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Abstract 

Efficiency scores are usually based on distance computations to the frontier in an m+s–

dimensional space, where m inputs produce s outputs. In addition, the efficiency improvements take into 

account the total consumption of each input. However, in many cases, each input can be divided into its 

own well–known stages, and trade–off among them is possible. If the sample firms share this framework, 

it can be used for computing efficiency. Such analysis provides information on the total optimal 

consumption of each input, as data envelopment analysis does, as well as on the most efficient assignment 

in each stage. This paper studies technical efficiency from this perspective. A non–parametrical 

methodology is presented, and a Multi-Criteria Linear Programming model (MLP) with input orientation 

is proposed. The analysis is performed considering different levels and defining the extent of satisfaction 

achieved at all these levels for each firm concerning its own utility function and weights for modelling 

firms’ preferences. The satisfaction levels are computed regarding the frontier with better performance. 

Thus, MLP offers more detailed information to advise decision makers than other models proposed in the 

literature do. This detailed information could be useful and important to the decision–making team of 

each firm, and it can help them improve their performance. Numerical examples are also put forward to 

better illustrate the proposed method. 

 

Keywords: efficiency and production processes, productivity and competitiveness, multicriteria and 
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1. Introduction 

 

The most used methodologies for the efficiency estimation through the frontier function are the 

following: the mathematical programming by the data envelopment analysis or DEA (Cooper et al., 

2007), and the so–called econometric frontier (Kumbahakar and Knox Lovell, 2000). The average 

efficiency level of the sample and the efficiency index of each firm can be estimated by using both 

methods. 

Some no – parametrical methods have been proposed for estimating efficiency.They differ from 

conventional DEA standards, as the one proposed by Pastor and Aparicio (2010, 2011). The approach 

proposed in this paper also differs from conventional DEA standards. As far as we known, in the previous 

scientific literature, the technical efficiency of a sample of firms has been globally analyzed in a 

productive process, wherein m inputs X are consumed for producing s outputs Y, according to the 

technology given by the production frontier. The parametrical and non–parametrical methods provide 

efficiency scores which measure distances to the frontier, radially or directionally, in an m + s 

dimensional space. In addition, both, the observed data and the efficiency improvement proposals are 

always related to the total consumption of each input: labor, capital, etc. 

Nevertheless, there are companies with production processes where the assignment of some input Xi can 

be detached in its own well – known and specific stages and trade – off among such stages is feasible. An 

example of such input can be some non–specialized jobs. If all the firms of the sample have this 

detachment structure in common for some input Xi, then this fact can be very interesting to be considered 

as a basis for the efficiency analysis. Such analysis provides information on the total optimal consumption 

of each input, as DEA does, and also of the most efficient assignment in each stage. 

This paper studies technical efficiency with this focusing. A new non–parametrical methodology is 

presented. Such methodology is applied to a productive process wherein the organizations of the sample 

present a common framework of detachment of each input in its own stages. That is, given an input, the 

stages in which such input is detached are the same for all the productive organizations, but can differ 

from the stages of detachment of the other inputs. A Multicriteria Linear Programming model (MLP) with 

input orientation is proposed. 
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The Multicriteria Decision making theory has, among others, a basic support in Linear Programming and 

the associated algorithms. The Multi-criteria Decision theory has its own and explicit theoretical 

framework, which includes well – specified conceptual definitions, and a systematic casual logic for 

assisting in decision making processes. Its goal is to reach a constrained optimization problem (model)in 

which the solution would lead to the best choice for the decision maker. The model assumes the existence 

of the decision – maker as an abstraction, enabling operational thinking (see, for example, Barba–Romero 

and Pomerol, 1997), and seeks to recreate (formalising and modelling) real–life situations. Multi-Criteria 

Linear Programming (MLP) plays an important role in the Multi-Criteria Decision theory. 

Since the landmark work by Charnes and Cooper (1961), the common denominator for supporting the 

decision making has been to build an unified analytical structure of three basic components: attributes 

[f(x)], objectives [Eff. f(x)], and decision variables [X]; where f(x) stands for mathematical expression of 

attributes, and Eff. f(x) for finding efficient solutions (Romero, 1983). The general Multicriteria Linear-

Programming (MLP) mathematical model can be written as follows: 

[ ]1 i kmin f ( X ) f ,... f ,... f

s.t. X C,

=
∈

 

where nC +⊆ ℝ (decision space) is the non – empty feasible region, given as a vector non empty set of 

constrains that outlines the contour lines of possible solutions: { }nC X : AX b+= ∈ ≥ℝ , being 

mb +∈ℝ  a data vector (the right side vector RHS as it is known in Linear Programming terminology), and 

m nA ×
+∈ℝ  is the technical coefficients matrix. In the MLP context, it is necessary to define how the 

(vector) objective function should be assessed for different alternatives X C .∈  

The dominance concepts and the ideas of dominated or non-dominated points are key aspects in MLP 

models in the so-called objective space (see, for example, Koomans, 1951). The non–dominated points 

are reference points for those that are dominated. Therefore, the control of resources in companies can be  

carried out by using technical efficiency scores as a standard procedure. In this line, this paper conducts a 

more detailed analysis (regards to each decision making unit (DMU), input and stage levels), than the 

existing standards in many DEA models. This detailed analysis is one of the main goals of the present 

paper. 

All the different available techniques that enable the evaluation of the observed or hypothetical situations 

intend to improve the behavior and performance of the DMUs, by comparing them to a benchmark. In the 
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case of MLP and DEA, both techniques provide an integrated framework for performance analysis in 

situations with homogeneous and independent DMUs. And both can be considered as complementary 

methods belonging to Multi-Criteria Decision Making (see, for example: Doyle and Green, 1993; Ray, 

2004). 

DEA models do not permit to incorporate decision makers’ preferences, and no additional information is 

needed to reach the reference point. In fact, the intensities, or weights in which each DMU contributes to 

the efficient solution, are integrated into the model itself. Moreover, its input/output values are considered 

as targets for inefficient DMUs. On the other hand, several authors support that these targets are too 

restrictive when it comes to reducing the difference between them and the DMU evaluated, i.e. the 

difference between the projection obtained by the DEA and the input-output data. They try to include all 

inefficiencies the DEA model can identify (Pastor et al., 1999; Cooper et al., 2007; Pastor and Aparicio, 

2011.  

Korhonen et al. (2003) establish the correspondence between several radial DEA models and multi-

objective linear-programming (MOLP) ones. They demonstrate that the use of the DEA radial projection 

to reach a reference point target is too restrictive. In fact, the presence of input and output slacks 

undermines the validity of a radial measure of technical efficiency. On the other hand, Joro et al. (1998) 

compare the structures of MLP and DEA. And they provided an interface between DEA and MLP 

through a Reference Point Model. This model projects each point on a reference frontier by weighting the 

vectors of inputs, reaching the frontier in a more flexible way than DEA does, i.e. sliding through the 

facets of the efficient frontier. Athanassopoulos (1995) puts together Goal Programming and DEA 

(GoDEA) to facilitate the development of a decision support system related to financial planning in local 

authorities in Greece.  Suzuki et al. (2011), as an application to touristic regions in Italy, use the touristic 

production as a multiple-objective programming problem and the Euclidean distance minimization 

approach by the DEA. A survey of recent developments in MLP optimisation and applications can be 

found in Chinchuluum and Pardalos (2007). See also Saho and Ehrgott (2008) for an application in 

radiotherapy treatment planning. 

A detailed analysis (from DMU to input and stage levels) is conducted in the present paper. This analysis 

requires the knowledge of the observed global output and input data, as well as the input data in each 

input stage. Firms’ size is also considered in the MLP model. The analysis is applied for each DMU. It is 

formulated as a situation in which each DMU represents itself, having its own personalised efficient 
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frontier, which is modelled according to a personal utility function. Such utility function is defined by the 

DMU itself according to its preferences. However, the structure of the production process is the same in 

all DMUs. The model is formulated in order to minimize the input-and input-stage consumptions. 

Efficiency scores, detailed to DMU level, input and stage levels, are also defined. 

The paper is structured as follows. In the next section, the considered problem is justified and the main 

ideas for designing a production model are illustrated. It also shows the opportunity to assess a different 

technical efficiency score for each stage and each input. In Section 3, the MLP mathematical model is 

presented. Then, the MLP model is solved by the Utility Function Approach. The efficiency scores 

proposed are defined and computed. Finally, Section 3 defines the stage and input differential ratios, 

aiming at helping the decision-making team of each DMU. Section 4 applies the suggested MLP model to 

some numerical examples. Finally, some conclusions are drawn in Section 5, and the references are 

included in the final one. 

 

2. Framework 

This paper deals with the technical efficiency analysis of an economic sector. We are interested in 

evaluating the efficiency of a firm and its subsequent comparison to others in the same sector. The m 

inputs are used by the production process in every generic DMU (Decision Making Unit) in order to 

produce s outputs. In the economic sector under study, the set of tasks related to the production process 

can be detached in different subsets. In addition, inputs are to be detached in stages, portions or dosages 

(doses), and each part is assigned to the corresponding place in the production process.  

In order to improve the efficiency of the production process, it is useful for the decision makers to be 

aware of the best performance options of its own DMU and how to reach them. It is also important to 

detect lacks, critical and weak points of the production process so as to find out where the improvements 

are required. 

Unlike other authors, we suggest a model that allows us to assess a different technical efficiency score for 

each stage and each input. 

For the above-mentioned aims of evaluation and comparison, the trend in the existing literature is to 

describe the activity of the firm by considering its inputs and outputs. Figure 1 also shows this idea. 

Therefore, given a list of m inputs ( mx +∈ℝ ), and s outputs ( sy +∈ℝ ), of a company or DMU, it is a 
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common practice in economic analysis to describe the activities (x, y) that characterize the different firms 

through the production set of attainable points. This production set can be defined as: 

( ){ }, /  can produce m sx y x y+
+Ψ = ∈ℝ

 (1)
 

And it is also interesting to consider the so-called input requirement set for each output vector sy +∈ℝ  as 

the set of inputs than can produce such output, i.e.: 

( ){ }( ) / ,mX y x x y+= ∈ ∈Ψℝ
  (2)

 

To analyse technical efficiency of a company (DMUo), these sets can be estimated on the basis of the 

observed values of a sample of n DMUs from the same economic sector. Obviously, these DMUs must be 

evaluated to estimate their efficiencies and compare them according to a specific DMUo. 

The most used non-parametric approach to solve this problem is the Data Envelopment Analysis (DEA). 

For example, a typical DEA model such as the so-called input oriented CCR model can be applied for 

each DMU0 to be evaluated. From this approach, the production possibility set (1) can be defined as 

follows: 

( ){ }, / , , 0m s

CCR
P x y x X y Yλ λ λ+

+= ∈ ≥ ≤ ≥ℝ
  (3) 

Where nλ +∈ℝ  is a semipositive vector in n
ℝ , and the sample data of the different DMUs are arranged 

with the matrix of inputs m nX ×
+∈ℝ  and the matrix of outputs s nY ×

+∈ℝ , wherein each column j of 

these matrixes, of input or output data, corresponds to the DMUj of the sample data, with j = 1, …, n. 

The model for estimating such production possibility set was initially proposed by Charnes et al. (1978), 

and can be also seen in many publications and books as, for instance, Cooper et al. (2007). Such input-

oriented CCR model, formulated in the envelopment form, can be written as: 

Input-oriented CCR model: 

,
min
θ λ

θ   (4) 

s.t.: 

0ox Xθ λ− ≥   (5) 

 

oY yλ ≥  (6) 

 
0λ ≥   (7) 
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Where ( )1
,...,

t n

n
λ λ λ= ∈ℝ  is a vector, ( )1, ...,

m n

nX x x ×= ∈ℝ is an m x n matrix of inputs (with 

m

jx ∈ℝ  the data vector of the input values at DMUj), and ( )1,...,
s n

nY y y ×= ∈ℝ  is an s x n matrix of 

outputs (with s

jy ∈ℝ  the data vector of the output values at DMUj). 

The solution of the model (4) – (7) will provide us with an input-oriented technical efficiency score  for 

DMU0, which is a radial measure and identical for all m inputs. These scores lead to the comparisons 

among DMUs, and also offer decision makers useful information to improve efficiency. Nevertheless, 

they do not supply an estimation of the input-stage efficiency. 

The model suggested presents estimations of the global efficiency, input efficiencies, and stage 

efficiencies for each DMU, input and stage. Moreover, stage and input differential ratios are defined to 

suggest improvements to DMUs. 

 

3. The Proposed Mathematical Model 

3.1 The model 

Let us consider m inputs indexed by i = 1, …, m; s outputs indexed by r = 1,…, s; and n DMUs indexed 

by j = 1, …, n. DMUs develop a process consisting of several subsets of activities. The structure of the 

production process is identical in all DMUs. The inputs are different according to their nature, and the 

number of stages in which the different inputs can be detached. This idea is included in Figure 2, where 

the different nature of the inputs is represented by different grids. 

For a given input i, i = 1, …, m, this input can be detached into Ki stages indexed by k = 1, …, Ki. We deal 

with situations where all DMUs have the same inputs, the same outputs, and (for each input) the same 

stages. Thus, m, s and Ki , i = 1, …, m, are constants, and they do not depend on the considered DMU. 

Let us define j

ry  as the value of output r in DMUj, r = 1,…, s, j = 1, …, n. In our production process, 

inputs are divided into stages; hence, j

ikx  is the value of input i in DMUj corresponding to stage k, i = 1, 

…, m, j = 1, …, n, k = 1, …, Ki. For any given input i, we can summarize all the stages of such input in 

DMUj, and then take 

1

iK
j j

i ik

k

x x
=

=∑   (8) 
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as the total amount of input i in DMUj, wherein Ki is used for denoting the number of stages in such input 

i, and i = 1, …, m, j = 1, …, n. 

Let us define the production possibility set for the production process that we are studying. Let us denote 

such production possibility set as PMLP. The production possibility set is usually defined in the existing 

literature as stated in (1), without reaching the different input-stage levels of the different inputs. In this 

paper, we will reach the stage level. 

Let ( ) m K

ikx x ×
+= ∈ ℝ  denote a matrix of m × K input-stage quantities (with { }

1,...,
max i
i m

K K
=

= , and 

0ikx =  if k > Ki), and let sy +∈ℝ  denote a vector of s output quantities. The set of feasible combinations 

of input matrix and output vectors is given by the production possibility set 

( ){ }, , , /m K s

MLPP x y x y x produce y×
+ += ∈ ∈ℝ ℝ

 (9) 

The production possibility set PMLP satisfies the following assumptions: 

Assumption 1. The observed activities (x, y) belong to PMLP. 

Assumption 2. (x, y) does not belong to PMLP if x = 0 and y ≥ 0 with at least some output component 

strictly higher than 0. That is, it is not possible to produce any outputs without consuming inputs. 

Assumption 3. For any activity (x, y) in PMLP, any semi-positive activity ( , )x y  with x x≥  and y y≤  is 

included in PMLP. That is, any activity with an input lower than x in any component (i.e. entry of the input 

matrix) and output no greater than y in any component (i.e. entry of the output vector) is feasible. That is, 

inputs and outputs are both strongly disposable. That is, the production possibility set PMLP is a FDH (free 

disposal hull) production possibility set. 

Assumption 4. For any activity (x, y) in PMLP, the ratio input / output for each input i and output r is 

greater or equal to the minimum ratio input / output (for the corresponding input i and output r) among all 

the points in PMLP. This takes place for each input i, i = 1, …, m, and output r, r = 1, …,s. 

Assumption 5. For any activity (x, y) in PMLP, the ratio input / size for each input i and stage k is greater or 

equal to the minimum ratio input / size (for the corresponding input i and stage k) among all the points in 

PMLP. This takes place for each input i, i = 1, …, m, and stage k, k = 1, …, Ki. 

Assumption 6. For any activity (x, y) in PMLP, the consumption of input for each input i and stage k is non-

negative, that is, greater or equal to zero. And it takes place for each input i, i = 1, …, m, and stage k, k = 

1, …, Ki. 
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Then, our production possibility set is the set 

( ){ }, , , / ( , ) 1 6m K s

MLPP x y x y x y satisfies assumptions to×
+ += ∈ ∈ℝ ℝ

 (10) 

Firstly, let us formally write the mathematical equations that define this production possibility set PMLP. 

Later, in Subsection 3.1.3, we will propose an MLP model for estimating such production possibility set 

PMLP. 

The mathematical and formal expression of the activities of the production possibility set PMLP are now 

presented. They can be formulated by a matrix x
P
 of inputs ( P m Kx ×

+∈ℝ , instead of a vector, which is the 

usual proceeding in the existing literature), and a vector y
P
 of outputs ( P sy +∈ℝ , as usual in the existing 

literature). The observed data of inputs at certain DMUj with j = 1, …, n, can be arranged by a matrix 

( )j j m K

ikx x ×
+= ∈ℝ , with { }

1,...,
max i
i m

K K
=

= , by displaying inputs in rows and input stages in columns, 

where each entry j

ikx +∈ℝ  of this matrix is some known and observed data representing the observed 

amount of input i at stage k of the production process in DMUj, with i = 1, …, m, and k = 1, …, K, j = 1, 

…, n, and assuming for notational convenience and without loss of generality that 0j

ikx =  if k > Ki. 

The production possibility set can be defined as 

 

( )
1

, 1,..., , 1,...,

, , , / , 1,..., , 1,...,

0 , 1,... , 1,...,

iK
P P P

i ik r ir

k

P P P m K P s P

MLP P ik ik i

P

ik i

x x y LB i m r s

P x y x y T l x i m k K

x i m k K

=
×

+ +

 
= ≥ ∀ = ∀ = 

  = ∈ ∈ ≤ ∀ = ∀ = 
 ≤ ∀ = ∀ =
 
  

∑

ℝ ℝ

 

(11) 

Where the lowest bounds LBir and lik are directly calculated from the data j

ikx
, j

ix
 (defined by (8)), j

ry
, and 

Tj is a measure of the size of DMUj, with i = 1, …, m, r = 1, …, s, j = 1, …, n, k = 1, …, Ki. 

1,...,
min / 0 , 1,..., , 1,...,

j
ji

ir rjj n
r

x
LB y i m r s

y=

 
= > ∀ = ∀ = 

 

 

(12) 

1,...,
min / 0 , 1,..., , 1,...,

j

ik
ik j i

j n
j

x
l T i m k K

T=

  = > ∀ = ∀ = 
  

 



10 

 

(13) 

And it is assumed that 

1

s
P

P r r

r

T yτ
=

= ∑
 

(14) 

reflects the size of the elements in PMLP, characterized by a weighted mean of the outputs of each PMLP 

element with known weights 0rτ ≥ , r = 1, …, s. These output weights are characteristic and specific 

constants of the production possibility set PMLP. 

The first group of constraints in (11) involves the total input/output ratios, which formulate Assumption 

4, and are related to the consumed quantity of input i in the whole process at an arbitrary actual 

production unit. They establish that, in order to be realistic and to obtain feasible activities (x
P
, y

P
), i.e. 

pairs of input matrix x
P
 and output vector y

P
, which can be really obtained, the ratio of the required input i 

divided by  output r (ratio P P

i rx y ), must be greater than the corresponding minimum ratio for this input 

i and output r, i = 1, …, m; r = 1, …, s. They reflect the fact that the total quantity of each input i to 

produce one unit of each output r cannot be lesser than the minimum amount consumed. 

The second group of constraints in (11) concerns the required input amount at each input stage. They 

formulate Assumption 5. These constraints establish that the ratio of the required input i at each stage k 

divided by the firm size (ratio P

ik Px T ) must be greater than the corresponding minimum ratio for this 

input i and its stage k, i = 1, …, m; k = 1, …, Ki. 

Finally, the third group of constraints in (11) means that there is no negative input levels for each input 

and input stage. They formulate Assumption 6 written above. 

It is clear that this production possibility set PMLP, defined in (11), also satisfies Assumptions 1, 2, and 3. 

The boundary 
MLPP ∂  of the production possibility set PMLP is given by: 

( ){ }, , , / at least oneconstraint of  happens with equalityP P P m K P s

MLP MLPP x y x y P∂ ×
+ += ∈ ∈ℝ ℝ

 

(15) 

The boundary 
MLPP ∂  of PMLP constitutes the technology. The microeconomic theory of the firm suggests 

that, in perfectly competitive markets, firms operating in the interior of PMLP will be driven by the market, 

but makes no prediction of how long this might take; moreover, a firm that is inefficient today might 
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become efficient tomorrow. Note that the MLP model is also applicable even if markets are not perfectly 

competitive. 

The MLP model estimates the production possibility set Ψ (conceptually defined and characterized in the 

existing literature usually by (1), as explained above) with PMLP as (11). In addition, we will establish 

optimization criteria in order to go to the frontier 
MLPP ∂  given by (15) to achieve efficiency. 

Given the input, size and output data; for each input i, we wish to optimize the total input amount of such 

input i, and the partial amounts of such input in all of its input stages, and this for each DMU, once. 

Hence, we need n optimizations, one for each DMUj to be evaluated. Each one of these optimizations is a 

multi-criteria optimization problem. As our model is input oriented, the objectives of these multi-criteria 

problems are to minimize inputs (in all input stages), but outputs are to be guaranteed. Note that the size 

of each DMUj is measured by parameter Tj. The MLP model works calculating such sizes according to 

(14), but MLP model could be also applied if these sizes are computed in a different way. Then, to 

minimize inputs in such a way that outputs are guaranteed is equivalent to minimizing input/size ratios 

guaranteeing outputs. 

Let DMUj to be evaluated on any trial denote DMUo, with o = 1, …, n. Let us denote by Ki the number of 

stages of a given input i, i = 1, …, m. For this DMUo, the corresponding problem is the input-oriented 

multi-criteria linear-programming problem MLPo showed below, where the decision variables are: 

o

ikX  = desirable amount of input i in its input-stage k of the corresponding process at decision making 

unit DMUo, for all inputs i = 1, …, m, and stages k = 1, …, Ki. 

(16) 

We can also summarize all stages of each input i, in DMUo, by taking the decision variables: 

1

iK
o o

i ik

k

X X
=

=∑  desirable amount of input i in DMUo, for all inputs i = 1, …, m. (17) 

And the MLPo problem is: 

{ }
1 21,1 1,2 1, 2,1 2,2 2, ,1 ,2 ,min , ,..., ; , ,..., ; ...; , ,...,

m

o o o o o o o o o

K K m m m KX X X X X X X X X  (18) 

s.t.: 
o o

i r irX y LB≥   for all inputs i = 1, …, m, and outputs r = 1,…, s,  (19) 

 
o

o ik ikT l X≤
  

for all inputs i = 1, …, m, and stages k = 1, …, Ki, (20) 

 

0 o

ikX≤ , for all inputs i = 1, …, m, and stages k = 1, …, Ki,  (21) 
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Where the lowest bounds LBir and lik are defined in (12) – (13) for all inputs i = 1, …, m, outputs r = 1, 

…, s, and input stages k = 1, …, Ki, where To is a measure of the size of DMUo, for o=1,…, n. For 

example, if there is only one output (s = 1, and o

ry  = y
o
 for the only r=1), we can take To = y

o
, the output 

value of DMUo, o=1,…,n. If there are more outputs, To is estimated by: 

1

s
o

o r r

r

T yτ
=

= ∑   (22) 

with known weights 0rτ ≥ , r = 1, …, s. 

Note that, in our notation, capital letter X denote decision variables while non-capital x denote observed 

input data, i.e. known constants. 

There are m inputs and, thus 

1

m

i

i

K
=
∑  criteria, the same number of criteria as stages considered. In fact, by 

(18) we are minimizing all stages of all the inputs in a multi-criteria approach. The constraints (19) – (21) 

estimate the production possibility set PMLP. The model (18) – (21) tries to reach the boundary MLPP ∂  

given by (15). 

As any multi-criteria linear-programming problem, we can try to solve it by three different approaches 

(see for example: Zeleny, 1982; Romero, 1983; Yu, 1985; González-Martín, 1986; Steuer, 1986; Barba-

Romero and Pomerol, 1997; Wallenius et al., 2008): (a) Utility function approach, (b) Hierarchical 

approach, and (c) Pareto optimality approach. 

The utility function approach consists in replacing the 

1

m

i

i

K
=
∑  criteria considered in (18) for a single 

criterion, usually a utility function depending on these criteria, before solving this resulting single 

criterion optimization problem with the constraints (19) – (21). 

The hierarchical approach consists in, given a hierarchical priority among the 

1

m

i

i

K
=
∑  criteria considered 

in (18), solving firstly the single criterion problem given by the most important criterion and constraints 

(19) – (21); next, among the optimal solutions (or the set of solutions with the most important objective 

below a certain threshold), solving the single criterion problem given by the 2
nd
 –the most important 

criterion and constraints (19) – (21), and so on. 
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The Pareto optimality approach consists in solving the problem (18) – (21) by means of Pareto optimality 

techniques for finding the so-called efficient frontier and Pareto optimal points. This efficiency and the 

Pareto optimal points must be understood from the point of view of the classic multi-criteria optimization. 

Approaches (a) and (b) just provide one point (or maybe more, but they would be fully equivalent) at the 

end in the production possibility set. Such point corresponds (and characterizes) the trial DMUo in the 

production possibility set. On the contrary, the Pareto optimal approach (c) can provide several non–

dominated or Pareto optimal solutions for problem (18) – (21). These solutions are different and non–

equivalent and they are shown by different points in the production possibility set. All these points 

together characterize DMUo. 

For simplicity, we only consider the approach (a) in this study, the Utility Function approach. The other 

approaches can be considered in future research. 

 

3.2 Utility Function Approach 

Let us consider the utility function approach, the main guidelines of which have been already specified to 

solve the MLP model. To establish such approach, we need, first of all, the utility function. 

Therefore, we define a utility function. We choose a weighted linear combination of the criteria (inputs) 

considered in (18). Note that the weights are taken over every input at each stage, i.e. considering stage 

levels, and not only the total input. 

Let us denote such utility function as 

1 1

( )
i

o o o

ik ik

Km

i k

f X w X
= =

=∑∑  (23) 

where: o

ikX  = required amount of input i in the input stage k of the corresponding process in DMUo, for 

all inputs i = 1, …, m, and stages k = 1, …, Ki, as described in (16), that is, 
o

ikX  are the decision variables. 

o

ikw  = weight or importance for input i and stage k regarding DMUo, for all inputs i = 1, …, m, and stages 

k = 1, …, Ki. 

( )o o

ikX X=  m × K matrix of decision variables that characterize the solution space for DMUo, with 

input index i = 1, …, m, and stage index k = 1, …, K, where, for notational convenience, we are 

taking { }
1,...,
max i
i m

K K
=

=  and assuming, without loss of generality, that 0o o

ik ikX x= =  if k > Ki. 

Then, our Utility Function Approach consists in solving the following 
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UF–MLPo model: 

1 1

min ( )
i

o o o

ik ik

Km

i k

f X w X
= =

=∑∑  (24) 

s.t.: 

(19) – (21). 

 

Note that this utility function, expressed in (24), involves each DMUo, and includes weights o

ikw  (for 

each input i and stage k; i = 1, …, m; k = 1, …, Ki). These weights are related to the decision 

variables o

ikX , and they can differ in the different DMUs, i.e. each DMU has its own utility function. Note 

also that weights can be understood as preferences of the decision making units (DMUs), and they define 

the direction in which each DMU wishes to reach the frontier. The preferable direction for moving to the 

frontier will be the direction corresponding to the stage with a higher weight. In such stage, the solution 

will be the minimum value according to the technology. 

 

3.3 Efficiency 

Given the problem under study, the production possibility set is defined in Section 3.1.2 and estimated in 

Section 3.1.3. This section is devoted to define and compute different types of efficiency, with respect to 

DMU, input and stage. These efficiencies must be computed with regard to some reference (optimal) 

values, the target values. Our target values can be the optimal values of the objective functions of our 

multi-criteria linear-programming model (MLPo model). And, taking into account that a utility function 

approach is adopted to solve such multi-criteria model, i.e. we are working with a UF–MLPo model, we 

can directly take the optimal value of the objective function of such problem as our target value in order 

to compare, define and compute efficiency. Also note that the objective function defines a direction to the 

frontier 
MLPP ∂ , and this direction is defined with the weights o

ikw , concerning DMUo. 

Thus, let us denote by *o
ikX , for i = 1, …, m, and k = 1, …, Ki the optimal values of the decision variables 

resulting from solving the UF–MLPo problem (problem (24) subject to (19) – (21)) at DMUo. Note that 

alternative optimal solutions for this problem can be found. That is, it is possible for all the different 

values for *o
ikX , for i = 1, …, m, and k = 1, …, Ki, to be optimal. Even if there are alternative optimums 

for problem (24) subject to (19) – (21), the optimal value of the objective function will be identical, and is 

denoted by 

* *

1 1

i

o o o

ik ik

Km

i k

Z w X
= =

=∑∑  (25) 
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Definition 1. (Global efficiency for a given DMU): Given a DMUo, with o = 1, …, n, let us define the 

global efficiency of DMUo, as: 

*

1 1

i

o
o

o o

ik ik

Km

i k

Z

xw

θ

= =

=

∑∑
 (26) 

This value is obviously bounded between 0 and 1, 0 1
oθ≤ ≤ . In addition, it is univocally defined with 

no ambiguity due to the uniqueness of Z
o*
. 

We say DMUo is (globally) efficient if its observed data (
o

ikx ) satisfy 1
oθ = . Otherwise, DMUo is 

(globally) inefficient. 

Let us define now the input efficiency of a given DMUo for each input i, i = 1, …, m. To do it we want to 

compute the best (minimum) value regarding the use of such input. Thus, for the given DMUo, and for 

each input i, we previously consider the problem: 

Problem input i – DMUo. (Problem input i – UF – MLPo) 

 

1

min
iK

o o o

i ik ik

k

Z w X
=

=∑
 (27) 

 

s.t. (19) – (21) (restricted to the input i). 

 

The constraints (19) – (21) restricted to the input i are a subset of the constraints (19) – (21). For 

completeness and a better understanding, we can formulate the following subset: 

 
o o

i r irX y LB≥   for all outputs r = 1,…, s,  (28) 

 
o

o ik ikT l X≤
  

for all stages k = 1, …, Ki,  (29) 

 

0 o

ikX≤ , for all stages k = 1, …, Ki,  (30) 

 

Let *o

iZ  be the optimal value of the objective function of problem input i – DMUo. This problem is solved 

independently from the problem of minimizing (24) s.t. (19) – (21), problem UF-MLPo. The uniqueness 

of *o

iZ  is guaranteed even if there are alternative optimums to this new problem input i – UF – MLPo. Let 

{ }( )*o input i

ikX −
 (varying k = 1, …, Ki) denote the coordinates of an optimal solution to the problem. 

Definition 2. (Input efficiency for a given DMU in a given input i): Given DMUo, with o = 1, …, n, and 

an input i, i = 1, …, m; let us define the input efficiency of DMUo in such input i as: 
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*

1

i

o
o i
i K

o o

ik ik

k

Z

w x

θ

=

=

∑
  (31) 

This value is bounded between 0 and 1. Besides it is univocally defined with no ambiguity due to the 

uniqueness of *o

iZ . And this uniqueness comes from the fact that *o

iZ  is the optimal value of the 

objective function of the problem input i – UF – MLPo. 

We say that DMUo is input efficient in a given input i if its observed data (
o

ikx ) satisfy 1o

iθ = . Otherwise, 

DMUo is input inefficient in such input i. 

Let us prove that, by solving problem (24) subject to (19) – (21), we have already automatically solved 

the m problems (27) subject to (28) – (30) indexed in the inputs i, i = 1, …, m, and vice versa. 

On the base of the above definitions we can establish the following obvious lemmas 1, 2 y 3.  

Lemma 1: The feasible region of the problem  UF–MLPo is the disjoint union of the feasible regions of 

the problems  input i – UF – MLPo, with i = 1, …, m. 

Lemma 2: m problems  input i – UF – MLPo, with i = 1, …, m, are independent. 

Lemma 3: The objective function of the problem  UF–MLPo is exactly the sum of the objective functions 

of the problems  input i – UF – MLPo, with i = 1, …, m. 

Theorem 1 

(a) To solve problem UF–MLPo is equivalent to solving m independent problems input i – UF – MLPo, 

with i = 1, …, m. 

(b) The optimal value of the objective function of problem UF–MLPo is the sum of the optimal values of 

the objective functions of m independent problems input i – UF – MLPo, with i = 1, …, m. 

(c) The set of coordinates ( *o
ikX , for i = 1, …, m, and k = 1, …, Ki) of any optimal alternatives in respect 

to problem UF–MLPo consists in the (disjoint) union of the corresponding optimal set of coordinates 

regarding m independent problems input i – UF – MLPo, with i = 1, …, m. 

Proof 

See Appendix. �  

Corollary 1 

Given a DMUo, such DMUo is (globally) efficient if, and only if, DMUo is input efficient in each input i 

for all inputs i = 1, …, m. 

Proof 
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Obvious. �  

Let us define now the stage efficiency of a given DMUo in an input i (i = 1, …, m) for all stages k (k = 1, 

…, Ki). To do it we want to compute the best (minimum) value with regard to the use of the considered 

input i in such stage k. Thus, for the given DMUo, for the input i, and for each stage k, we previously 

consider the problem: 

 

Problem stage k – input i – DMUo. (Problem stage k – input i – UF – MLPo) 

 

min o o o

ik ik ikZ w X=
 (32) 

 

s.t. (19) – (21) (restricted to the input i). 

 

Constraints (19) – (21) restricted to the input i are a subset of constraints (19) – (21), and this subset is 

defined by constraints (28) – (30). Taking into account that the weights o

ikw  are also known input data, 

such problem is equivalent to the problem: 

min o

ikX
 (33) 

 

s.t. (28) – (30). 

 

More precisely, and to avoid any confusion, let us clearly differentiate the considered stage k from all the 

set of stagesρ, ρ = 1, …, Ki of the given input i and, consequently, let us rewrite the constraints (28) – 

(30) in the way: 

 
o o

i r irX y LB≥   for all outputs r = 1,…, s, (34) 

 
o

o i iT l Xρ ρ≤
  

for all stages ρ = 1, …, Ki, (35) 

 

0 o

iX ρ≤ , for all stages ρ = 1, …, Ki,  (36) 

 

Then, the problem is to minimize (33) subject to (34) – (36). 

Note that the feasible region of this problem (about stage k of input i) is exactly the same that the feasible 

region of the problem corresponding to such input i, i.e. the problem input i – DMUo. When we are 

solving the problem stage k – input i – DMUo corresponding to the considered stage k, all the decision 

variables corresponding to all the stages of such input i are also present in the problem. In other words, 

we also consider all the other decision variables related to all the stages of input i, i.e. decision 

variables
o

iX ρ , for all stages ρ = 1, …, Ki. However, in the objective function there is only the decision 
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variable associated to the stage k considered, variable o

ikX . Note that this problem is solved independently 

from all the other problems previously considered. 

Let ( , )*o input i stage k

ikX −  be the optimal value of the (single) decision variable present in the objective 

function of such problem stage k – input i – DMUo. As the objective function has only one decision 

variable, then, even if there are several alternative optimal solutions, the optimal value ( , )*o input i stage k

ikX −  

of such variable does not change. Furthermore, due to the way it is formulated, such optimal value is 

always at its lower bound, that is: 

( , )*o input i stage k

ik o ikX T l− =   (37) 

Definition 3 (Stage efficiency of a given DMUo in an input i for a considered stage k) 

Given a DMUo, with o = 1, …, n, and an input i, i = 1, …, m; let us define for any stage k (k = 1, …, Ki) 

the stage input efficiency of DMUo in such considered stage k of the  input i as: 

( , )*o input i stage k
o ik o ik
ik o o

ik ik

X T l

x x
θ

−

= =   (38) 

We can also name it efficiency of the stage k in the input i in the DMUo. 

This value is bounded between 0 and 1. Moreover, it is clear and univocally defined with no ambiguity 

because all optimal alternatives have the same value for the single decision variable present in the 

objective function. 

This efficiency does not depend on the weights o

ikw . 

We say that DMUo is stage efficient for a considered stage k corresponding to a given input i if its 

observed data ( o

ikx ) satisfy 1o

ikθ = . Otherwise, DMUo is stage inefficient in such stage k corresponding to 

the given input i. 

Input efficiency and stage efficiency definitions are solutions of problems that have exactly the same 

constraints, that is, the same feasible region. They only differ in the objective function. The objective 

function of the, let us say, “input” problem is the weighted sum of the objective functions of the, let us 

say, “stage” problems. Consequently, the input problem is not separable in the stage problems and no 

equivalence among them exists. Nevertheless, a partial result can be established: 

 

Theorem 2 
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If certain DMUo is stage efficient for all the stages k of an input i, then such DMUo is also input efficient 

in such input i. 

 

Proof 

For the direct, notice that all the problems mentioned in the Theorem statement have the same feasible 

region. The objective function of the input problem is a weighted sum of the objective functions of the so-

called “stage” problems. Weights are no negative known data. Thus, if DMUo is simultaneously stage 

efficient at all the stages, then, by Definition 3, o

ik o ikx T l=  for all k = 1, …, Ki, and this solution satisfies 

(28) – (30). Besides, it is a solution of the common feasible region that (simultaneously) minimizes all the 

summands of the sum that defines the objective function of the “input” problem. The sum of minimums 

is feasible and, then, this sum of minimums is the minimum of the sum. �  

Corollary 2 

The reciprocal is not necessarily true. 

Proof 

Trivial. Notice that, it is not necessary for the minimums of the different “stage” problems to be 

simultaneously held in the same feasible solution. In fact, such “ideal” point can be unfeasible (as usually 

happens in multi-objective problems). In this case, the minimum of the sum is not the sum of minimums 

because the minimums of the different summands are reached in different feasible solutions. �  

These ideas are illustrated by numerical examples in next section. 

In this section, we have defined efficiency for each given DMUo at different levels: global efficiency, 

input efficiency, and stage efficiency. These measures provide an option for modelling and computing 

(for each given DMUo) the satisfaction level in resource consumption of such DMUo from all global, 

input and stage perspectives. 

If, for certain DMUo, some of the different (global, input and/or stage) efficiencies reach the maximum 

value of 1, then it means that such DMUo works satisfactorily according to its own practical utilities and 

own purposes (modelled with its own weights and utility function) from the approaches (global, input, 

stage) where these scores are 1. 

Otherwise, if a score fails and does not reach the maximum value of 1, this useful information can be used 

to point out where some efficiency improvements might be implemented. It could help to identify, at 

stage level, where a better management of the resource consumption is applicable. 
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Next section proposes some differential ratios that complement the efficiency scores previously defined 

and can help DMUs improve their performance. 

 

3.4 Differential ratios 

Given certain DMUo, let { }*oikX  (with i = 1, …, m; k = 1, …, Ki) be an optimal solution to problem (24) 

subject to (19) – (21). We can define the stage differential ratios and the input differential ratios as the 

ratios: 

Stage differential ratio for stage k (k = 1, …, Ki) of input i (i = 1, …, m): 

*o o
o ik ik
ik o

ik

X x

x

−∆ =  for all inputs i and stages k (39) 

Input differential ratio for input i (i = 1, …, m): 

*

*

1 1

1

i i

i

K K
o o

o o ik ik
o i i k k
i Ko

oi
ik

k

X x
X x

x
x

= =

=

−
−∆ = =

∑ ∑

∑
 for all inputs i (40) 

 

These ratios represent the proportion of reduction or increment suggested to DMUo to convert its current 

(stage k, input i) data o

ikx  to optimal value
*o

ikX ; or to convert its current input i – data o

ix  to optimal 

value *o

iX . These suggestions can help DMUo improve its current input data values. 

These differential ratio definitions depend on the optimal solution considered. It is not a hard problem if 

the optimal solution { }*oikX  (with i = 1, …, m; k = 1, …, Ki) is not identical unique. In this case, we can 

take any optimal solution among the set of optimal alternatives. To handle only one of these optimal 

solutions is enough for our purposes: to help DMUo managers enhance their objectives. 

 

4. Conclusions 

This paper proposes and presents a Multi-criteria Linear Programming model (MLP) with input 

orientation, which is aimed at computing efficiency scores of decision-making units (DMUs). The 

problem is motivated and the main requirements for the production process to be analysed are illustrated: 

the inputs are to be divided into stages in order to better modelling real-world situations. 
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The possibility to assess a different technical efficiency score for each stage and each input is also shown. 

The usual activity of the company is drawn by considering its inputs and outputs in the context of the 

input-oriented Data Envelopment Analysis problem (the so-called CCR model). 

First, the production possibility set (PMLP) is defined and then estimated by the MLP mathematical model 

which is proposed and defined. Three different approaches are pointed out to solve the multi-criteria 

problem resulting from the MLP model. Then, the MLP model is solved by the Utility Function 

Approach, which results from the weighted (preferences) linear combination of the criteria (inputs) for 

every input and stage. In this context we are dealing with a directional approach to assess technical 

efficiency. 

The proposed efficiency scores are defined: global efficiency, input efficiency, and relations between both 

efficiencies are carried out for every DMU. Then, stage efficiency scores are established and also related 

to input efficiencies. The stage and input differential ratios are set in order to help decision-making teams 

of every DMU.  

Among the main results and conclusions of the present research, we can highlight the following ones: 

The MLP model is both an input-oriented model and an input-stage oriented model. This is because the 

MLP model is a multi-criteria linear programming model with a criterion for each pair (input i, stage k), 

with i = 1, …, m and k = 1, …, Ki; being m the number of inputs and Ki the number of stages into which 

such input i is divided. 

The proposed MLP model carries out the analyses at a global level, just like other models previously 

presented in the existing literature, but it also differs from previous models, since it gets more in-depth 

analyses reaching input and stage levels. 

 

This is a directional approach to estimate technical efficiency by means of a utility function that includes 

weighs, determining how to reach the frontier according to the decision makers’ preferences. 

 

Global and input efficiency scores provide the satisfaction levels in the consumption of inputs of such 

DMU. These measures are evaluated regarding the own utility function of the DMU, with its own set of 

weights to model the DMU’s preferences. These satisfaction levels are gauged with respect to the frontier 

with the best performance. Whereas global efficiency considers the total input consumption, input 

efficiency is calculated focusing on just one input by a separated approach. 
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Stage efficiency score measures the proportion over 1 of the minimum feasible consumption for the stage 

considered and the current consumption in certain stage of a DMU, and do not depend on the set of 

weights. 

In order to better advise decision makers, input and stage differential ratios show the possibilities to 

improve in input consumption, either at input or stage level. 

As a global conclusion we can assert that the MLP model is a directional Multi-criteria Linear 

Programming model that is solved in a utility function framework and, therefore, with just one 

optimization criterion. It can be easily solved by the existing Linear Programming methods, software and 

tools. In addition, the constraints involved in the MLP model are, mainly, lower bounds of the decision 

variables; being the optimization problem a minimization one. These last features make the MLP model 

easier to solve, even if the number of constraints increases. 
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Appendix 

A. Proof of Theorem 1. 

For proving the assertions (a), (b) and (c), it is enough to prove that, known the coordinates of an optimal 

solution of the problem UF–MLPo, automatically the coordinates of some optimal solutions of the 

problems input i – UF – MLPo, with i = 1, …, m, are known, and vice versa. 

Let us prove it. For each input i, i = 1, …, m, let ( )*o input i

ikX −  be a set of coordinates of certain optimal 

solution of the corresponding problem for such input i, problem input i – UF – MLPo. Then, 

( )* ( )*

1

iK
o input i o o input i

i ik ik

k

Z w X− −

=
=∑  is the optimal value of the objective function of such problem about 

such input i. Let us take ( )*o o input i

ik ikX X −=  for all i, i = 1, …, m, and for all k = 1, …, Ki. It is clear that 

this set of coordinates { }oikX  (varying i and k) is a feasible solution of the problem UF–MLPo. Even 
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more, it is an optimal solution of such problem because if the sum of minimums is a feasible solution, 

such sum of minimums is the minimum of the sums. In other words, if 

( )* ( )* ( )

1 1

i iK K
o input i o o input i o o

i ik ik ik ik

k k

Z w X w X− −

= =
= ≤∑ ∑  for all i and any other solution { }( )o

ikX  (varying i and k), 

then 
( )* ( )* ( )

1 1 1 1 1

i iK Km m m
o input i o o input i o o

i ik ik ik ik

i i k i k

Z w X w X− −

= = = = =
= ≤∑ ∑∑ ∑∑  for any other feasible solution { }( )o

ikX  

(varying i and k) of the problem UF–MLPo. It means that the coordinates 
( )*o o input i

ik ikX X −=  define an 

optimal solution of the problem UF–MLPo and we can take 
* ( )*o o input i

ik ikX X −=  for all i and for all k.

 

Reciprocally, let { }*oikX  (varying i and k) be an optimal solution of the problem UF–MLPo. Let us take, 

for each input i, the point defined by ( ) *o input i o

ik ikX X− =  (varying k = 1, …, Ki). Like { }*oikX  verifies (19) 

– (21), then{ }( )o input i

ikX −
 is a feasible solution for the problem input i – UF – MLPo, i.e., satisfies (28) – 

(30). Even more, it is an optimal solution of such problem by Lemmas 1, 2, and 3. Thus, we can take 

( )* *o input i o

ik ikX X− =  as an optimal solution of the problem input i – UF – MLPo, and it happens for all 

input i. 

Then, trivially, (a), (b) and (c) hold. �  
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