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Abstract

The main aim of our paper is to try to improve the results obtained by
Funke and Strulik in order to obtain optimal solutions for all variables.
To do this we develop an alternative model of endogenous growth with
physical capital, human capital and R&D, not substantially different
from the model developed by Funke and Strulik, but where there are
however three essential refinements that we consider necessary to be
made.
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1 Introduction

The balanced growth path of the endogenous growth model with physical
capital, human capital and R&D has been explored first by Funke and Strulik
(2000), and then by Arnold (2000). Funke and Strulik suggest that the
typical advanced economy follows three development phases, characterized in
a temporal order by physical capital accumulation, human capital formation,
and innovation, and that the transitional dynamics of the model reproduce
such a sequencing.

Few years later, Gomez (2005) analyzed the equilibrium dynamics of this
model, generalize and correct the analysis of the papers of Funke and Strulik,
and Arnold. Recently, Sequeira (2008) incorporates the erosion effect into an
endogenous growth model in which growth is generated by the accumulation
of physical, human capital, and R&D, and claims this effect significantly
improves the fit between the model and the data.

Iacopetta (2010) extends the earlier analysis of Funke and Strulik and
argues that other sequences of the phases of development are possible and
shows that the model can generate a trajectory in which innovation precedes
human capital formation. This trajectory accords with the observation that
the rise in formal education followed with a considerable lag the process of
industrialization. It is important to be pointed out here that in a recent
paper, Iacopetta (2011) introduces diminishing returns to time in R&D, in
order to broke the linearity of the Hamiltonian.

In our opinion, some results of these authors are affected by the fact that
the Hamiltonian considered in these papers is linear (affine) in one of the
control variables. Consequently, they are in the so called bang solution and
from there it follows that there are only two possibilities. In the first case
the control variable can take one of the two bounded limits of its interval of
definition and in the second case it can take any value in that interval. Our
paper tries to avoid this inconvenient by considering an alternative model.
The outline of the paper is as follows. The first section is this introduction.
In the second section we present a brief description of the model developed
by Funke and Strulik, in the third section we develop an alternative model, in
the fourth section we lay down some properties of the balanced growth path
and the conditions for its existence, and in the final section we give some
numerical simulations, compare our result with those of Funke and Strulik,
and present some conclusions.
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2 The model of Funke and Strulik

In this section, we summarize the model developed by FS and Arnold and
derive the differential equations that describe the dynamics of the economy.
The economy has a constant population of measure one. Each individual
is endowed with one unit of time. A single homogenous final good Y is
produced according to a CobbDouglas production function.

Y = A1K
βDη (HY )1−β−η , (1)

where A is a positive constant, β and η are positive elasticity parameters with
β+ η ≤ 1, K is physical capital, HY denotes the skills level of human capital
employed in the final good sector and D represents an aggregate index of
intermediate goods, the amount used for each one being x(i), i = 1, 2, · · · , n.
The market for final goods is perfectly competitive and the price for final
goods is normalized to one, which implies a rental charge of βY/K for a unit
capital. No-arbitrage requires that this rental charge equals the interest rate
r = βY/K Furthermore, equating price and marginal production costs yields

pD =
Y

D
and w = (1− β − γ)

Y

HY

,

where pD represents the price index for intermediates. Each firm in the R&D
sector owns an infinite patent for selling its variety x(i). Producers act under
monopolistic competition and maximize operating profits.

π(i) = [p(i)− 1]x(i),

where p(i) denotes the price of an intermediate and 1 is the unit cost of
Y . Facing the price elasticity of demand ε = 1

1−α each firm charges a price

p = p(i) = 1
α
. Intermediate goods are embodied in the final product and

hence depreciate completely with one cycle of production. One unit of each
intermediate can be obtained from one unit of final output. Output is used
for consumption and investment, and under symmetry x(i) = x. Hence we
can write

D = xn
1
α (2)

and since
pD ·D = pxn,
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the total quantity of intermediates employed are given by

nx = αηY. (3)

We assume that output of new intermediates is determined solely by the
aggregate knowledge devoted to the R&D sector according to:

ṅ = δHn, (4)

with efficiency parameter δ > 0. Additionally, individuals may spend part of
their human capital, HH on development of skills. This non-market activity
is described by a production function of the Lucas (1988) type:

Ḣ = ξHH (5)

with efficiency parameter ξ > 0. The population size is normalized to one
so that all aggregate magnitudes can be interpreted as per capita quantities.
Human capital is supplied inelastically and leisure does not enter the utility
function. Therefore, full employment requires:

H = HY +Hn +HH . (6)

Households earn wages w per unit of employed human capital (H−HH) and
returns r per unit of aggregate wealth A, which leads to the budget constraint

Ȧ = rA+ w (H −HH)− C. (7)

If ν denote the value of an innovation, then free-entry into R&D requires

w = δν and Hn > 0

in an equilibrium with innovation, or

w > δν and Hn = 0

in an equilibrium without innovation. For simplicity, as in the paper of Funke
and Strulik we neglect depreciation, which leads to the economy’s resource
constraint

Y = K̇ + C + nx. (8)

In order to simplify the computational procedure we denote by HH = uH,
Hn = vH and HY = (1− u− v)H, with u, v ∈ (0, 1) and u+ v < 1. Subject
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to this constraint and to the knowledge formation technology they maximize
intertemporal utility ∫ ∞

0

C1−θ − 1

1− θ
e−ρtdt, (9)

where ρ > 0 denotes the time preference rate and 0 < θ−1 < 1 defines the
intertemporal elasticity of substitution. Using the state variables H and A
and the control variables C and u, the Hamiltonian is defined as follows.

J (A,H, u, C) =
C1−θ − 1

1− θ
+ λ [rA+ w(1− u)H − C] + µξuH. (10)

The first-order conditions are given by

∂J

∂c
= 0 ⇒ c−θ = λ, (11)

and
∂J

∂u
= 0 ⇒ H (ξµ− wλ) = 0. (12)

The derivatives of J with respect to H and A will produce

λ̇

λ
= ρ− r, ⇒ ċ

c
=
r − ρ
θ

(13)

and
µ̇

µ
= ρ− ξ. (14)

Here is the big problem with the model of Funke and Strulik, because the
hamiltonian is linear in the control variable u. Rearranging the terms of
relation (10) we can write

J (A,H, u, C) =
C1−θ − 1

1− θ
+ λ [rA+ wH − C] + [ξµ− wλ]uH (15)

The problem of maximizing intertemporal utility (9) subject the restrictions
(5) and (7), is equivalent to the maximization of the Hamiltonian function
J . One of the first order conditions implies

H (ξµ− wλ) = 0.

Since H is assumed to be positive but ξµ−wλ 6= 0 for all t > 0 this condition
does not hold and we have only two possibilities for u ∈ (0, 1), depending
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on the sign of ξµ − wλ. If ξµ − wλ > 0, then u = 1 and if ξµ − wλ < 0,
then u = 0. (see Seierstad and Sydsaeter, pag. 165). If ξµ − wλ = 0 for
all t > 0, then the Hamiltonian function given above does not depend on u
and therefore it attaints its maximum for any value of u ∈ (0, 1), or in other
words, u is not a control variable. Surprisingly, the two authors assume that
ξµ = wλ, from where it immediately follows

ẇ

w
=
µ̇

µ
− λ̇

λ
= r − ξ,

indicating that the growth rate of wages must be sufficiently high compared
to the interest rate to ensure investment in human capital. They also prove
later that ξ > ρ. In fact they do not determine the optimal value of u because
this is not possible. In what follows, the authors compute some equations
that will be useful to characterize the three stages of development. The first
is the resource constraint. Substituting (3) into the resource constraint (8)
they arrive to the following equation

K̇ = (1− αη)Y − C. (16)

Substituting (2) and (3) into the production function (1) and denoting by
HY = u1H they get

Y 1−η = A2K
βn

(1−α)η
α u1−β−η1 H1−β−η (17)

where A2 = A1 (αη)η. Although these equations are not part of the optimal
problem, together with equation (13) - derived from the optimal problem,
can give a characterization of the case of developing economy, that means
an economy capable of long run growth through accumulation of physical
capital, expanding quantity of intermediate goods, and improvements in the
quality of labor, but without developing new products. We remark here
that the equation (32) at page 498, describing the trajectory of u1 does not
coincide with the same equation in the Lucas model, but has the same steady
state value. This it happens because η 6= 0, even if they suppose the absence
of development of new products, but at steady state, u1 is independent of η.
When Funke and Strulik analyze the case of the innovative economy, their
equations (36) and (45) give the steady state value of u1, where HY = u1H,
but their model cannot produce the steady state value for the variable u,
where HH = uH. That is why we say that the results thereafter obtained by
the authors, under this assumption, ξµ − wλ = 0 for all t > 0, are at least
questionable. We do not claim that their results are incorrect.
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3 An Alternative Model

In this section we develop an alternative model in order to obtain optimal
solutions for all variables. Our model is not substantially different from the
model developed by Funke and Strulik. There are however three essential
refinements that we consider necessary to be made. The first consists in
introducing the resource constraint in the optimal problem. In order to avoid
the linearity of the Hamiltonian, we modify the definition of the variables
HY and HH , and finally we will consider only the case of the social planner’s
problem. Our model is characterized by the following optimization problem:∫ ∞

0

C1−θ − 1

1− θ
e−ρtdt, (18)

subject to 

K̇ = Y − C − nx,

Ḣ = ξHH ,

ṅ = δHn,

H0 = H(0), K0 = K(0), n0 = n(0),

(19)

where
Y = AKβn

η
αxηHγ

Y ,

H is the human capital level of a representative worker. Consumption goods
are produced competitively using human capital HY . In order to simplify
the computational procedure we denote by HH = uH and Hn = vH, with
u, v ∈ (0, 1). Consequently we have HY = (1 − u − v)H. K, H and n are
state variables and C, u, v and x are control variables, and A > 0, α > 0,
β > 0, η > 0, γ > 0, θ > 0, ρ > 0, ξ > 0, with γ = 1− β − η.
To solve the problem (18) subject to (19), we define the Hamiltonian function:

J =
C1−θ − 1

1− θ
+ λ

[
AKβn

η
αxηHγ(1− u− v)γ − C − nx

]
+µξHu+ νδHv. (20)

In an optimal program the control variables are chosen so as to maximize J .
The necessary conditions for a maximum are:

∂J

∂C
= 0 ⇒ C−θ = λ; (21)
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∂J

∂u
= 0 ⇒ γAKβn

η
αxη(1− u− v)γ−1Hγ−1λ = ξµ; (22)

∂J

∂v
= 0 ⇒ γAKβn

η
αxη(1− u− v)γ−1Hγ−1λ = δν; (23)

∂J

∂x
= 0 ⇒

[
ηAKβn

η
αxη−1(1− u− v)γHγ − n

]
λ = 0; (24)

λ̇ = ρλ− ∂J

∂K
= ρλ− βAKβ−1n

η
αxη(1− u− v)γHγλ; (25)

µ̇ = ρµ− ∂J

∂H
= ρµ− γAKβn

η
αxη(1− u− v)γHγ−1λ− ξuµ− δvν; (26)

ν̇ = ρν − ∂J

∂n
= ρν −

[ η
α
AKβn

η
α
−1xη(1− u− v)γHγ − x

]
λ. (27)

The boundary conditions include initial conditions and the transversality
conditions:

lim
t→∞

e−ρtλ(t)K(t) = 0, lim
t→∞

e−ρtµ(t)H(t) = 0 and lim
t→∞

e−ρtν(t)n(t) = 0.

From (22) and (23) it immediately follows that ξµ = δν. Substituting (22)
into (26) we find

µ̇

µ
= ρ− ξ.

From (24) we deduce that

ηAKβn
η
αxη(1− u− v)γHγ = nx, (28)

that is ηY = nx and substituting this result and (23) into (27) we get

ν̇

ν
= ρ− δη(1− α)

αγ

H(1− u− v)

n
.

Given the above relation concerning µ and ν we deduce that

H

n
=

αγξ

δη(1− α)

1

1− u− v
. (29)

Substituting this result into the third equation of (19) we find that

ṅ

n
=

αγξ

η(1− α)

v

1− u− v
. (30)
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Taking the logarithm and differentiating (29) with respect to time we get

u̇+ v̇

1− u− v
= ξu− αγξ

η(1− α)

v

1− u− v
. (31)

Substituting (28) into the first equation of (19) it follows

K̇

K
= (1− η)

Y

K
− C

K
. (32)

Log differentiating (28) with respect to time we find

β
K̇

K
+
( η
α
− 1
) ṅ
n
− (1− η)

ẋ

x
− γ u̇+ v̇

1− u− v
+ γ

Ḣ

H
= 0,

and substituting the above results we get

ẋ

x
= β

Y

K
− β

1− η
C

K
+
γξ(αγ + η − α)

η(1− α)(1− η)

v

1− u− v
. (33)

Taking logarithm and differentiating (22) with respect to time we obtain

β
K̇

K
+
η

α

ṅ

n
+ η

ẋ

x
+ (1− γ)

u̇+ v̇

1− u− v
− (1− γ)

Ḣ

H
+
λ̇

λ
=
µ̇

µ
,

and substituting the above results we find the following equation

u̇+ v̇

1− u− v
=
ξ[(1− γ)u− 1]

1− γ
+

β

(1− γ)(1− η)

C

K

− γξ(1− α + αγ)

(1− α)(1− γ)(1− η)

v

1− u− v
. (34)

Combining now (31) and (34) we get

C

K
=
γξ(αγ − α + η)

βη(1− α)

v

1− u− v
+
ξ(1− η)

β
(35)

and substituting this result into (33) we obtain

ẋ

x
= β

Y

K
− ξ. (36)
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We can now close the system and write down the final form

K̇
K

= (1− η) Y
K
− γξ(αγ−α+η)

βη(1−α)
v

1−u−v −
ξ(1−η)
β

,

Ḣ
H

= ξu,

ṅ
n

= αγξ
η(1−α)

v
1−u−v ,

u̇+v̇
1−u−v = ξu− αγξ

η(1−α)
v

1−u−v ,

Ċ
C

= −ρ
θ

+ β
θ
Y
K
,

ẋ
x

= β Y
K
− ξ,

λ̇
λ

= ρ− β Y
K
,

µ̇
µ

= ρ− ξ,

(37)

4 The balanced growth path

This section lays down the properties of the balanced growth path and the
conditions for its existence. The system described above reaches the balanced
growth path (BGP ) if there exists t∗ (possibly infinite), such that the set
of functions of time {K(t), H(t), C(t), n(t), x(t), u(t), v(t)} solve the optimal
control problem and such that, for all t ≥ t∗, {K(t), H(t), C(t), n(t), x(t)}
growth at constant rates rK , rH , rC , rn, rx and ru = rv = 0. We denote by
rz the growth rate of variable z, z∗ i its value at t = t∗ and z∗ is its value
for t > t∗. The following proposition gives our main result that characterizes
the balanced growth path.

Proposition 1 If α < η
1−γ , ξ > ρ and for all t ≥ t∗, ru = rv = 0, then the

above system reaches the BGP and the following statements are valid

i. rK∗ = rC∗ with

rK∗ =
ξ(ξ − ρ) [η(1− α) + αγ]

αγθ + η(1− α)(θ − 1)
, (38)
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ii. rH∗ = rn∗ with

rH∗ =
αγξ(ξ − ρ)

αγθ + η(1− α)(θ − 1)
, (39)

iii.

rx∗ =
ξη(1− α)(ξ − ρ)

αγθ + η(1− α)(θ − 1)
, (40)

iv. u∗ ∈ [0, 1], v∗ ∈ [0, 1]

u∗ =
αγ(ξ − ρ)

αγθ + η(1− α)(θ − 1)
, v∗ =

u∗(1− u∗)
u∗ + ϕ

, (41)

1− u∗ − v∗ =
αγθ + η(1− α)(θ − 1)− αγ(ξ − ρ)

αγθ + η(1− α)(θ − 1) + η(1− α)(ξ − ρ)
, (42)

v.

H∗
n∗

=
αγξ

δη(1− α)

αγθ + η(1− α)(θ − 1) + η(1− α)(ξ − ρ)

αγθ + η(1− α)(θ − 1)− αγ(ξ − ρ)
, (43)

C∗
K∗

=
γξ(ξ − ρ) [αγ − α + η]

β [αγθ + η(1− α)(θ − 1)]
, (44)

Proof of Proposition 1. Under the hypothesis ru = rv = 0, the fourth
equation of the system (37) can be written

ξ

[
u− ϕv

1− u− v

]
= 0, ϕ =

αγ

η(1− α)

from where we deduce that

u2 − (1− v)u+ ϕv = 0 ⇔ v =
u(1− u)

u+ ϕ

whose solutions are given by

u1 =
1

2

[
1− v −

√
(1− v)2 − 4ϕv

]
and u2 =

1

2

[
1− v +

√
(1− v)2 − 4ϕv

]
.

What we need is
(1− v)2 − 4ϕv ≥ 0
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and since
0 ≤ 1 + 2ϕ− 2

√
ϕ2 + ϕ ≤ 1,

the only acceptable condition is

v ∈
[
0, 1 + 2ϕ− 2

√
ϕ2 + ϕ

]
.

Let v∗ be such a solution and u∗ = u1∗. It is just a simply exercise to prove
that

1− u1∗ − v∗ = u2∗ ⇒ ϕv∗ = u∗u2∗.

Substituting this result into the third equation of the system (37) we get

rn = ξϕ
v∗
u2∗

= ξu∗ = rH

and consequently at BGP , H and n growth at the same constant rate rH .
The same property is obviously true for the variables Y and K. Let rK be
their common growth rate. Log differentiating Y = AKβn

η
αxηHγ(1−u−v)γ

and knowing that rY = rn + rx we have

(1− β)rK =
(
γ +

η

α

)
rH + η (rK − rH) .

Finally we obtain

rK =
η(1− α) + αγ

αγ
rH ⇒ rx =

η(1− α)

αγ
rH ⇒ Y

K
=
rx + ξ

β
.

From equation (35) we deduce that C/K is constant and therefore rC = rK .
The fifth equation of the system (37) can be written

rC = −ρ
θ

+
β

θ

Y

K
= −ρ

θ
+
rx + ξ

θ

and hence we have

η(1− α) + αγ

αγ
ξu∗ = −ρ

θ
+
η(1− α)

αθγ
ξu∗ +

ξ

θ

⇒
[
η(1− α) + αγ

αγ
− η(1− α)

αθγ

]
ξu∗ =

ξ − ρ
θ

⇒ u∗ =
αγ(ξ − ρ)

αγθ + η(1− α)(θ − 1)
⇒ v∗ =

u∗(1− u∗)
u∗ + ϕ

.

All other results follows immediately by direct computation and thus the
proof is completed.
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5 Conclusions and numerical simulations

Our results obtained above, seem to be correct since if we put η = 0 we
obtain exactly the results of the classical Lucas - Uzawa model (see Chilarescu
(2011), pag. 110). A remark is absolutely necessary here. As we can see, our
results do not coincide to those obtained by Funke and Strulik, first because
the starting points are different. Also our results do not coincides with those
obtained by Manuel Gomez from the same reasons. As we can see, in the
case of decentralized solution, examined by Funke and Strulik and then by
Manuel Gomez, we have the equality nx = αηY and in the case of social
planer solution we have nx = ηY .

In what follows we propose three benchmark values for our economy.

1. The first is those proposed by Funke and Strulik: β = 0.36, η =
0.36, α = 0.54, ξ = 0.05, ρ = 0.023, θ = 2, δ = 0.10 and A = 1. The
steady-state values are:

u∗ = 0.0087, v∗ = 0.0094, 1− u∗ − v∗ = 0.9819,

rK∗ = 0.0009, rH∗ = 0.0004, rx∗ = 0.0005,(
Y

K

)
∗

= 0.1402

(
H

n

)
∗

= 0.4649,

(
C

K

)
∗

= −0.00006.

2. The second one is those proposed by Manuel Gomez: β = 0.36, η =
0.36, α = 0.40, ξ = 0.05, ρ = 0.023, θ = 2, δ = 0.10 and A = 1. The
steady-state values are:

u∗ = 0.0069, v∗ = 0.0130, 1− u∗ − v∗ = 0.9801,

rK∗ = 0.0010, rH∗ = 0.0003, rx∗ = 0.0007,(
Y

K

)
∗

= 0.1407

(
H

n

)
∗

= 0.2645,

(
C

K

)
∗

= 0.00002.

3. We propose the following values: β = 0.25, η = 0.25, α = 0.35, ξ =
0.25, ρ = 0.04, θ = 1.5, δ = 0.10 and A = 1. The steady-state values
are:

u∗ = 0.1069, v∗ = 0.0807, 1− u∗ − v∗ = 0.8124,

rK∗ = 0.0515, rH∗ = 0.0267, rx∗ = 0.0248,(
Y

K

)
∗

= 1.0993

(
H

n

)
∗

= 3.3139,

(
C

K

)
∗

= 0.0229.
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As we can see, in the case of data used by Funke and Strulik, since α = 0.54
and the necessary condition for existence of the BGP is α < 0.5, the value
of the ratio C/K is negative. In his paper, Manuel Gomez puts right a slight
incorrectness in Funke and Strulik and Arnold papers.

A final remark is necessary here. We do not studied the stability properties
of the BGP because of some difficulties of the computation procedure, but
this will be realized in a future version of this paper.
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