First, Assumption 3 stated the travel requirement to un-
dertake working activities, so transportation services are an intermediate input in
order to earn income. Accordingly, traveling per se does not enhance commuter’s
welfare, in contrast to the conventional transportation and congestion models (see
Arnott, 2001).8 Second, the time spent traveling might be painful for travelers, be-
cause its uncomfortable features, or pleasant as other activities can be undertaken
simultaneously (see Oort, 1969, or Johnson, 1966). As long as only working trips
are considered, no consideration is made on the case where commuters could derive

7Train and McFadden (1978), for example, mistakenly consider so.
8Such an assumption found in several papers is often made to create a demand for trans-

portation, as welfare services provided by transportation represents the welfare of available goods
consumed at destiny after traveling. However, this representation could also result in ridiculous
consequences such as consumer’s spare time and resources will be devoted, for example, to travel
by bus instead of undertaking other leisure or consumption activities, because traveling by bus
increases per se consumer’s welfare.
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certain welfare on the time they travel, e.g., sightseeing, read a book or a news-
paper. Consequently, commuters disagree with spending time traveling to work at
some transportation mode.

3.2 The production of the travel time

Each commuter takes a modal choice to consume the commodity transportation
along the link A to B at a particular slot of time. This decision relies on the amount
of resources wasted traveling, and Assumption 2 shows that the key variable for
determining these costs is summarized in travel time. This variable depends on
three elements: i) the features of the infrastructure; ii) the characteristics of the
transportation modal system; and, iii) the amount of vehicles on road. While the
first two are technological and were described at Assumptions 1 and 2 respectively;
the latter falls into the realm of the economic theory. Travel time plays a crucial
role in this paper, so it is worth to study it in detail.

3.2.1 Implications of technological features on travel time: “traffic flow”
and “free-flow travel time”

Initially, we will focus on the technological elements affecting travel time by defining
traffic flow, and then we will determine the average travel time for each mode.

Definition 4 Let be I the number of commuters traveling at the peak-hour. Assume
that c of them travel by car, and the remaining I − c by bus. Traffic flow in
the link A to B at a particular slot of time is the total number of vehicles
simultaneously using the network. It will be denoted by V = c + b, that is, the total
number of individual cars plus the total number of buses b = (I − c)/B, where B is
the passengers capacity of a bus (Assumption 2.1).

Observe that the traffic stock is bounded: V ∈ [I/B, I], where I/B is the traffic
flow in the case all agents travel by bus, and the upper bound is the case where all
agents travel on their own car. Next, we define the set of all feasible combinations
of cars and buses.

Definition 5 Let be I the number of commuters traveling at the peak-hour. The
traffic flow line is the set of the feasible pairs cars-buses (c, b) that are able to
transport all commuters simultaneously,9

V = {(c, b) s.t. I = c + Bb, with c ≥ 0 and b ≥ 0} . (2)

9Observe that Assumption 5.3 implies that all commuters have to take a modal decision as they
all are car owners. However, if we would consider additionally commuters that do not take any
modal decision, as they have no cars, they will have to travel by bus. Then the traffic flow line
would move upwards by increasing an exogenous number of b buses: I = c + B(b + b).
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The concept of traffic flow is an “accounting” definition of the commuters distri-
bution, as no infrastructure or modal features play a role. Next, we consider such
technological characteristics to consider a particular case of traffic flow.

Definition 6 Consider Assumptions 1–2 are verified, i.e., the technological features
of the road infrastructure and the transportation modes. Traffic free-flow in the
link A to B at a particular slot of time is the case where the technological
combination between travel time and transportation modes is not affected by the
number of vehicles using the link.

Two straightforward consequences of the definition of traffic free-flow emerges.
Firstly, there is a threshold V on the traffic flow below of which the number of vehi-
cles using simultaneously the link produces no mutual interaction among them. This
is a technological value which depends on the transportation mode characteristics, as
well as the road network features, Assumptions 1–2. The second consequence refers
to the determination of a free-flow travel time for each of the modes: whenever
there is no mutual interaction among vehicles on road a transportation mode m
will last τm units of time to cover the distance from A to B, with m = c, b. It
seems reasonable to think that under no mutual interaction car drivers arrive first,
τ c < τ b. Finally note that both free-flow travel times are exogenous parameters
that exclusively depend on the technological features, and are independent of the
commuters’ decisions.

3.2.2 Implications of economic decisions on travel time: “traffic conges-
tion”

Yet, mutual interaction among vehicles could exist, so commuters trip might last for
longer than the free-flow travel time. Consequently, travel time spent traveling at
some mode m is the output of a technology that makes use as inputs the technological
infrastructure and modal features, as well as the traffic flow considered as the result
of all commuters simultaneous individual decisions. Whenever no vehicle interaction
exists, i.e., V ≤ V , a trip will take its free-flow travel time, tim = τm, with m = c,
b. If the traffic flow increases beyond the threshold V the presence of an extra
vehicle slows down the average speed of all other drivers and rise their travel time,
so a negative externality arises, denoted to by “traffic congestion.” Accordingly,
the delay on commuters’ travel time due to traffic congestion, with respects to the
no-mutual interaction benchmark case, will be the way to measure the externality.
Next, we define this negative externality (See Mas-Colell et al, 1995, p.352)

Definition 7 Traffic congestion (or “congestion”) in the link A to B at a
period of time is present whenever the well-being of every commuter is directly
affected by the travel decision of any other commuter. These simultaneous decisions
disturb their technology combination between travel time and the modal choice with
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respect to the traffic free-flow case, because of the number of vehicles in the link.10

3.3 The technology to produce travel time

We will now focus on the technology that produces travel time. Given that free-
flow travel time τm gathers the exogenous infrastructure and modal features, and
that traffic flow affects travel time beyond certain threshold, we may represent this
technology as a function of these two inputs. We will assume that the congestion
technology affects the travel time multiplicatively, as usually done in the literature
(e.g., Parry 2002 or the US Bureau of Public Roads –see Anderson and Mohring
1996):

tim = zm(τm, V ) ≡ τm(1 + γ(V )) with m = c, b,

where γ(V ) represents the production function of the congestion externality, that is,
the negative effect of traffic congestion on travel time. This function takes value
zero for those levels of traffic flow below or equal to the threshold V , and it is an
increasing and convex function beyond, i.e. γ′(V ) > 0 and γ′′(V ) ≥ 0 when V ≥ V .
Our analysis will follow at the general case. However, several parametrizations can
be assumed. For example the linear functional form

γ(V ) =

{
0 if V ≤ V ;

γ [V − V ] if V ≥ V ;
;

or the one made use by the US Bureau of Public Roads (see Anderson and Mohring
1996)

γ(V ) =

{
0 if V ≤ V ;

γ (V/V )4 if V ≥ V ,
,

where V is the capacity of the link (with γ = 0, 15).

3.4 Traffic congestion: a first appraisal from welfare eco-
nomics

The study of traffic congestion presents two particular features that distinguishes
it from the standard externality literature. Firstly, traffic congestion does not di-
rectly affect commuters’ welfare despite of being a negative externality, as in other

10Our definition is in tune with others outside economic grounds. For example, the workable
definition of traffic congestion provided by Lomax, Turner, Shunk et al (1997) who defined two
terms: “Congestion is travel time or delay in excess of that normally incurred under light or
free-flow travel conditions; and, unacceptable congestion is travel time or delay in excess of an
agreed-upon norm. The agreed-upon norm may vary by type of transportation facility, travel mode,
geographic location and time of day.” Of course, “agreed-upon norm” falls into what economists call
preferences. Other similar definition is “congestion is the impedance vehicles impose on each other,
due to the speed-flow relationship, in conditions where the use of a transport system approaches
its capacity.”ECMT (1999)
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examples referred to in the public economics literature, such as pollution. Conges-
tion affects commuters indirectly, since their welfare decreases the longer each trip
takes: first, by increasing the unpleasant time traveling at some of the transporta-
tion modes; second, by lowering time devoted to leisure activities; and finally, only
for car users, the monetary costs of car increases due a higher travel time, reducing
consumption.

A second difference refers to traffic congestion does not affect the commuters’
welfare until the aggregate variable traffic flow exceeds a certain exogenous tech-
nological bound V . Such a threshold depends on the mode and network features
(Assumptions 1–2), and defines a technological combination of cars and buses on
the traffic flow line that generates the congestion threshold. This allows us to define
the following set,

Definition 8 Let be V a threshold on the traffic flow, which depends on the mode
and network features (Assumptions 1–2), below of which the number of vehicles using
simultaneously the link produces no mutual interaction among them. We define the
congestion threshold set as the pair of cars and buses (c, b) for which traffic flow
exactly coincides with the threshold capacity V :

Φ(c, b) = {(c, b) s.t. V = ϕ(c, b), with c, b ≥ 0}. (3)

[Hipotese: b = ϕ̃(c) is monotonically increasing, ϕ̃′(c) > 0, to guarantee unique-
ness.]

We will be assumed a linear functional technology11

ϕ(c, b) ≡ c + ϕb,

with ϕ > 0.12 This set separates the car-bus space into two regions where time
delays exists or not. The upper contour set of Φ represents the pairs cars-buses such
that the corresponding traffic flow entails a travel time delay; in contrast, the lower
contour set of Φ shows up car-bus combinations with traffic free-flow.

A joint analysis of the traffic flow line (2) and the congestion threshold set (3)
depicts several scenarios concerning traffic congestion for a given network and modal
features. Considering the linear case, it will be expected that the slope of the traffic
flow line is higher than the congestion threshold line, i.e. 1/ϕ > 1/B that implies
B > ϕ.13 Then, three cases are possible:

11Observe that if we would consider additionally bus commuters that do not take any modal
decision, as they have no cars the function ϕ will move upwards; that is, V = c+ϕ(b+b). However,
none combination would be placed at the right of (n, b).

12A bus requires roughly 3 passenger car units, but actually carries well over three times as many
passengers as a passenger car (see Road Research Laboratory, 1965, p.200-201).

13The number of cars per bus to take out from roads to transport the same number of individuals
must be higher than the number of cars per bus to keep the road without congestion within the
congestion threshold set. Empirical studies show that ϕ = 1, 5 while bus capacity exceeds this
value, e.g., 20 passengers.
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Case 1) Congestion will never exist whenever the infrastructure would allow all com-
muters to travel by car without any mutual vehicle interaction, i.e., V ≥ I;
that is, when the traffic flow line (2) falls below the congestion threshold set
(3).

Case 2) There is always congestion in the road network whenever travel time delay
exists even though there are only bus commuters, i.e., V ≤ ϕI/B; that is,
whenever the congestion threshold set (3) falls below the traffic flow line (2).

Case 3) A less trivial outcome is the one where both sets intersect, the case of great
interest for transportation economics and policy (see Figure 1). The crossing of
(2) and (3) determines the non-congestion threshold car-bus pair (c, b) where all
commuters travel and no congestion exists marginally. Such a modal threshold
allocation separates the traffic line into two in terms of the existence of the
externality:

(a) There will be a non-congested network whenever the modal distribution of
commuters entails less cars and more buses on roads than in the threshold
pair, i.e. c < c and b > b, as any of such pairs (c, b) ∈ V falls below the
restriction (3); and,

(b) There exists traffic congestion, and then travel time delays, because there
are more cars and less buses on roads than in the threshold pair, i.e. c > c
and b < b. In such a case the pairs (c, b) ∈ V are placed above (3), a
situation known as network undercapacity.

[Insert Figure 1]

To conclude, observe that despite we have not still computed centralized and
decentralized mechanism allocations in our Walrasian equilibrium transportation
model, the approach followed in this paper allows us to derive some consequences
from Figure 1 in terms of the First Theorem of Welfare Economics. First, a de-
centralized modal distribution will be efficient at the non-congested region (Cases 1
and 3.a) as long as no externality exists, and no transportation policy is required.
Instead, whenever travel time is affected by mutual vehicle interaction, the decen-
tralized modal decisions that result in commuters allocation between cars and buses
will not be Pareto optimal (Cases 2 and 3.b). For this case, the traffic conges-
tion externality exists, as well as a social optimum level of congestion. Given the
informational problems to achieve this first-best solution, policymakers would be
interested in implementing second-best transportation policies to recover some effi-
ciency. Which of these policies is the appropriated one, requires to find previously
the social planner and decentralized outcomes, as done in the following sections.
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4 The Pareto efficient problem, the indifferent

commuter and the optimal congestion

In this section we characterize the Pareto optimal modal allocations in our envi-
ronment and, consequently, the optimal level of traffic congestion. To this goal,
we study the social planner problem for any given set of weights {αi}i∈I , posed in
the Appendix A.1, to obtain the first order conditions (A1.1)-(A1.7) there stated.
The optimal modal choice condition for each commuter is found as follows. First,
substitute (A1.1)-(A1.2) onto (A1.3)-(A1.6), and then substitute the Lagrangian
multiplier νi

2 so as to equalize (A1.5) and (A1.6). Then, after multiplying by vi
cv

i
b,

we attain

vi
cv

i
b

{[
αi

(
kct

i
c + φtic +

i

I
βct

i
c

)
+ ψ

]
−

[
αi

(
kb + φtib +

i

I
βbt

i
b

)
+

1

B
ψ

]}
= 0.

(4)
Some agents will be car commuters, i.e., vi

b = 0, while others will be bus commuters,
i.e., vi

c = 0. At the margin, the optimal modal condition for the optimal indifferent
commuter denoted to as î, i.e., the one who is indifferent between traveling by car
or by bus, is given by

αî

(
kct

î
c + φtîc +

î

I
βct

î
c

)
+ ψ = αî

(
kb + φtîb +

î

I
βbt

î
b

)
+

1

B
ψ, (5)

where the Lagrangian multiplier for the congestion constraint is found by substitut-
ing (A1.3) and (A1.4) onto (A1.7)

ψ =
γ′(V )

1 + γ(V )

∫

i∈I

αi

[
vi

ct
i
c

(
i

I
βc + kc + φ

)
+ vi

bt
i
b

(
i

I
βb + φ

)]
di. (6)

It will be useful to introduce some notation. The optimal condition (4) allow
us to define the auxiliary function on the commuter type as the difference of two
increasing linear functions on the commuter type, which each represent a microeco-
nomic justification of the generalized cost of transportation,

∆(i, γ, ψ) = MCb(i, γ, ψ) − MCc(i, γ, ψ) (7)

MCc(i, γ, ψ) = αi

(
kct

i
c + φtic +

i

I
βct

i
c

)
+ ψ

MCb(i, γ, ψ) = αi

(
kb + φtib +

i

I
βbt

i
b

)
+

1

B
ψ.

The second function represents the generalized price of traveling by car for each type
of commuter, that is, her marginal cost of traveling by car [MCc], while the latter
represents the generalized price of traveling by bus for each type of commuter, that
is, her marginal cost of traveling by bus [MCb]. These generalized prices are com-
pounded of four analogous costs. Three of them are private costs: an objective travel
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cost that decreases the monetary resources for purchasing additional consumption
goods, kct

i
c and kb respectively; a subjective monetary valuation of travel time that

reduces the commuter i’s temporal resources for devoting to leisure activities, φtim
with m = c, b; and, the subjective monetary value of the commuter i’s idiosyncratic
welfare costs because of traveling by car or by bus, i.e., i

I
βmtim with m = c, b. Fi-

nally, there exists an additional aggregate social cost that internalizes the congestion
externality on the decision of traveling by car, ψ. Such a multiplier found in (6) is
in fact a function of the traffic flow, i.e., ψ = ψ(V ). It will be active provided the
congestion externality exists, and it is positive because congestion has a negative
effect on each commuter’s welfare costs increase. This is the case for any traffic flow
beyond the technical traffic flow threshold V , an exogenous parameter that depends
on the road network and the transportation modal features (Assumptions 1–2).

The social planner’s optimal rule for commuter modal allocation is the fol-
lowing. For a given traffic flow V , the commuter i′ will travel by car whenever
her generalized price of traveling by bus is dearer than that when traveling by
car, MCb(i

′, γ(V ), ψ(V )) > MCc(i
′, γ(V ), ψ(V )), i.e., ∆(i′, γ(V ), ψ(V )) > 0; oth-

erwise, she will be a bus commuter since traveling by car is more expensive for
her, MCb(i

′, γ(V ), ψ(V )) < MCc(i
′, γ(V ), ψ(V )), i.e., ∆(i′, γ(V ), ψ(V )) < 0. At the

margin, condition (5) allows us to characterize the optimal indifferent commuter î,
for which both generalized prices equalize; that is, î is a root of the auxiliary function
∆(i, γ(V (i)), ψ(V (i))), where the traffic flow is given by

V (i) =

∫ i

0

1

B
di +

∫
I

i

di =
i

B
+ [I − i]. (8)

Observe that, implicitly, we are assuming that there exists at most only one marginal
commuter that separates car-commuters from bus-commuters. Hence, we will make
use an abuse of notation by denoting ψ(V (̂i)) and γ(V (̂i)) simply by ψ(̂i) and γ(̂i),
respectively.

Next, we will study the solution of the problem considering two cases where there
exists a congestion externality or not.

4.1 The case without traffic congestion.

Let us initially consider that the social planner allocates the commuters in such a
way that traffic flow does not generate traffic congestion, i.e., V (̂i) < V . In this
case, there are no external effect among commuters’ modal allocation, so that the
multiplier ψ is zero at (6), provided γ(V ) = 0 and γ′(V ) = 0. For such a case the
travel time is the one under free-flow tim = τm for m = c, b. Consequently, we will
focus on the car-bus allocations (c, b) at the subset of the traffic flow line (2) below
the congestion threshold set (3), i.e., c ∈ [0, c] and b ∈ [b, I/B] (see Figure 1).

In this region it is easy to characterize the indifferent commuter î ∈ [Bb, I] from
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condition (5). The auxiliary function on the commuter type (7), turns to be linear

∆(i, 0, 0) = kb + φτ b − (kc − φ)τ c + [βbτ b − βcτ c]
i

I
= ∆(0, 0, 0) + ∆′(0)i,

whose intercept is the value of the function for the commuter type i = 0 that only
pays attention to monetary and temporal costs, i.e., ∆(0, 0, 0) = MCb(0, 0, 0) −
MCc(0, 0, 0) = φ(τ b − τ c) − (kcτ c − kb); and, it has positive slope ∆′(0) = [βbτ b −
βcτ c]/I > 0, owing to the subjective valuation of the uncomfortable travel time is
higher for bus trips than for car ones for each type of commuter, and that cars go
faster and are more comfortable, i.e., βb > βc and τ b > τ c respectively.

The optimal indifferent commuter for the case without traffic congestion.

There will exist an indifferent commuter at the non-congested region whenever the
monetary savings traveling by bus are able to offset the monetary value of the longer
travel time by bus, that is, whether ∆(0, 0, 0) < 0; otherwise, all commuters travel
by car, i.e., V = I < V . Observe again that the indifferent commuter î ∈ [Bb, I] is
the root of the auxiliary function ∆(i, 0, 0), and is attained by

î(τ c, τ b, kc, kb; 0) =
τ ckc − kb + φ(τ c − τ b)

βbτ b − βcτ c

I =
∆(0, 0, 0)

∆′(0)
.

[Insert Figure 2]

See Figure 2. The commuters are allocated as follows: there will be î commuters
of type [0, î] that travel by bus, i.e., vi

b = 1, so that the optimal number of buses are

given by b̂ = î/B; while ĉ = I − î commuters of type [̂i, I] will travel by car, i.e.,
vi

c = 1. That is, commuters that disagree more the uncomfortable trips will travel
by car, and those who disagree less will travel by bus. Consequently, the traffic flow
(8) is given by

V (̂i) =
î

B
+ [I − î] = I −

B − 1

B

∆(0, 0, 0)

∆′(0)
< V .

We summarize the modal allocation outcome for the case without traffic conges-
tion in the following proposition.

Proposition 1 Let us consider a network defined by Assumptions 1-2 that defines
a congestion threshold V = V (̄i), and the modes features and commuters character-
ized by Assumptions 3-6. Let us consider that the traffic flow does not generate a
congestion externality, i.e., V (̂i) < V , as the indifferent commuter is set at î ∈ [̄i, I].
Then,

i) If ∆(0, 0, 0) > 0 all commuters will travel by car (ĉ, b̂) = (I, 0), and the indif-
ferent commuter is set at î = 0 and the traffic flow is V (0) = I < V .
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ii) If ∆(0, 0, 0) < 0 then

ii.1) if ∆(0, 0, 0)/∆′(0) < I, then î = ∆(0, 0, 0)/∆′(0) and (ĉ, b̂) = (I−î, î/B),
and the traffic flow V (̂i) < V is found at (8).

ii.2) if ∆(0, 0, 0)/∆′(0) > I all commuters will travel by bus, (ĉ, b̂) = (0, I/B)
and then î = I and the traffic flow is V (I) = I/B < V .¤

Finally, the non-congestion threshold car-bus pair (c, b) at the crossing of (2)
and (3) sets a bound for the indifferent commuter that yield no external effects.
(See Figure 2.) Given the road network and the transportation modal features
(Assumptions 1–2), represented by the technological congestion threshold V , we
can define the indifferent commuter congestion threshold as the minimum number
of commuters ī that have to travel by bus in order that congestion does not exist.
Hence, substituting (c, b) = (I− ī, ī/B) into (3), we find ī(B, V ) = B[I−V ]/[B−ϕ].
Accordingly, provided î ≥ ī the optimal solution corresponds to the case where the
optimal modal allocation results in a no-congestion externality; otherwise, the case
of study is the congested one. Then we find a parametric lower threshold on the set
of technological parameters that produces no external effects,

∆(0, 0, 0)

∆′(0)
=

τ ckc − kb + φ(τ c − τ b)

βbτ b − βcτ c

I ≥ B
I − V

B − ϕ
.

4.2 The case with traffic congestion.

Assume now that the social planner allocates the commuters in such a way that
the indifferent commuter î defines a traffic flow that generates traffic congestion.
Following the above reasoning, the indifferent commuter type is î < ī, and the
traffic flow resulted in (8) implies that V (̂i) > V , so γ(V (̂i)) = γV (̂i) > 0 and
then tim = τm(1 + γV (̂i)) for m = c, b. Consequently, we will focus on the car-
bus allocations (c, b) at the subset of the traffic flow line (2) above the congestion
threshold set (3), i.e., c ∈ [c, I/B] and b ∈ [0, b] (see Figure 1). In this case there
exists external effects on any commuter modal decision, i.e., ψ > 0 in (6), because
γ′(V )(̂i) > 0.

The social planner will choose the indifferent commuter î ∈ [0, ī], and will allo-
cate commuters between travel modes by making use the auxiliary function on the
commuter type (7)

∆(i, γ(̂i), ψ(̂i)) = [kb + φτ b − (kc − φ)τ c] (1+γ(̂i))−kbγ(̂i)+[βbτ b−βcτ c](1+γ(̂i))
i

I
+

1 − B

B
ψ(̂i),

where the effect of the externality found in (6) is a strictly positive value, provided
î ≥ 0, given by

ψ(̂i) = γ′(̂i)

{
∆′(0)

2
î2 + [∆(0, 0, 0) − kb] î + I

[
βcτ c

2
+ (kc + φ)τ c

]}
. (9)
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Observe that in the case that the production function of the congestion externality
is linear, i.e., γ(̂i) = γV (̂i) for î ∈ [0, ī), this external effect is a strictly positive
convex function that achieves the maximum degree of congestion effect at î∗ =
[∆(0, 0, 0) − kb]/∆

′(0).

The indifferent commuter for the case with traffic congestion.

Owing to the indifferent commuter î is chosen by the planner, the auxiliary function
(7) is also a linear function in the consumer type i, that is,

∆(i, γ(̂i), ψ(̂i)) = ∆(0, γ(̂i), ψ(̂i)) + ∆′(γ(̂i))i, (10)

whose slope is positive, ∆′(γ(̂i)) = (1+γ(̂i))∆′(0) > 0; and, the intercept is the value
of the function for the commuter type i = 0 that only pays attention to monetary
and temporal costs, i.e.,

∆(0, γ(̂i), ψ(̂i)) =
[
∆(0, 0, 0) + [∆(0, 0, 0) − kb] γ(̂i) +

1 − B

B
ψ(̂i)

]
.

Observe that there will exists an indifferent commuter whenever this intercept
is negative. For example, whenever the monetary savings traveling by bus are able
to offset the monetary value of the longer travel time by bus, that is, whether
∆(0, 0, 0) < 0. It is important to realize that the consideration of the congestion
externality affects the modal allocation because its impact on the travel costs for the
bus commuters are lower than on those for the car ones; accordingly, the net cost of
the congestion externality is negative (1 − B)ψ/B < 0. This means that the com-
muter may still travel by bus even if ∆(0, 0, 0) is positive, but her costs are not able
to offset the negative congestion externality effect. Otherwise, if ∆(0, γ(̂i), ψ(̂i)) > 0
for all i, all commuters travel by car, that is, î = 0, (ĉ, b̂) = (I, 0), and V = I > V .

Next, we will characterize the indifferent commuter î ∈ [0, ī] for the congestion
case as the root of the auxiliary function (10),

δ(i) ≡ ∆(i, γ(i), ψ(i)) = ∆(0, γ(i), ψ(i)) + ∆′(γ(i))i,

where the traffic flow is found at (8) and the external effect at (6). The following
result presents the modal allocation for the congested case.

Proposition 2 Let us consider a network defined by Assumptions 1-2 that defines a
congestion threshold V = V (̄i), and the modes features and commuters characterized
by Assumptions 3-6. Let us a assume any functional parametrization for γ(V ) and
ϕ(c, b). Let us consider that the traffic flow generates a congestion externality, i.e.,
V (̂i) > V , as the indifferent commuter is set at î ∈ [0, ī). Then,

i) If ∆(0, γ(̂i), ψ(̂i)) > 0 all commuters will travel by car (ĉ, b̂) = (I, 0), and the
indifferent commuter is set at î = 0 and the traffic flow is V (0) = I > V .
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ii) If ∆(0, γ(̂i), ψ(̂i)) < 0 and ∆(0, γ(0), ψ(0)) < 0, then,

ii.1) if ∆(̄i, ψ(̄i)) > 0 then there exists an indifferent commuter at î ∈ [0, ī)
for which ∆(̂i, γ(̂i), ψ(̂i)) = 0 and such that (ĉ, b̂) = (I − î, î/B) and the
traffic flow V (̂i) is found at (8).

ii.2) if ∆(̄i, ψ(̄i)) < 0 then ∆(0, 0) < 0 and the function δ(i) is increasing
for all i > 0, i.e., δ′(i) > 0. Then î > ī and this case drops into the
non-congestion case at Proposition 1.ii).

iii) If ∆(0, γ(̂i), ψ(̂i)) < 0 and ∆(0, γ(0), ψ(0)) > 0, then ∆(0, 0, 0) > 0 and
∆(̄i, ψ(̄i)) > 0. Consequently, there exists at least one indifferent commuter at
î ∈ [0, ī) for which ∆(̂i, γ(̂i), ψ(̂i)) = 0 and such that (ĉ, b̂) = (I − î, î/B) and
the traffic flow V (̂i) is found at (8).¤

Proof of Proposition 2. Parts i) and ii) are straightforward consequences of
(10) and, for part ii) that δ(0) < δ(̄i). To proof part iii) take the auxiliary function
ρ(i) ≡ ∆(0, γ(i), ψ(i)), such that ρ(0) ≡ ∆(0, γ(0), ψ(0)) > 0; ρ(̄i) ≡ ∆(0, ψ(̄i)) =
∆(0, 0, 0) > 0, with ρ′(i) = 0; and, ρ(̂i) ≡ ∆(0, γ(̂i), ψ(̂i)) = −î∆′(1 + γ(̂i))). The
latter is a consequence of ∆(i, γ(i), ψ(i)) = ∆(0, γ(i), ψ(i)) + i(1 + γ(i))∆′(0).¤

5 The decentralized allocation of traffic.

In this section we will analyze the modal allocations when the modal decisions are
not centralized, but taken instead by each each commuter independently. We will
suppose that commuters behave stationary, so their modal choice is average. Ac-
cordingly, rather than focusing on some short-run (dynamic) adjustment process
problem, for example, after the introduction of alternative roads or travel modes,
we will analyze a (long run) stationary equilibrium, i.e. the static case once all
commuters has been accommodated to the (daily) peak-hour transportation envi-
ronment along the infrastructure. In this decentralized environment, commuters
have property rights as depicted by Assumption 5. Each commuter i is a car owner;
her wealth comes from an exogenous income yi, e.g., her real wage per day; and,
she is endowed with T units of time at the slot just before the working activities to
devote traveling or leisure activities.

The commuter i’s problem, for any i ∈ [0, I], consists on choosing the trans-
portation mode to undertake the trip, whether by car or by bus, the leisure time at
the peak-hour slot, and the consumption decision at off-peak hours that maximizes
her welfare subject to her monetary and temporal restrictions. The problem and
the first order conditions (A2.1)-(A2.6) are displayed in Appendix A.2.

The decentralized optimal modal choice condition for each commuter is found as
follows. First, substitute (A2.1)-(A2.2) onto (A2.3)-(A2.6), and then substitute the
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Lagrangian multiplier νi
2 so as to equalize (A2.5) and (A2.6). Then, after multiplying

by vi
cv

i
b, we attain

vi
cv

i
b

{[
kct

i
c + φtic +

i

I
βct

i
c

]
−

[
kb + φtib +

i

I
βbt

i
b

]}
= 0.

Some agents will be car commuters, i.e., vi
b = 0, while others will be bus commuters,

i.e., vi
c = 0. At the margin, the optimal modal condition for the decentralized indif-

ferent commuter denoted to as i∗, i.e., the one who is indifferent between traveling
by car or by bus, is given by

(
kct

i∗

c + φti
∗

c +
i∗

I
βct

i∗

c

)
=

(
kb + φti

∗

b +
i∗

I
βbt

i∗

b

)
. (11)

It is worth of commenting that the commuter optimal decision is independent of the
individual income, because of our assumption that the preferences (1) are quasilin-
ear.

We make use the same notation as in the previous section so that the auxiliary
function in (7) to determine the individual optimal decision as

∆(i, γ, 0) = MCb(i, γ, 0) − MCc(i, γ, 0).

It is important to realize that the commuters do not internalize their external costs
at all, which means that their decisions are independent of the aggregate level of
the traffic flow. Accordingly, the commuter’s decisions are taken as no externality
exists.

We can define an equilibrium as follows.

Definition 9 Let us consider a network defined by Assumptions 1-2 that defines a
congestion threshold V = V (̄i), and the modes features and commuters characterized
by Assumptions 3-6. An equilibrium of this network is the consumption decision
at off-peak hours, the leisure time at the peak-hour slot and the transportation mode
to undertake the trip, whether by car or by bus, for each commuter i ∈ [0, I], i.e.,
{(ci∗, li∗, vi∗

c , vi∗
b )}i∈[0,I], and a traffic flow, V ∗, such that,

(1) (ci∗, li∗, vi∗
c , vi∗

b ) maximizes the commuter i’s problem for a given traffic flow
V ∗, and for any i ∈ [0, I];

(2) Markets clears,

ci∗ +
[
kcτ

i
cv

i∗
c (1 + γ(V ∗)) + kbv

i∗
b

]
= yi for each i ∈ [0, I]

li∗ +
[
vi∗

c τ i∗
c + vi∗

b τ i
b

]
(1 + γ(V ∗)) = T for each i ∈ [0, I]

c∗ + b∗ =

∫

i∈[0,I]

vi∗
c di +

1

B

∫

i∈[0,I]

vi∗
b di = V ∗.
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The decentralized optimal rule for modal allocation for each commuter is the
following. For any given decentralized traffic flow V ∗ = V (i∗) found at (8), the
commuter i′ will travel by car whenever her generalized price of traveling by bus
is dearer than that when traveling by car, MCb(i

′, γ(i∗), 0) > MCc(i
′, γ(i∗), 0), i.e.,

∆(i′, γ(i∗), 0) > 0; otherwise, she will be a bus commuter since traveling by car is
more expensive for her, MCb(i

′, γ(i∗), 0) < MCc(i
′, γ(i∗), 0), i.e., ∆(i′, γ(i∗), 0) < 0.

At the margin, condition (11) allows us to characterize the decentralized indif-
ferent commuter i∗, for which both generalized prices equalize; that is, i∗ is a root
of the linear auxiliary function

∆(i, γ(i∗), 0) = ∆(0, γ(i∗), 0) + ∆′(γ(i∗))i,

whose intercept is ∆(0, γ(i∗), 0) = MCb(0, γ(i∗), 0) − MCc(0, γ(i∗), 0) = φ(τ b −
τ c)(1 + γ(i∗))− (kcτ c(1 + γ(i∗))− kb); and, it has positive slope ∆′(γ(i∗)) = [βbτ b −
βcτ c](1 + γ(i∗))/I > 0. Independently of being in the congested region or not, the
indifferent commuter i∗ ∈ [0, I] is attained by

i∗(τ c, τ b, kc, kb; γ(i∗)) =
τ ckc − kb

1
1+γ(i∗)

+ φ(τ c − τ b)

βbτ b − βcτ c

I =
∆(0, γ(i∗), 0)

∆′(γ(i∗))
.

This function, somehow, could be considered as a demand function for the modes.
Then, the decentralized equilibrium modal allocation is the following: there will be
i∗ commuters of type [0, i∗] that travel by bus, and I − i∗ commuters that travel
by car. That is, commuters that disagree more the uncomfortable trips will travel
by car, and those who disagree less will travel by bus, as each commuters demand
for transportation modes are independent of their income. The equilibrium modal
distribution is (c∗, b∗) = (I − i∗, i∗/B), so the traffic flow (8) is given by

V (i∗) =
i∗

B
+ [I − i∗] = I −

B − 1

B

∆(0, γ(i∗), 0)

∆′(γ(i∗))
.

This analysis has been undertaken independently that there exists, or not, a
congestion externality. The following proposition compares the equilibrium alloca-
tion with the optimal allocation found in the previous section for the case with and
without externality.

Proposition 3 Let us consider a network defined by Assumptions 1-2 that defines a
congestion threshold V = V (̄i), and the modes features and commuters characterized
by Assumptions 3-6. Let be i∗ the decentralized indifferent commuter. Then,

i) If the decentralized traffic flow is below the threshold capacity, i.e., V (i∗) <
V , then the decentralized indifferent commuter is the same as the optimal
indifferent commuter, i.e., i∗ = î < ī, and the equilibrium allocation is Pareto
efficient.

22



ii) Otherwise, if V (i∗) > V , then the number of commuters traveling by car in
equilibrium is higher than in the optimal case, so ī < i∗ < î, and the equilibrium
allocation is not Pareto efficient.

iii) Finally, if î = 0, then all commuters travel by car at the decentralized equilib-
rium ī > i∗ = î = 0, and the corner equilibrium allocation is Pareto efficient.

Proof of the Proposition 3. The proof is straightforward for i). In what
respects to ii) recall that in the equilibrium case the commuters do not internalize
their decisions on the aggregate traffic flow. Then, each commuter i’s costs at the de-
centralized case will always be lower than in the optimal one, i.e., MCm(i, γ(i∗), 0) <
MCm(i, γ(i∗), ψ(i∗)), for m = b, c. Provided the congestion externality hurts more
to car commuters, if ψ are not considered more commuters will choose travel by
car.¤

Two comments on the descentralized allocation of traffic can be made. First,
there exists a traffic threshold V such that below this threshold traffic level do
not provoke congestion. In this case γ(V ) = 0 and γ′(V ) = 0 for all V ≤ V .
In consequence ψ = 0 and the descentralized allocation is efficient. Beyond this
value any level of traffic provoke congestion, so the resulting allocation is not Pareto
optimum: the individual optimal conditions condition (A2.5) and (A2.6) are not
equal to the social planner conditions (A1.5) and (A1.6). The reason is that drivers
do not internalize their modal decision on other agents’ travel time and on her
own travel time. Self-interest maximization leads each agent to equate her private
marginal rate (of substitution or transformation) to the price ratio and results in the
equalization of private rates, whereas Pareto optimality requires the equalization of
social rates.

[Insert Figure 2]

Second, the individual i’s problem above described chooses only one transporta-
tion mode. Therefore, her problem can be reduced to14

max{U i
c,U

i
b} = max

{
U i

(
yi − kc(t

i
c), T − tic, θ

i(tic, βc, i)
)
; U i

(
yi − kb, T − tib, θ

i(tib, βb, i)
)}

.

Therefore, for each level of congestion, there exists a decentralized indifferent agent
i∗ such that U i∗

c = U i∗

b , and the equilibrium level of traffic flow, V (i∗) is given by
(8).

14The transportation literature usually starts from this expression. See Ben-Akiva and Lerman
(1985, Chap.3). For example, p.45, taking an additive utility function U i(ci, li, θi) = β

1
ci + β

2
li −

β
3
θi. Then the problem would be reduced to

max{U i

c
,U i

b
} =

{
β

0c − β
1
kc(t

i

c
) − β

2
ti
c
− β

3
θi(ti

c
, βc, i);β0b − β

1
kb − β

2
ti
b
− β

3
θi(ti

b
, βb, i)

}

where β
0m are the exogenous parameters for each mode m = c, b. This is the relations usually

estimated in empirical works.
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5.1 Welfare losses of traffic congestion.

Finally, the equilibrium framework we have made use along this paper allow us
to gauge the welfare losses at the decentralized equilibrium at the congested case.
Given a network defined by Assumptions 1-2 that defines a congestion threshold
V = V (̄i), and the modes features and commuters characterized by Assumptions
3-6. Let be i∗ the decentralized indifferent commuter, and î the optimal indifferent
commuter. Then the welfare losses for each commuter i is given by comparing the
welfare at the decentralized equilibrium from the one she would received at the
optimal allocation. That is,

wi(i∗, î) = U i∗
(
ci∗ , li

∗

, θi∗
)
− U î

(
cî, lî, θî

)
.

Recall that there are no welfare losses in the case that no congestion exists, because
i∗ = î and then the equilibrium modal distribution is Pareto efficient. At the
aggregate level, the total aggregate welfare losses are given by the addition of all
these individual losses, i.e.,

W i =

∫

i∈[0,I]

widi.

The computation of these welfare losses will help us to analyze any menu of second-
best transportation policies for improving a decentralized network congestion.
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6 Policies

The problem of congestion we are dealing has an interesting and particular feature
that distinguishes this problem of externalities from others of the kind. Observe that
the externality “congestion” does not exist until a certain degree of traffic –degree
which depends on the road infrastructure. This is crucial when we are studying
the Pareto-efficient problem. Below this threshold no externality exists, so the first
welfare theorem points out that the decentralized problem is also one possible allo-
cation found at the Social Planner problem. Beyond this level of traffic, congestion
exists and then decentralized allocations are not efficient so government policies
could be required.15 However, given the existing infrastructures and the existing
modes we could expect an efficient allocation of traffic supported with certain level
of congestion.

The unique transportation policy for Case 2) congestion externality is an im-
provement on infrastructures or the introduction of a new mode.

7 Numerical example

We ilustrate the utility of this model obtaining the traffic allocation and congestion
using american traffic data.

Tasks:
i. Determine indifferent conmmuter in centralised and decentralised equilibrium.

So, determine traffic flow and congestion.
ii. Determine the welfare losses of nonoptimal allocations of traffic
iii. What does imply an inefficient modal allocation in cuantitative terms?

8 Conclusions

The goal of this paper has been to present a microeconomic foundated model of
the traffic stream in a city at daily peak hours. We analyzed the social planner
problem and characterized all Pareto optimal allocations. Then, we calculated the
decentralized equilibrium. The main characteristic of congestion as an externality
is that it is not always active. For low levels of traffic, no congestion exist and
the decentralized allocations are efficient. However, for high levels of traffic, the
externality appears, and then efficient and decentralized allocations are not the

15This aspect is important when the policy-maker has in mind to implement some policy, like an
improvement of infrastructures. If the improvement is enough so that the externality disappears, an
efficient allocation is obtained. That is, we must take care when studying policy recommendations
in our static partial equilibrium model, since the money or resources to carry out infrastructures
improvements are diverted from other alternative uses, and we should specify which.

We could assume that an improvement on the infrastructure -except for, e.g., an underground-
may decrease citizens’ welfare: think on streets with five lanes in two directions.
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same. As in other examples of externalities, there may exists an optimal level of
congestion.

Further research points out to analyze some kind of mechanisms that can be
implemented to achieve the Pareto optimal allocations. Any of these mechanisms
must include the extraction of rents from those agents who produces the negative
externality, and a transfer of income to those who suffers it.16
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Appendix: The social planner Problem

A.1 The social planner problem

The social planner maximizes the commuters’ weighted welfare function, by choosing
an allocation of consumption, leisure, travel time at each of the modes, and the
modal choice for each of the I commuters, which also entails the aggregate traffic
flow. The planner is restricted by the feasible consumption set, where consumption
and travel costs equals total income resources; and, each commuter’s feasible time
set, where time endowment is devoted to leisure activities and travel time, which is
produced with aggregate modal decisions and the technological features described
in Assumptions 1–2. Hence, the problem is the following,

max{ci,li,tic,ti
b
,vi

c,vi

b}i∈I
,V

∫
i∈[0,I]

αi

{
ci + φli − i

I
[βcv

i
ct

i
c + βbv

i
bt

i
b]

}
di

s.t.
∫

i∈[0,I]

[
ci + (kct

i
cv

i
c + kbv

i
b)

]
di = Y ≡

∫
i∈[0,I]

yi : λM

li + vi
ct

i
c + vi

bt
i
b = T for i ∈ I : λi

T

tic = τ c [1 + γ(V )] for i ∈ I : µi
c

tib = τ b [1 + γ(V )] for i ∈ I : µi
b

vi
cv

i
b = 1 for i ∈ I : νi

1

vi
c + vi

b = 0 for i ∈ I : νi
2; and∫

i∈[0,I]

[
vi

c + 1
B

vi
b

]
di = V : ψ

where Y =
∫

i∈[0,I]
yi di is the aggregate consumption goods; αi is the weighting

assigned to commuter i by the planner; and, for a given set of the parameters τ c,
τ b, βc, βb, kc, kb, φ, γ, V , B, and I.

The necessary conditions of the problem are given by the constraints at the
planner problem multiplied by the corresponding Lagrangian multiplier, and the
first order conditions are given by

ci : αi1 −λM = 0 (A1.1)
li : αiφ −λi

T = 0 (A1.2)
tic : −αi

i
I
βcv

i
c −λMvi

ckc −λi
T vi

c −µi
c = 0 (A1.3)

tib : −αi
i
I
βbv

i
b −λi

T vi
b −µi

b = 0 (A1.4)
vi

c : −αi
i
I
βct

i
c −λM tickc −λi

T tic −vi
bν

i
1 −νi

2 −ψ = 0 (A1.5)
vi

b : −αi
i
I
βbt

i
b −λMkb −λi

T tic −vi
cν

i
1 −νi

2 − 1
B

ψ = 0 (A1.6)

for i ∈ I, and

V : γ′(V )
∫

i∈[0,I]
[τ cµ

i
c + τ bµ

i
b] di +ψ = 0 (A1.7)

where λM , λi
T , µi

c, µi
b, νi

1, νi
2, and ψ are the Lagrangian multipliers, which are positive

as long as individual preferences are monotonic.
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A.2 The commuter i’s problem

Any commuter i, with i ∈ [0, I], maximizes her utility U i(ci, li, θ(tic, t
i
b)) by choosing

the transportation mode to undertake the trip, whether by car or by bus, the leisure
time at the peak-hour slot, and the consumption decision at off-peak hours subject
to her monetary and temporal restrictions, where time endowment is devoted to
leisure activities and travel time, which is produced with aggregate modal decisions
and the technological features described in Assumptions 1–2. Hence, the problem is
the following,

max{ci,li,tic,ti
b
,vi

c,vi

b}
ci + φli − i

I
[βcv

i
ct

i
c + βbv

i
bt

i
b]

s.t. ci + kct
i
cv

i
c + kbv

i
b = yi : λi

M

li + vi
ct

i
c + vi

bt
i
b = T : λi

T

tic = τ c [1 + γ(V )] : µi
c

tib = τ b [1 + γ(V )] : µi
b

vi
cv

i
b = 1 : νi

1; and
vi

c + vi
b = 0 : νi

2,

given the exogenous income, yi, and the traffic flow V ; and, for a given set of the
parameters τ c, τ b, βc, βb, kc, kb, φ, γ, V , B, and I. Observe that any commuter
i takes the traffic flow as given, since each agent does not internalize her negative
contribution to the increase of travel time when she makes her modal decision. The
first order conditions are as follows:

ci : 1 −λi
M = 0 (A2.1)

li : φ −λi
T = 0 (A2.2)

tic : − i
I
βcv

i
c −λi

Mvi
ckc −λi

T vi
c −µi

c = 0 (A2.3)
tib : − i

I
βbv

i
b −λi

T vi
b −µi

b = 0 (A2.4)
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c : − i
I
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i
c −λM tickc −λi

T tic −vi
bν

i
1 −νi

2 = 0 (A2.5)
vi

b : − i
I
βbt

i
b −λMkb −λi

T tic −vi
cν

i
1 −νi

2 = 0 (A2.6)

where λi
M , λi

T , µi
c, µi

b, νi
1, and νi

2 are the Lagrangian multipliers, which are positive
as long as individual preferences are monotonic.
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Figure 1: Traffic flow line (2), and the congestion threshold (3) set for a given
technological congestion threshold V . At the crossing the non-congestion threshold
pair (c, b) = (I − ī, ī/B)
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Figure 2: Optimal modal distribution (ĉ, b̂) for the non-congested case. Above traffic
flow line (2), and the congestion threshold (3) set for a given technological congestion
threshold V . Below, the auxiliary function (7) with positive axis at the left hand,
for the case that the intercept takes a negative value ∆(0, 0) > 0.
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