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Abstract 

It is widely known that the empirical size and power profile of many unit root and stationarity tests are 

not invariant to additive outlying observations in the time series. The common practice is to take into 

account this observations by introducing dummy variables in the auxiliary regressions of this test 

procedures. In this paper we study the asymptotic and finite sample properties of a set of nonparametric 

tests for the null of stationarity against a unit root (Kwiatkowski et.al. (1992), Xiao (2001) and Giraitis 

et.al. (2003)), and also for the variance-ratio nonparametric test of the opposite hypothesis (Breitung 

(2002)), when the true location and nature of the outlier can differ from the assumed in the specification 

of the estimated regression. Under a general framework, that allow for a possible misspecified location 

and a persistent effect of the true contaminating process, we consider proper assumptions on the outlier 

magnitudes related to the sample size to get a well defined asymptotic null distribution for these test 

statistics. We show that the stationarity tests are quite robust to a misspecification in the location and true 

nature of the outlier, even for a relatively high magnitude of the effect, except in the case of an extremely 

persistent effect of the perturbation (temporary change) where we find a significant increase in their 

empirical size. The variance-ratio test statistic behaves quite similarly, although it is more robust than the 

other test statistics, even under a high degree of persistence. 

 

Key words: Stationarity tests, variance-ratio unit root test, additive outlier, dummy variables, impulse 

and step functions 

 
JEL classification codes: C12, C22, C58 
 

 

Subject area: Quantitative Methods in Economics and Business Administration 
 



 1 

ON NONPARAMETRIC STATIONARITY AND UNIT ROOT TESTS 

UNDER AO ADJUSTMENT WITH POSSIBLE PERSISTENT EFFECTS 
 

1. Introduction 

Following the contribution of Kwiatkowski et.al. (1992), testing for stationarity against 

a unit root has become a central part of theoretical and applied time series econometrics. 

However, due to the lack of robustness of these test procedures under misspecification 

of the basic data generating process and some problems in their implementation in finite 

samples, it is usually argue that it can be of interest to test the opposite hypothesis, that 

is of a unit root, when investigating the dynamic properties of a time series. Section 2 

presents the general structure of the components model that allows to build three related 

nonparametric test statistics for testing the null of stationarity against the alternative of a 

unit root for the observed process and an additional one, the variance-ratio test statistic, 

for testing the opposite hypothesis. We review the main stochastic properties of these 

tests, in terms of their asymptotic null distributions, asymptotic power profiles and the 

effects of several changes in the nature of the stochastic components of the model. Also, 

we will review the effects of different types of misspecification in the systematic 

component of the model, paying special attention to the effects of outlying observations 

in the sample. To some extent there is a connection between the addition of dummy 

variables to pick up the effect of an outlier and the existence of a structural break in the 

systematic component of the model. However, there are some important differences in 

the treatment of each problem in order to determine the effect of a possible 

misspecification in location and/or in the number of events of each type. Section 3 

presents a modification of the underlying components model that allows to capture the 

effect of additive outliers and to analyze the consequences of outliers with persistent 

effects as well as a possible misspecification in the location. Through a convenient 

normalization of the outlier magnitude, we are able to determine the finite sample and 

asymptotic effects of different types of contamination in the stochastic properties of all 

these test statistics. 

 

2. Review of nonparametric tests for stationarity and for a unit root 

Along with unit root tests, tests for the null of stationarity have often been used in 

practice. Among these, there is a set which are based on different fluctuation measures 

of the scaled partial sum process of OLS residuals obtained in an auxiliary regression 
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resulting from the following generalized local-level model (basic DGP) 

0,( , ) 1, 2,...,t t t tY d p t n= λ + ρ + ε =       (2.1) 

1 1,t t t−ρ = ρ + ε          (2.2) 

In (2.1) and (2.2) it is assumed that the error terms εi,t (i = 0, 1) are stationary zero mean 

sequences that satisfy appropriate conditions to jointly verify a bivariate invariance 

principle such that 

1
0,,0 1/ 2

,1 1,1

( ) 1 1
( ) ( ) , 1,...,

( )

t
jn

n jj

W r t t
r r r t n

W r n nn

−

=

ε   −= ⇒ = ≤ < =   ε   
∑ B WΩΩΩΩ  (2.3) 

with 
[ ]1/ 2 1/ 2

, [ ], ,1
( )

nr

n i nr i i jj
W r n S n− −

=
= = ε∑ , and where “⇒” indicates weak convergence of 

the associated probability measures. B(r) = (B0(r), B1(r))´ denotes a bivariate Brownian 

motion process with covariance matrix ΩΩΩΩ, W(r) = (W0(r), W1(r))´ a bivariate standard 

Brownian motion process (with W0(r) and W1(r) mutually independent univariate 

standard Brownian motion processes), and 

2

0 01 0 1

2

1

 ω ρ ω ω=  ω 
ΩΩΩΩ         (2.4) 

is the long-run covariance matrix of 0, 1,( , )t t t
′= ε εεεεε , 1/ 2

1
lim ( )

n

ttn
Var n−

=→∞
= ∑Ω εΩ εΩ εΩ ε , with 

2 1/ 2 2 2

, 1 1
1

lim [ ] 2 ( ) ·(1 2 ( ))
n

i n i t i i i ih h
t

Var n h h
∞ ∞−

→∞ = =
=

ω = ε = σ + γ = σ + ρ∑ ∑ ∑  (2.5) 

the long-run variances, where 2 2

,1
lim (1/ ) [ ] 0

n

i n i tt
n E→∞ =

σ = ε ≥∑ , i = 0, 1, and |ρ01| ≤ 1. 

When testing for the null of stationarity, that is 2

1 0σ =  (and thus 2

1 0ω = ), it is common 

to assume that both error processes are mutually independent, so that ρ01 = 0 in (2.4) 

and Bi(r) = ωi·Wi(r), i = 0, 1. In (2.1), ( , )td p λ  is the deterministic kernel which is 

usually parameterized as a generalized polynomial time-trend function 

, ,( , ) ( )t t p p td p ′λ = λx ββββ         (2.6) 

where , (1, ,..., )p

t p t t′ =x , p ≥ 0, ,0 1t
′ =x  for p = 0, and 

, ( ) ( ) (1 ( )) ( )p t p t p p t t ph h hλ = + λ = − λ + λβ β α β θβ β α β θβ β α β θβ β α β θ     (2.7) 

with p p p= −α θ βα θ βα θ βα θ β , 0 < λ < 1 and ( )th λ  a step function defined as ( ) ( [ ])th I t nλ = > λ , 

thus incorporating the possibility of a deterministic structural change in the systematic 

component. The standard case of no structural change results with λ = 0, so that 

, (0)p t p p p= = +β θ β αβ θ β αβ θ β αβ θ β α  for all t = 1, ..., n, or with λ = 1 where , (1)p t p=β ββ ββ ββ β . Furthermore, 
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associated to the given specification of the deterministic component, it is assumed that 

there exist a diagonal, non-singular and deterministic scaling matrix ,p nD , 

, 0, 1, ,( , ,..., )p n n n p ndiag d d d=D , such that , , ,( )p n t p p t nd=D x x  is a element of the unit 

interval 1(0,1]p+ . Thus, as long as n → ∞ , 1

[ ],( ) ( ) [0,1]p

p nr n pd r +→ ∈x x  with r ∈ [0, 1]. 

Also, calling 
[ ][ ] 1

, 1
( ) ( )

nr jnr

p n pn nj
n−

=
= ∑z x  and 

[ ]1

[ ] [ ] [ ] 1
( ) ( ) ( )

nb j j

nb na p pn nj na
p n−

− = +
′= ∑U x x  for 0 

≤ a < b ≤ 1, we then have the following well defined limits 

[ ]

,
0

( ) ( ) ( )
r

nr

p n p pn
r s ds→ = ∫z z x       (2.8) 

[ ] [ ]( ) ( ) ( ) ( )
b

nb na b a p p
a

p p s s ds− − ′→ = < ∞∫U U x x     (2.9) 

For the polynomial trend function we then have 1 1
, (1, ,..., )pp n n n

diag=D  and 

( ) (1, ,..., )p

p r r r ′=x  which satisfies the above limit results. 

With all these requirement, the model (2.1) and (2.2) allows to specify the following 

auxiliary linear regression that, for a given value of λ∈(0,1), will be estimated by OLS 

, , , ,( ) ( ) 1,...,t t p p t t t p p t p t p tY h t n′ ′ ′= λ + η = + λ + η =x x xβ β αβ β αβ β αβ β α    (2.10) 

and where the disturbance term, ηt, is given by the sum of an stationary component ε0,t 

and an integrated component ρt when 
2 2

1 1,[ ] 0tEσ = ε > , that is 

0, 0, 0 1,1

t

t t t t jj=
η = ε + ρ = ε + ρ + ε∑       (2.11) 

Within this framework, the hypothesis of stationarity corresponds to 2

1 0σ = , so that 

0, 0 (1)t t pOη = ε + ρ = , while the hypothesis of a unit root process for Yt in (2.1) is given 

by 2

1 0σ > , with 1/ 2( · )t pO nη = κ  and 2 2 2

1 0/κ = σ σ  when 2

0 0σ > , or 1/ 2( )t pO nη =  when 

2

0 0σ = . The initial value ρ0 can be considered both negligible (ρ0 = 0 or ρ0 = op(1)) or 

not (ρ0 fixed and finite or ρ0 = Op(1)), without affecting all the subsequent analysis 

because of the normalizing by functions of the sample size used in the building of the 

different test statistics. If the deterministic component includes a constant term and ρ0 is 

treated as fixed and finite, then it can be simply added to the intercept. This framework 

is the standard case and is very different from the one used in Müller (2005) when the 

stationary component is modelled as a mean reverting process with strong 

autocorrelation in a local-to-unity asymptotic analysis. All the test statistics that we are 

going to study use the basic DGP in (2.1) and (2.2), and thus can be obtained using 
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different functionals of the residuals from the OLS fitting of (2.10), 

, , , , , ,

, , , ,

ˆ ˆˆ ˆ( ) ( ) [ ( ) ( ) ( )]

ˆ ˆ(1 ( )) ( ) ( ) ( ) 1,...,

t p t t p p t t t p p n t p n

t t t p p n t t p p n

Y Y h

Y h h t n

′ ′η λ = − λ = − λ + λ λ
′ ′= − − λ λ − λ λ =

x x

x x

β β αβ β αβ β αβ β α
β θβ θβ θβ θ

 (2.12) 

for a given value of the breakpoint 0 < λ < 1 such that [nλ], n−[nλ] ≥ p+1, with ,
ˆ ( )p n λββββ  

and ,
ˆ ( )p n λθθθθ  the OLS estimator of the vector parameter for the first and second 

subsample, respectively. In the case of no structural break, we have the standard result 

, , , , ,
ˆ ˆˆ ( )t p t t p p n t t p p n pY ′ ′η = − = η − −x xβ β ββ β ββ β ββ β β      (2.13) 

Under the model specification in (2.10), the residuals can be also written as 

, , , , ,
[ ]

1 1

[ ]

1

1 1

[ ]

[ ] 1

ˆ ˆˆ ( ) (1 ( )) ( ( ) ) ( ) ( ( ) )

(1 ( )) ( ) ( ) ( )

( ) ( ) ( ) ( )

t p t t t p p n p t t p p n p
n

jv vt
t t p n p jn n

j
n

jv vt
t p n n p jn n

j n

h h

n h p n

n h p n

λ
− − −

λ
=

− − −
− λ

= λ +

′ ′η λ = η − − λ λ − − λ λ −

′= η − − λ η

′− λ η

∑

∑

x x

x Q x

x U x

β β θ θβ β θ θβ β θ θβ β θ θ

  (2.14) 

thus reflecting the stochastic properties of the sequence of error terms ηt, t = 1, ..., n. 

Since from the work of Busetti and Harvey (2002, 2003) is well established the 

asymptotic distributions and the way to proceed in practice with a structural break in the 

systematic component, we use this specification in what follows. The case of no break 

occurring in the sample can be obtain simply as a particular case, as in standard 

regression problems. Kurozumi (2002) determines the limiting distribution of the one-

sided LM test statistic (Kwiatkowski, et.al. (1992)) for the null of stationarity against a 

unit root alternative with different particular parameterizations of the structural break in 

the leading cases p = 0, 1, and under the sequence of local alternatives given by 

2 2 2

1 0 ·( )n
θσ = σ , with θ a constant, also including the absence of structural break as a 

particular case. The model with a sudden and instantaneous change in the structure of 

the polynomial trend function is termed by Kurozumi (2002) as the additive outlier 

(AO) model, in the sense that when the structural change occurred the shock affects the 

observations only at one time. Also considers the case where the structural change 

disturbs the variables with lagged effects, which is termed the innovational outlier (IO) 

model with , ( ) ( ) ( )p t p m t pL hλ = + ψ λβ β αβ β αβ β αβ β α  in (2.7), 1( ) 1 ... m

m mL L Lψ = + ψ + + ψ  a mth 

order lag polynomial. With this we have that ( ) ( )m tL hψ λ = 0 1
( ) ( )

m

t t i ii
h I −=

τ λ + λ τ∑ , 

( ) ( )t iI I t i− λ = = λ + , 0 (1)mτ = ψ , and 
m

i jj i=
τ = − ψ∑ , so that the additional regressors 

resulting from the interaction with the indicator functions are asymptotically negligible, 
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and thus the limiting distributions remains unaltered. From the analysis in the next 

section of the paper it will be clear that our approach deals with the strict notion of an 

outlier in the sample space of observations for the dependent variable, not in the 

regressors space as in Kurozumi (2002), thus making the structure of our analysis, the 

main results and conclusions completely different. 

In what follows we will introduce the test statistics subject to analysis in the present 

study, three of them for testing the null hypothesis of stationarity around the 

deterministic component (trend stationarity) against the alternative of a unit root process 

(difference stationarity) and an additional one for testing the opposite hypothesis. The 

four test statistics have in common their nonparametric nature and the use of the OLS 

residuals from the estimation of the auxiliary regression in (2.10), but each one is based 

on a particular measure of the fluctuation of these trying to capture the degree of 

persistence of a shock in the non-systematic part of the DGP. 

Given the sequence of OLS residuals ,
ˆ ( )t pη λ  in (2.12)-(2.14) and the partial sum 

process , ,1

ˆ ˆ( ) ( )
t

t p j pj
S

=
λ = η λ∑ , t = 1, ..., n, we consider the following nonparametric 

univariate tests statistics 

(1) 2 1 21
, ,1

ˆˆ ˆ( , ) [ · ( )] ( ( ))
n

n p n n n t pnt
M m n m S−

=
λ = ω λ∑ ,    (2.15) 

( ){ }2(2) 2 1 2 11 1
, , ,1 1

ˆ ˆˆ ˆ( , ) [ · ( )] ( ( )) ( )
n n

n p n n n t p t pn nt t
M m n m S n S− −

= =
λ = ω λ − λ∑ ∑  (2.16) 

or, alternatively, 2 2

(2) (1) 21 1
, , ,ˆ 1· ( )

ˆˆ ˆ( , ) ( , ) ( ( ))
n n

n

n p n n p n t pntn m
M m M m S

=ω
λ = λ − λ∑ , and 

(3) 1 1 1
, , ,

1,...,

ˆ ˆˆ ˆ( , ) ( )·max ( ) ( ( ))t
n p n n n t p n pnn nt n

M m m S S−

=
λ = ω λ − λ    (2.17) 

as the basis for developing three of the most used tests of the null hypothesis of 

stationarity against the alternative of a linear unit root procedure. These are the KPSS 

test by Kwiatkowski et.al. (1992), i = 1, the V/S test by Giraitis et.al. (2003), i = 2, and 

the KS test by Xiao (2001), i = 3. The KPSS test statistic in (2.15) is the one-sided LM 

test for the null hypothesis of stationarity, H0: 
2

1 0σ = , against the alternative of a unit 

root, H1: 
2

1 0σ > , and can also be interpreted as the LBI test statistic under the additional 

assumption of normality. In (2.16) ,1

ˆ (1) 0
n

t pt
S

=
=∑ , so that (1) (2)

, ,
ˆ ˆ( ,1) ( ,1)n p n n p nM m M m=  

when regression contains a linear trend (p=1), and ,
ˆ ( ) 0n pS λ =  in (2.17) if regression 

contains a constant term. Notice that while the KPSS test statistic uses de Cramér-von 
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Mises measure of fluctuation for the series, the Xiao test statistic is based on the 

Kolmogorov-Smirnov measure of fluctuation. All three test statistics are based on a 

nonparametric correction for weak dependence in the error sequences εi,t, i = 0, 1, 

through a long-run variance kernel estimator of 2 1/ 2

1
lim [ ]

n

ttn
Var n−

η =→∞
ω = η∑  given by 

1 1
2

( 1) 1

ˆ ˆ ˆ ˆ( ) ( , ) ( ) (0) 2 ( , ) ( )
n n

n n n n n n n

j n j

m w j m j w j m j
− −

=− − =

ω = γ = γ + γ∑ ∑    (2.18) 

where 1

, ,1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

n

n n t p t j pt j
j j n−

−= +
γ = γ − = η λ η λ∑  is the jth order residual 

autocovariance, w(j, mn) is a weighting or kernel function and mn is the bandwidth or lag 

truncation parameter, usually determined as a fixed proportion of the sample size 

(deterministic bandwidth) or, alternatively, as the outcome of a data-dependent or 

automatic rule (stochastic bandwidth) that must satisfy the conditions 1

nm− = (1)po  and 

mn = Op(n
1/2−a

) = op(n
1/2
) for some 0<a<1/2. Among all existing proposals for choosing 

a particular combination of a symmetric kernel function with finite support and bounded 

variation and a stochastic bandwidth, the one that appears to provide better results in 

finite samples is the Bartlett window, w(j, mn) = 1−j/(mn+1) for j = 1, ..., mn, with a 

bounded version of the automatic bandwidth determination rule proposed in Andrews 

(1991) (see, e.g., Kurozumi (2002), Hobijn, et.al. (2004), Carrion-i-Silvestre and Sansó 

(2006), Jönsson, K. (2006), and Xiao and Lima (2007) for more details on this issue). 

Under the null of stationarity, where ηt = ε0,t, and the given conditions on the bandwidth 

parameter 2ˆ ( )n nmω  is a consistent estimator of the long-run variance of ε0,t, that is 

2 2

0
ˆ ( ) p

n nmω → ω  as n →∞. Among others in the vast literature on consistent estimation of 

long-run variance matrices, de Jong and Davidson (2000) proof the consistency of 

kernel estimators of long-run variances and covariances even under rates of 

convergence of estimates different from the usual 1/ 2( )pO n−  and very general possible 

characterizations of the weak dependence for the stationary sequence ε0,t. To 

complement and robustify the results of these stationarity tests, we consider the 

normalized variance-ratio unit root test by Breitung (2002), given by 

1

1 2 21 1 1 1
, , , ,

1 1

ˆˆ ˆ( ) ( ) ( ( )) ( ( ))
n n

n p n p t p t pn nn n n
t t

n S

−
−

= =

 ρ λ = ρ λ = η λ λ 
 
∑ ∑   (2.19) 

From (2.15) we have the following relation with the KPSS test statistic, 

(1) 1 21
, ,

ˆ ˆ ˆ( ) ( , ) (0) ( )n p n p n n n nn
M m m−ρ λ = λ γ ω      (2.20) 
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where 1 2 1 2

0 01
ˆ ˆ(0) ( ) (0) 1 2 ( )p

n n n j
m j

∞− −
=

γ ω → γ ω = + ρ∑  under stationarity, so that the test 

statistic , ( )n pρ λ  approaches zero and this is a left tailed test that rejects for small values 

of (2.19). 

Following our own formulation, under the hypothesis of stationarity, that is H0: 
2

1 0σ = , 

the asymptotic distribution of the scaled partial sum of OLS residuals from (2.10) is 

given by 

1/ 2

[ ], 0
ˆ ( ) · ( , )nr p pn S B r− λ ⇒ ω λ        (2.21) 

where 

0

0

( ) ( , ) for
( , )

( ) ( ( , ) ( , )) for
p

p
p p

W r C r r
B r

W r C D r r

− λ ≤ λλ =  − λ λ + λ > λ
   (2.22) 

is a two-piecewise (p+1)th-level standard Brownian Bridge process, with 

1

0
0 0

( , ) ( ) ( ) ( ) ( )
r

p p pC r s ds p s dW s
λ−

λ′λ = ∫ ∫x Q x ,    (2.23) 

1
1

1 0( , ) ( ) ( ) ( ) ( )
r

p p pD r s ds p s dW s−
−λλ λ

′λ = ∫ ∫x Q x ,    (2.24) 

( ) ( )p pλ λ=Q U  and 1 1( ) ( )p p−λ −λ=Q U  from (2.9). For example, with demeaned data, p 

= 0 and xp(s) = 1, B0(r, λ) is given by 

{ 0 0
0

0 0 0 01

( ) ( ) for
( , )

[ ( ) ( )] [ (1) ( )] for

r

r

W r W r
B r

W r W W W r
λ

−λ
−λ

− λ ≤ λλ = − λ − − λ > λ  

as can be seen in Busetti and Harvey (2001). Now, using (2.22)-(2.24) and by the CMP, 

the asymptotic null distribution of the test statistics ( )

,
ˆ ( , )i

n p nM m λ , i = 1,2,3, are 

1
(1) 2

,
0

ˆ ( , ) ( , )n p n pM m B s dsλ ⇒ λ∫  

( )21 1
(2) 2

,
0 0

ˆ ( , ) ( , ) ( , )n p n p pM m B s ds B s dsλ ⇒ λ − λ∫ ∫  

and (3)

,
0 1

ˆ ( , ) sup | ( , ) · (1, ) |n p n p p
r

M m B r r B
≤ ≤

λ ⇒ λ − λ . For other particular common 

specifications of the deterministic component, the exact expressions of Bp(r,λ) can be 

found in Busetti and Harvey (2001) as well as the upper tail percentage points for 

different values of λ of the asymptotic null distribution of the KPSS test statistic using 

(2.22)-(2.24). For λ = 1 we usual asymptotic distribution for 1/ 2

[ ],
ˆ (1)nr pn S−  is given by 

1
1

0 1 0
0 0

( ,1) ( ) ( ) ( ) ( ) ( ) ( )
r

p p p pB r B r W r s ds p s dW s−′= = − ∫ ∫x Q x   (2.25) 
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which is a (p+1)th-level standard Brownian Bridge process. In the case of no 

deterministic component in the DGP, , 0t p =x , then Bp(r) = W0(r), and the simulated 

asymptotic critical values for the one-sided KPSS test can be found in Hobijn et.al. 

(2004). The following proposition establish the asymptotic distribution of the 

normalized variance-ratio unit root test in (2.19) with a break in the polynomial trend. 

Proposition 1. Under the usual set of assumptions on the systematic component and the 

error terms in (2.1)-(2.2), with a structural break at a given location 0 < λ < 1, and with 

2

1 0σ > , so that the process Yt has a unit root, then: 

(i) 1/ 2

[ ], 1
ˆ ( ) · ( , ) 0 1nr p pn V r r− η λ ⇒ ω λ ≤ ≤      (2.26) 

(ii) ( )21 1
2

,
0 0 0

( ) ( , ) / ( , )
r

n p p pV s ds dr V s dsρ λ ⇒ λ λ∫ ∫ ∫     (2.27) 

where 

1

1 1
0
1

1

1 1 1

( ) ( ) ( ) ( ) ( ) for
( , )

( ) ( ) ( ) ( ) ( ) for

p p

p

p p

W r r p s W s ds r
V r

W r r p s W s ds r

λ−
λ

−
−λ λ

 ′− ≤ λλ = 
′− > λ

∫
∫

x Q x

x Q x
  (2.28) 

Proof. See Appendix A. 

Remark 1. In absence of a structural change, λ = 1, we have the standard asymptotic 

distribution of the normalized variance-ratio test by Breitung (2002), given by 

1
1

1 1 1
0

( ) ( ,1) ( ) ( ) ( ) ( ) ( )p p p pV r V r W r r p s W s ds−′= = − ∫x Q x    (2.29) 

Remark 2. For p = 0 (demeaned data), ( ) 1p s =x , V0(r,λ) is a two-level demeaned 

Brownian motion process, that is 

1

0 1 1 1
0

1
1 (1 )

1
1 1

1 1 1 110

1 1
( , ) ( ) ( ) · ( ) ( ) · ( )

1
( )(1 )

( ( ) ( ) · ( )) ( ( ) ( ) · ( ))

V r W r W s ds I r W s ds I r

W r

W r W s ds I r W r W s ds I r

λ

λ

λ −λ
λ

λ −λ λ

λ = − ≤ λ − > λ
λ − λ

= −

+ − ≤ λ + − > λ

∫ ∫

∫ ∫

 (2.30) 

with 
1

0 0 1 1
0

( ,1) ( ) ( ) ( )V r V r W r W s ds= = − ∫  for λ = 1. For p = 1 (demeaned and detrended 

data), ( ) (1, )p s s ′=x , and V1(r,λ) is a two-level demeaned and detrended Brownian 

motion process with 
1 1

1 1 1 1
0 0

( ) ( ) (4 6 ) ( ) (12 6) ( )V r W r r W s ds r sW s ds= − − − −∫ ∫  for λ = 1. 

Remark 3. Under the alternative of stationarity, that is with 2

1 0σ = , we have that 

2 21
[ ], 0 0,1
ˆ( ( )) [ ]

n p

nr p tnt
Var

=
η λ → σ = ε∑ , and 1 1

[ ],
ˆ( ) ( ) ( )nr p pn n S O n− −λ = , so that 
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1

, ( ) ( )n p pO n−ρ λ =  and thus the test procedure is consistent because it converge to zero. 

The asymptotic distribution of the variance-ratio statistic ,
ˆ ( )n pρ λ  under the stationary 

alternative is given by 

{ }
11

1 2 1 2 2 2 21
, , , 0 01

1 0

ˆˆ ˆ( ) ( ) ( ( )) ( / ) ( , )
n

n

n p t p t p pnt
t

n n S B s ds
−

− −
=

=

ρ λ = η λ λ ⇒ ω σ λ∑ ∑ ∫  (2.31) 

with Bp(s,λ) as in (2.22)-(2.24), so that it is scaled version of the asymptotic distribution 

of the KPSS test statistic under stationarity by the factor 2 2

0 0·
−ω σ  which is one when the 

error terms ε0,t are iid. 

For the stationarity tests, under the alternative of a linear unit root process 2

1 0σ > , we 

have that 1/ 2

,
ˆ ( ) ( )t p pO nη λ = , 2 2 2

,1

ˆ ( ) ( )
n

t p pt
n S O n−

=
λ =∑  and 2ˆ ( ) ( · )n n p n nm O m n Kω = , with 

11

( 1)
· ( , ) (1)

n

n n nj n
K m w j m O

−−
=− −

= =∑  and ˆ ( ) · (1)n pj n Oγ = . Thus, all the three test statistics 

( )

,
ˆ ( , )i

n p nM m λ  diverge to infinity at rates pO (n/mn) for i = 1, 2, and pO ((n/mn)
1/2
) for i = 

3. Furthermore, as a generalization of the results in Kwiatkowski et.al. (1992), we have 

the following asymptotic distribution under the alternative of a unit root for i = 1 

( )21 1
(1) 1 2

,
0 0 0

ˆ( / )· ( , ) ( , ) / ( , )
r

n n p n p pm n M m K V s ds dr V r dr−λ → λ λ∫ ∫ ∫   (2.32) 

and similarly for i = 2 and 3, where 
1

1
( )K w s ds

−
= ∫  and ( , )pV r λ  is the two-level pth-

order corrected Brownian process as in Proposition 1. With the Bartlett kernel, K = 1, so 

that the asymptotic distribution of the scaled KPSS test statistic is the same as the 

asymptotic distribution of the variance-ratio unit root test statistic under the unit root 

hypothesis. Under the sequence of local alternatives to the null of stationarity 

2 2 2

1, 1 ·n n−ω = ω , with 2

1, 1( ) ( )·n j j n−γ = γ  for all j = 0, 1, ..., then 

[ ]1/ 2

0 0 1 01 0
(1) ( ( ) ( ) ) · ( )

rnr

t p ct
n O W r c W s ds W r−

=
η = ⇒ ω + = ω∑ ∫  

where 1

0
c

ω
ω= . This implies that 1/ 2

[ ], 0 ,
ˆ ( ) · ( , )nr p c pn S B r− λ ⇒ ω λ , where , ( , )c pB r λ  is as 

Bp(r,λ) with W0(r) replaced by Wc(r). Müller (2005) consider the stationary error 

component modelled as a strongly autocorrelated mean reverting process in the context 

of a local-to-unity asymptotic analysis as 0, 0, 1t n t tz−ε = φ ε + , where φn = 1−γ·n−1
, with γ ≥ 

0, and the zero-mean sequence zt is covariance-stationary with finite autocovariances 
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( )z jγ < ∞ , so that 2 ( )z zj
j

∞

=−∞
ω = γ < ∞∑  and 

[ ]1/ 2

01
( )

nr

j zj
n z W r−

=
⇒ ω∑ . For γ > 0, |φn| < 

1 and the initial value 0,0 0

s

n ss
z

∞
−=

ε = φ∑  lead jointly to the stationarity of the series ε0,t 

and will have a considerably effect on the asymptotic distributions considered below 

(see Elliot (1999), Müller and Elliot (2003) and Müller (2005)). In particular, we then 

have that the weak limit of 1/ 2

[ ]nrn− η  is a mixture of two continuous time processes 

11/ 2

[ ] 1( ( ) ( ))
znr zn M r W r

ω−
ωη ⇒ ω +ɶ , where 1/ 2( ) ( ) (2 )M r M r −= + ζ γɶ , ζ is a standard 

normal variable independent of W0(r), 0( ) ( )M r W r=  for γ = 0, and 

1/ 2( ) ( 1)(2 ) ( )rM r e J r−γ −
−γ= ζ − γ +  for γ > 0, with ( )J r−γ  an Ornstein-Uhlenbeck process 

given by ( )

0
0

( ) ( )
r

r sJ r e dW s−γ −
−γ = ∫ = ( )

0 0
0

( ) ( )
r

r sW r e W s ds−γ −− γ∫ . For γ>0, the component 

( )M rɶ  of the limit process is a stationary continuous time process. Then, with 

2 2ˆ ( ) (1)n n pn m o− ω =  for mn = op(n), ( )21
2 21 1

,1, 0 0

ˆ( ( )) · ( , )
r

t p z pn n nt n
S M s ds dr

=
λ ⇒ ω λ∑ ∫ ∫  for 

any γ = n·(1−φn) ≥ 0 and 2

1 0σ = , with ( , )pM s λ  as ( , )pV s λ  where W1(s) is replaced by 

M(s), then the stationarity test based on (1)

,
ˆ ( , )n p nM m λ  reject the null hypothesis of 

stationarity with probability one under local-to-unity asymptotics (Müller (2005), 

Proposition 1, p.201). 

There are many other studies about the behavior and stochastic properties of these test 

statistics under different assumptions about the nature of the stochastic components in 

(2.1)-(2.2), but in what follows we will be concerned with the effects of a 

misspecification in the systematic component in (2.1). To analyze the possible 

distortions of these specification errors, we will use a kind of local-to-the correct 

specification approach by letting the implied parameters depend on the sample size 

through an additional parameter that allows us to control their asymptotic effects. 

As in linear regression analysis, there are many possible situations where a 

misspecification in the systematic component will affect the behavior and properties of 

a particular test statistic. We are going to consider two groups of this type of error: 

wrong identification of the order in the polynomial trend, omission of a structural break 

in the polynomial trend or wrong location of the break-point in the sample, and second: 

omission of outliers or influential observations, that is the main topic of this paper. The 

other cases are considered for comparison purposes. 
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Thus, for example, in the general case of a structural break at a known given position λ, 

we could consider the situation where the true order of the polynomial trend function p0 

differs from the specified one, p. When p0>p,
 1

 then we have 

0 0 0 0, , , , , ,( ) ( ) ( )t p p t t p p t t p p p p t− −′ ′ ′λ = λ + λx x xβ β ββ β ββ β ββ β β , so that the error term in (2.10) is now 

0 0, , ( )t t t p p p p t− −′ξ = η + λx ββββ , and thus the t-th scaled OLS residual will be given by 

( )
( )

0 0 0

0 0 0

1/ 2 1/ 2

, ,

[ ]1 1 1
[ ] ,1

1 1 1
[ ] ,[ ] 1

ˆ ˆ· ( ) · ( )

(1 ( )) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t p t p

n j jt t
t p p p n p p p p p nn n n n nj

n j jt t
t p p p n n p p p p p nn n n n nj n

n n

h n p

h n p

− −

λ− −
− λ − −=

− −
− − λ − −= λ +

ξ λ = η λ

′ ′ ′+ − λ −

′ ′ ′+ λ −

∑

∑

x x Q x x

x x U x x

ββββ

θθθθ

 (2.33) 

with 1/ 2

,
ˆ· ( )t pn− η λ  as in (A.14) in Appendix A with v = 1/2, 

0 0 0

1/ 2 1

, ,·p p n p p n p pn −
− − −=β ββ ββ ββ βD , 

and 
0 0 0

1/ 2 1

, ,·p p n p p n p pn −
− − −=θ θθ θθ θθ θD , where we have used 

0 0, , ,( : )p n p n p p n−=D D D . Each term in 

0 ,p p n−ββββ  and 
0 ,p p n−θθθθ  is of order O(n

j+1/2
) for j = p+1, ..., p0, so that with finite values of the 

coefficients βj and θj, j = p+1, ..., p0, the scaled partial sum of the OLS residuals will 

diverge at a rate 0 1/ 2
( )

p

pO n
+

 while the sample autocovariances based on these residuals 

will diverge at a rate 02
( )

p

pO n . Thus, the KPSS test statistic will be Op(n/mn), and will 

reject too often the null of stationarity. Unless jβ  and jθ  where of order O(n
−(j+1/2+α)

) 

for each j = p+1, ..., p0, with 0 < α < 1/2, so that all the coefficients ,j nβ  and ,j nθ  are 

asymptotically negligible, the omitted terms in the specification of the systematic 

component will cause divergence of the test statistics for testing the null of stationarity 

because 1/ 2

[ ],
ˆ ( ) ( )nr p pn S O n− −αλ = . With α = 0, so that ,j nβ  and ,j nθ  are all finite 

constants and independent of the sample size and the order j, the asymptotic null 

distribution of these test statistics will change due to the additional limits of the above 

last two terms, while for −1/2 ≤ α < 0, the scaled partial sum of OLS residuals will 

diverge to infinite at the given rate. This latter case will cause an increase in the 

empirical size of the stationarity tests. The above conditions on the size of the 

coefficients for the omitted terms could not be appropriate in this context. However, in 

other situations this formulation has been used in order to eliminate nuisance parameters 

or to preserve some asymptotic results even under a possible misspecification. This 

approach results in a kind of local sensitivity analysis, and it will be used extensively in 

                                                 
1
 The case p0 < p will not cause, in general, significative effects on the properties of the test statistics as it 

corresponds to the inclusion of irrelevant regressors with zero coefficients (Hadri and Rao (2009)). 
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the rest of the paper. 

Lee et. al. (1997) examine the effect of the omission of a structural break on KPSS test 

for stationarity, whereas Carrion-i-Silvestre (2003) shows that the KPSS test with p = 0 

and 1 diverges under a misspecification of the break-point. We will extend these results 

to the variance-ratio unit root test, allowing the shift parameters could vary with the 

sample size which covers the case of no break actually occurring. 

In the first case, when the structural break is ignored, the residuals are computed as in 

equation (2.13) with the error terms of the auxiliary regression given now by 

, ( )t t t p t ph′ξ = η + λx αααα . Thus, the sequence of OLS residuals are of the form 

, , , ,
ˆ ˆ ( , )t p t p p n p nt′ξ = η + λz αααα        (2.34) 

with 1 1

, 1
ˆ ( ) ( ) ( )

n jv vt
t p t p n p jn nj

n p n− − −
=

′η = η − η∑x Q x , and 

1

, [ ]( , ) ( )( ( ) ( ) ( ))t
p n p t n n nn

t h p p−
− λ′ ′λ = λ −z x Q U ,     (2.35) 

and ,p nαααα = 1

,p n p

− ααααD = ( )pnO  if pαααα = (1)O . For stationarity tests, v = 1/2, ηt = ε0,t, and 

[ ]
1/ 2 1 1/ 2

[ ], , , ,

1

ˆ (1) ( , ) · (1) ( ) ( )
nr

p v

nr p p p n p n p p n p

t

n S O n t n O v O n− − +

=
= + λ = + =∑ z α αα αα αα α  (2.36) 

that will diverge unless αi = O(n
−(i+v+α)

) for i = 0, 1, ..., p for 0 < α ≤ 1/2, with αi,n = 

O(n
−(v+α)

), and αi,n(v) = O(n
−α
). This is the assumption made in Busetti and Harvey 

(2001) when computing the KPSS test under a structural change with a unknown break 

point location. In this case the asymptotic distribution of the KPSS test is the same as 

without the break. With α = 0, αi,n(v) = O(1) and 
1/ 2

[ ],
ˆ (1)nr p pn S O− =  but with a different 

limit distribution that depends on the unknown values of αi,n(v). For relatively large 

values of the shift parameters, with −1/2 ≤ α < 0, then 1 2 2

[ ],
ˆ ( )nr p pn S O n− − α=  but 2ˆ ( )n nmω  

is still a consistent estimator of the long-run variance. Also, from (2.34) with fixed shift 

parameters, αi = O(1), and under stationarity, the jth order sample autocovariance is 

1 2

0, 0,1
ˆ ( ) ( )

n p

n t t j pt j
j n O n−

−= +
γ = ε ε +∑ , which implies that the kernel estimator of the 

long-run variance of ε0,t in (2.18) is of order 2( · )p

p nO m n . Then, with finite shift 

parameters, the KPSS test statistic will diverge at the same rate as under the unit root 

alternative, Op(n/mn), except in the case p = 0 where it is Op(n). 

The same argument can be applied in the case of a misspecification in the break point 

location. Thus, with λ0 ∈ (0,1) the true location of the break, the error term in (2.10) is 
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now given by , 0[ ( ) ( )]t t t p t t ph h′ξ = η + λ − λx αααα  = , 0( )t t p t pd′η + λx αααα , where 0( )td λ =1 for t 

= [nλ0]+1, ..., [nλ] if λ0 < λ, 0( )td λ =−1 for t = [nλ]+1, ..., [nλ0] if λ0 > λ, and zero 

otherwise. The OLS residuals are given now as in (2.34) with ,
ˆ

t pη  replaced by ,
ˆ ( )t pη λ  

in (2.14) and , ( , )p n t′ λz  replaced by 

1

, 0 0 [ ] [ ] 0

1

[ ] [ ] 0

( , ) ( ) ( ) (1 ( ) ( ) ( ) ( , )

( ) ( ) ( ) ( , )

t t
p n p t t p n nn n

t
t p n n n nn

t d h p p

h p p

−
λ λ

−
− λ − λ

′ ′ ′λ = λ − − λ λ
′− λ λ

z x x Q Q

x U U
  (2.37) 

where 

[ ] 0( , )n pλ λQ =
0

[ ]
1

[ ] 1

( ) ( )
n

j j

p pn n
j n

n
λ

−

= λ +

′∑ x x  if 0λ < λ , 

and 

[ ] 0( , )n n p− λ λU = 
0[ ]

1

[ ] 1

( ) ( )
n

j j

p pn n
j n

n
λ

−

= λ +

′− ∑ x x  when 0λ > λ . 

With fixed and finite shift parameters and p > 0, it could be expected the same size 

distortion of the KPSS test as in Carrion-i-Silvestre, with a symmetric behavior around 

λ0 − λ = 0. In order to complete this analysis and to compare with these results and the 

established in Proposition 1, the following Proposition 2 gives the basic sensitivity 

results for the variance-ratio unit root test. 

Proposition 2. Under misspecification of the model in (2.10), both for omission of the 

structural break or misspecification of the break-point location, and under the unit root 

hypothesis, with αj,n = αj·n
j
 and αj,n(v) = n

j+v
·αj, j = 0, 1, ..., p, v = −1/2, then we have: 

(i) With fixed shift parameters the variance ratio test statistic will be O(1) with a non-

random limit, except for p=0 where the misspecification have no effect, and 

(ii) When the shift parameters are of orders αj = cj·O(n
−(j+v+α)

), for 0 < α ≤ 1/2, there is 

no effect of the misspecification, while for α = 0, the test statistic is Op(1) but with a 

different limit distribution. For −1/2 ≤ α < 0, the test statistic will be O(1) for all p. 

Proof. For part (i), with α0,n(v) = n−1/2
·α0 and αj,n(v) = n

j−1/2
·αj, j = 1, ..., p, finite values 

of the αj, and 
1/ 2 1/ 2 1/ 2

, , ,
ˆ ˆ( ) ( ) ( , ) ( )p

t p t p p nn n t O n− − −′ξ λ = η λ + λz , the result follows easily for 

p=0 (demeaned observations). For p ≥ 1, both the numerator and the denominator 

diverges at the same rate Op(n
2p+1
), so that in the limit behaves as it were a finite 

constant value. For part (ii), under the given assumption on the size of the shift 

parameters we have that αj,n=O(n
1/2−α

) and αj,n(v)=O(n
−α
) for all j=0,1,...,p. For values 

0<α≤1/2, 1 1
, ,
ˆ ˆ( ) ( ) (1)t p t pn n

oξ λ = η λ + , while for α=0 1 1
, , ,
ˆ ˆ( ) ( ) ( , )t p t p p n pn n

t′ξ λ = η λ + λz c , 
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so that 1
[ ], 1
ˆ ( ) ( , ) ( , )nr p p p pn

V r r′ξ λ ⇒ ω λ + λz c , with the corresponding limit of (2.35) or 

(2.37). Otherwise, for α < 0, it is of application the same argument as in part (i). 

g 

The rest of this section is devoted to the case of existence of outliers in the sample and 

their effects on the stationarity and unit root tests. The effects of additive outliers on 

parametric tests for unit roots, as the Dickey-Fuller test, has been well established by 

Franses and Haldrup (1994) and Shin et.al. (1996). Thus, the limiting distribution of the 

OLS estimator of the unit root parameter in the AR(1) model is affected by additive 

outliers (AO) and may produce spurious stationarity, but is unaffected by innovational 

outliers. The performance of stationarity tests is studied in Darné (2004) and Otero and 

Smith (2005) for the KPSS test, and Afonso-Rodríguez (2009) for the KPSS, V/S and 

KS tests. The numerical evidence found in these papers indicate that the stationarity 

tests are quite robust under stationarity in presence of outliers, isolated or in patches, 

except in the case of very persistent outliers. Even for moderately large sample sizes, 

the mean reversion effect induced by the outliers may result in low power of these tests. 

However, in spite of the large numerical evidence on this effects, there is no a complete 

analytical work that allows to clarify these findings. In Afonso-Rodríguez (2010) there 

is an attempt to formulate this problem through different possible representations of the 

outlier contaminating process. Thus, the error term in (2.10) is given now by 

( )t t tZξ = η + θθθθ , with ( )tZ θθθθ  a proper deterministic or stochastic function that contains 

information about the magnitudes, locations, number and persistence properties of the 

outliers present in the sample. Following Rodrigues and Rubia (2010) and Otero and 

Smith (2005), we consider a Bernoulli-type stochastic jump process defined by 

1

0 1( ) ( )( ), ( ) (1 ) ( )t t t t tZ B v B L B−= λ + λ = − φ ɶθ θ θ πθ θ θ πθ θ θ πθ θ θ π     (2.38) 

where λj are real finite parameters, j = 0, 1, vt ∼ iid(0, 2

vσ ), |φ| < 1 and ( )tBɶ ππππ  is an iid 

Bernoulli-type sequence with support (1, −1, 0) and probabilities ππππ = (π1,π2,1−(π1+π2)). 

Furthermore, the processes vt and ( )tBɶ ππππ  are mutually independent. Then, the OLS 

residuals from (2.13) (that is, without structural break), are given by 

1 1
, , 1 ,

1

ˆ ˆ ( ) ( ) ( ) ( ) ( ) ( )
n

jt
t p t p t n t p n p jn n n

j

m Z p Z−

=

′ξ = η + µ + − ∑ɶ ɶx Q xγ γ γγ γ γγ γ γγ γ γ   (2.39) 

with ,
ˆ

t pη  as in (2.34), 1 1
, 1

1 ( ) ( ) ( )
n jt

t n p n pn n nj
m p−

=
′= − ∑x Q x , and ( )tZɶ γγγγ = ( )tZ γγγγ − 1( )µ γγγγ , 
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where 1( )µ γγγγ =E[ ( )tZ γγγγ ] = λ0·E[ ( )tB ππππ ], E[ ( )tB ππππ ] = (1−φ)−1·E[ ( )tBɶ ππππ ] = (1−φ)−1·(π1−π2). 

Under this conditions, ( )tZɶ γγγγ  is a zero-mean stationary sequence that satisfy the FCLT 

for martingale differences, that is 
[ ]1/ 2

1
( ) ( )· ( )

nr

tj
n Z W r−

=
⇒ ω∑ ɶ

γγγγγ γγ γγ γγ γ , with ω2(γγγγ) the long-

run variance defined below. Thus, we can formulate the following result concerning the 

asymptotic distribution of the scaled residuals and partial sum of residuals needed to 

build the variance-ratio and stationarity tests under this general type of outlier 

contamination. 

Proposition 3. With the assumption π1 = π2 = π, so that 1( )µ γγγγ = 0, and the usual 

regularity conditions on the error terms in (2.1)-(2.2), we have that: 

(i) Under the unit root hypothesis, then: 

1/ 2 1/ 2 1/ 2 1

[ ], [ ], [ ] 1
ˆ ˆ ( ) ( ) ( )nr p nr p nr p pn n n Z O n V r− − − −ξ = η + + ⇒ ωɶ γγγγ    (2.40) 

(ii) Under the stationarity hypothesis, then: 

0

[ ]
( )1/ 2

, 0 ,

1

ˆ [ ( ) ( )]
nr

t p p p

t

n B r B r
ω−
ω

=
ξ ⇒ ω +∑ γγγγ

γγγγ      (2.41) 

with , ( )pB rγγγγ  as ( )pB r  with W0(r) replaced by Wγγγγ(r) and 2

12 2 2 22
1 0 11

( ) ( ( ))v

+φπ
−φ−φ

ω = λ σ + λγγγγ . 

Proof. The proof of (ii) follows from Afonso-Rodríguez (2010). For (i), given the 

stationarity of the sequence ( )tZɶ γγγγ , then ( )tZɶ γγγγ , and 1/ 2

1
( ) ( )

n j

p jnj
n Z−

=∑ ɶx γγγγ  are both 

Op(1), and thus 
1/ 2

, ,
ˆ ˆ ( ) ( )t p t p t pZ O n−ξ = η + +ɶ γγγγ  in (2.39). The result then follows under 

scaling. 

g 

From (2.41), and under the assumption that the outlier generating process has no effect 

on the level of the series, it is seen that the limiting null distribution of the stationarity 

tests can be seriously distorted when ω2(γγγγ) is large compared with 2

0ω . This long-run 

variance grows with the degree of persistence of the outlier, for large positive values of 

φ, and also for large values of λ0 and λ1. This particular choice of the outlier generating 

process does not cause any distortion in the variance-ratio unit root test, unless we 

consider a local-to-unity framework of analysis through the assumption that ω2(γγγγ) = 

c
2
(γγγγ)·n, with c(γγγγ) a finite constant, in which case in (i) we have 1/ 2

,
ˆ

t pn− ξ ⇒ 

1

( )

1[ ( ) ( )]
c

pV r W rωω + γγγγ
γγγγ . 
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3. Augmented basic DGP by an outlier intervention model 

Let us now assume that the true DGP is given by the following augmented version of 

the basic DGP by an additional deterministic term, 0( )tϕ θθθθ , that takes into account the 

effect of an additive-type outlier (AO), that is, 

0( , ) ( )t t t tY d p= λ + η + δϕ θθθθ , 0 0 0( , )′= τ φθθθθ      (3.1) 

where 0 < τ0 ≤ 1 is the relative location of the AO in the sample, and |φ0| < 1 is a 

parameter that allows to capture the possible persistent effect of the perturbation. In the 

case φ0 = 0, with 0 0( ,0)′= τθθθθ , we define 0( )tϕ θθθθ  simply as a step function 

0 0 0( ) ( ) ( )t tI I t kϕ = τ = =θθθθ        (3.2) 

while in the case |φ0| < 1, with φ0 ≠ 0, we have 

0 0

0 0 0 0 0 0( ) ( ) ( ) ( )
t k t k

t t t tI h H
− −ϕ = τ + φ τ = φ τθθθθ      (3.3) 

with, 0 0 0 0( ) ( ) ( ) ( )t t tH I t k I hτ = ≥ = τ + τ  and k0 = [nτ0]. In (3.2) we consider the 

possibility of a single isolated pure AO with true location k0 = [nτ0], which can differ 

from the specified in the auxiliary regression of the tests as can be seen below. In (3.3) 

we consider the case of a single isolated but persistent AO, with initial impact δ at k0 = 

[nτ0] and subsequent effect that decrease at a geometric rate of 0

0·
t k−δ φ  for all t = k0+1, 

..., n. The value of φ0 determines the extent of the duration of the effect, with mean and 

median life of the impact given by |φ0|/(1−|φ0|) and log(0.5)/log(|φ0|)−1, respectively. To 

take into account the outlier effect in the computation of the stationarity and unit root 

tests we consider the following auxiliary regression 

( , ) · ( )t t t tY d p I= λ + δ τ + ξ        (3.4) 

where, the error term ξt is given by 0 0,·[ ( ) ( )] ( )t t t t t tI Iξ = η + δ ϕ − τ = η − δ τθθθθ , with 

0, 0· ( )t t tη = η + δ ϕ θθθθ         (3.5) 

In the case of no structural breaks (λ = 1), the OLS residuals from (3.4) are given by 

, , ,

1

, , ,

, , ,

ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ( ( ) ( )) ( ) ( )

ˆ ˆ ( ) ( )

t p t t p p n t n

t t p p n n k p n t n

t t p p n n t k

Y I

Y p I

Y m

−

′ξ τ = − τ − τ δ τ
′ ′= − − δ τ − τ δ τ
′= − − δ τ τ

x

x Q x

x

ββββ
ββββ

ββββ
 

where k = [nτ], 11
, ( ) ( ) ( ) ( ) ( )t k

t k t p n pn n n
m I p−′τ = τ − x Q x , 1

, , 0,1

ˆ ( )
n

p n p n j p jj
p−

=
= + η∑β ββ ββ ββ β Q x  

the OLS estimation of vector parameter without the AO dummy as in section 2, and 
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1

, , ,
ˆ ˆ( ) ( )( )n k k k k p p nm Y− ′δ τ = τ − x ββββ . Under correct location of the pure AO, 0 ( ,0)′= = τθ θθ θθ θθ θ , 

and using (3.5) with (3.2) then 

1 1
, 0, , , 0, , , ,

1

ˆ ˆ ˆˆ( ) ( ) ( ) ( ) [ ( ) ]· ( )
n

t p t t p n j p j n t k t p n t kn

j

p m m−

=

′ξ τ = η − η − δ τ τ = η − δ τ − δ τ∑x Q x  

where 1 1

, 1
ˆ ( ) ( ) ( )

n jv vt
t p t p n p jn nj

n p n− − −
=

′η = η − η∑·x Q x  and v determines the scaling factor 

needed to obtain a finite limit distribution of the test statistics, with v = 1/2 under 

stationarity and v = −1/2 for the unit root test. Then, for v = −1/2, 

1/ 2 1/ 2 1/ 2

, , , ,
ˆ ˆ ˆ· ( ) ( )t p t p t k k pn n M n− − −ξ τ = η − τ η      (3.6) 

with ,

,

( ) 1

, ( )
( ) ( ) ( )t k

k k

m

t k m
M I O n

τ −
ττ = = τ + , while for v = 1/2 

[ ] [ ] [ ] [ ]
1/ 2 1/ 2 1/ 21 1

, , , , ,

1 1 1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
nr nr nr nr

t p t p k p t k t p pn n
t t t t

n n M O n− − −

= = = =
ξ τ = η − η τ = η +∑ ∑ ∑ ∑  (3.7) 

where 1/ 2 1/ 2 1/ 2

,
ˆ ˆ( ( ) ) ( )n k p pn n O n− − −δ τ − δ = η = . From (3.6) and (3.7), it is expected that 

the inclusion of the dummy variable will not have any significant effect on the 

asymptotic distribution of the corresponding test statistics. However, if the true location 

of the outlier is at k0 = [nτ0], with τ ≠ τ0, then 

, , , , , 0 , , 0
ˆ ˆ ˆ( ) ( ) ( ( ) ( ) ( ))t p t p t k k p t p t k k pM Mξ τ = η − τ η + δ ϕ τ − τ ϕ τ ,   (3.8) 

with 

011
, 0 0( ) ( ) ( ) ( ) ( )

kt
t p t p n pn n n

I p−′ ′ϕ τ = τ − x Q x      (3.9) 

and 

[ ] [ ] [ ] [ ]
1/ 2 1 1

, , , 0 , 0 ,

1 1 1 1

ˆ ˆ( ) ( ) ( ) ( ) ( )
nr nr nr nr

t p t p t p k p t k pn n n
t t t t

n M O− δ

= = = =

 ξ τ = η + ϕ τ − ϕ τ τ + 
 

∑ ∑ ∑ ∑  (3.10) 

In (3.10), as in (3.8) under scaling by n
−1/2
, it is seen that the behavior of the resulting 

test statistics can be affected mainly due to the size of the scaled outlier magnitude and, 

depending on this, the possible differences in location and the persistence nature of the 

outlier. To make the analysis as general as possible we consider the main results of this 

section in the case of the OLS estimation with a break in the polynomial trend in (3.1), 

, , ( ) · ( )t t p p t t tY I′= λ + δ τ + ξx ββββ        (3.11) 

with residuals denoted by ,
ˆ ( , )t pξ λ τ , and a possible misspecification in the location and 

type of the outlier, as in (3.2)-(3.3). When φ0 ≠ 0, with (3.3), we will encounter terms of 
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the form 

0 0

0 0 0

[ ] [ ] [ ] [ ]

0 0 0

1 1

( ) ( ) ( ) ( ) ( 1) ( )
nr nr nr nr

t k t kt t t t
p t p p pn n n n

t t k t k t k

− −

= = = = +

ϕ = φ = + φ −∑ ∑ ∑ ∑x x x xθθθθ  

which must have a finite limit depending on the value of the persistence parameter, φ. 

Thus, to obtain a closed expression for the limit results that involve the persistence 

parameter φ0 in the case where the true contaminating process is not a pure additive 

outlier, we introduce the following assumption. 

Assumption 1. In the case where the true outlier process is not a pure additive outlier 

(AO) but instead we allow for a certain degree of persistence, then the persistence 

parameter φ0 is given by φ0 = exp(γ0/n) with γ0 < 0 so that 0 < φ0 < 1. 

Remark 4. Under this assumption, and the limit result in (2.8), we have that 

0 0

0

0 0 0 0

0 0

0 0

0

[ ] [ ] [ ]
( / )

, 0 0 0 0 0

1 1

[ ] [ ]
/ /

( / ) ( )

, ,
( 1) / ( 1) /

[ ]

( ) (

,

1 1 1
( , ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

nr nr nr
t k n t nt t t

p n p t p t pn n n
t t t k

nr nr
t n t n

t n s

p n p n
t n t n

t k t n

r
s s

p n

r H
n n n

e d s e d s

e d s e

− −τ

= = =

−τ γ −τ γ

− −
= = τ

−τ γ −τ

τ

= ϕ = φ τ = φ

= =

= →

∑ ∑ ∑

∑ ∑∫ ∫

∫

G x x x

z z

z

θ θθ θθ θθ θ

0 0

0
0

)

, 0( ) ( , )
r

p pd s r
γ

γτ
=∫ z G θθθθ

 (3.12) 

Similarly, for the normalized partial sum process of the error term εi,t (i = 0, 1) and 

using (2.3), we have 

0 0

0

0 0 0 0

0 0

0 0 0

0

[ ] [ ] [ ]
( / )

, 0 , 0 0 , 0 0 ,

1 1

[ ] [ ]
/ /

( / ) ( )

, ,
( 1) / ( 1) /

[ ]

( ) ( )

,

1 1 1
( , ) ( ) ( )

( ) ( )

( ) ·

nr nr nr
t k n t n

n i i t t i t t i t

t t t k

nr nr
t n t n

t n s

n i n i
t n t n

t k t n

r
s s

n i i

J r H
n n n

e dW s e dW s

e dW s e

− −τ

= = =

−τ γ −τ γ

− −
= = τ

−τ γ −τ γ

τ

= ε ϕ = φ ε τ = φ ε

= =

= → ω

∑ ∑ ∑

∑ ∑∫ ∫

∫

θ θθ θθ θθ θ

0

0
0

, 0( ) ( , )
r

i i idW s J rγτ
= ω∫ θθθθ

  (3.13) 

as n→∞ for all r ≥ τ0. In the case p = 0, with xp(s) = 1 and zp(s) = s, then (3.12) 

simplifies to 0 0 0 0

0
0

( ) ( )1

0, 0 0( , ) [ 1]
r

s r
G r e ds e

−τ γ −τ γ−
γ τ

= = γ −∫θθθθ . The above finite sample function 

and integrals only exist for r ≥ τ0. The limit process 
0 , 0( , )iJ rγ θθθθ  in (3.13) is similar to the 

Ornstein-Uhlenbeck process as the stochastic limit of a first-order autoregression with 

autoregressive parameter depending on the sample size. 

Also, from expressions (3.8) and (3.10) that are the leading terms needed to build the 

variance-ratio and stationarity tests, the outlier magnitude appears scaled by n
−1/2
, δn = 

n
−1/2
·δ. This can partially explain the results found in previous studies where in neither 

case δn exceeds 0.7 or, at most 1, which correspond with very small magnitudes of δ. 

Then, in order to assign a more realistic sense to what can be considered an outlier in 
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this context we introduce the assumption that for a value of α ∈ [−1/2, 1/2], the 

magnitude of the outlier is of order δ = c·O(n1/2−α
), where the constant c must be small. 

The case α = 1/2 correspond to a fixed and finite value of the outlier magnitude, δ = c, 

while for 0 < α < 1/2, even for small values of c, the outlier magnitude could be very 

high. The case −1/2 ≤ α < 0 corresponds to a extremely large outlier, that rarely are 

encountered in practice but that we consider from the theoretical view of the analysis. 

With this, we denote by δn(α) = n−1/2
·δ = c·O(n−α

) the scaled outlier magnitude, as a 

function of the constant c, the sample size n and α. The corresponding limit value of 

δn(α) will be c for α = 0, o(1) for 0<α<1/2, and c times a divergent term for −1/2<α<0, 

as n→∞. The main conclusions founded are summarized in the following Proposition 4. 

Proposition 4. Under the outlier generating process in (3.2) and (3.3), and the usual 

regularity conditions on the error terms, we have that: 

(i) Under the unit root hypothesis, then 1/ 2

[ ], 1
ˆ ( , ) ( , )nr p pn V r− ξ λ τ ⇒ ω λ , irrespective of the 

persistent nature and the true location of the outlier, for 0≤α≤1/2. For extremely 

large outliers, −1/2≤α<0, then 1/ 2

[ ], 1
ˆ ( , ) ( ) /p

nr pn− ξ λ τ → δ α ω . 

(ii) Under the stationarity hypothesis, then 1/ 2

[ ],
ˆ ( , )nr pn S− λ τ ⇒ 0 ( , )pB rω λ , when φ = 0, 

and τ=τ0, while 1/ 2

[ ],
ˆ ( , )nr pn S− λ τ ⇒

0

( )

0 , 0[ ( , ) ( , )]p r pB r m
δ α
ωω λ + λ τ  when τ ≠ τ0, for 0≤α 

≤1/2. For a extremely large outlier,−1/2≤α<0, 1/ 2

[ ],
ˆ ( , )nr pn S− λ τ

1

( )

, 0( , )p

r pm
δ α

ω→ λ τ , 

with , 0( , )r pm λ τ  defined in (B.25). 

For a persistent outlier and α∈[−½,0], 1/ 2

[ ],
ˆ ( , )nr pn S− λ τ ⇒

*

0

( )

0 0[ ( , ) ( , )]p pB r G r
δ α

ωω λ + θθθθ , 

with Gp(r,θθθθ0) defined in (B.28) and δ*(α) = limn→∞c·O(n
1−α
). Also, for the Bartlett 

kernel, we have the following limits for the long-run variance estimator: 

2

2
0
2

2
0

2 2

0 0 02

2 1 2

0 0

(1 · ( )) 0,
ˆ ( )

(1 · ( )) 0

c
n pp

n n c
n p

m O n
m

m O n

− α
ω

− α
ω

ω + φ = τ ≠ τω → ω + φ ≠
    (3.14) 

Proof. See Appendix B. 

The result in (i) support the previous finding of robustness of the variance-ratio test 

statistic in Proposition 3(i), even for relatively large outliers. Also, for non-persistent 

outliers with magnitudes as large as c·O(n
1/2
), the stationarity tests will have a good 

performance, except in the case of wrong location (which can also be interpreted as an 

ignored outlier) where it can be expected a size reduction due to the reduction in the 
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2ˆ ( )n nmω  as can see in (3.14), with n
−1
· 2 1 2 1

[ ],
ˆˆ ( )· ( , ) ( ) (1)n n nr p p n pm n S O m o− − −ω λ τ = =  in the 

extreme case of α = −1/2. For a persistent outlier, the effect is contrary, with an increase 

in the empirical size of the tests, irrespective of the location with an impact in the scaled 

partial sum of OLS residuals of higher order than in the long-run variance estimator. 

We have performed an extensive simulation study using this framework of analysis that 

confirm this theoretical findings, even for relatively small sample sizes 

The same procedure and all the above results can also be applied in the case where there 

are multiple outliers, m0 ≥ 1, that is 

0

0 , 0

1

( , ) ( , ) ( )
m

t t m t t t i t i

i

Y d p d p
=

= λ + η = λ + η + δ ϕ∑ θθθθ ,    (3.15) 

with 0 0( , )i i i
′= τ φθθθθ , i = 1,..., m0, and 0( )t iϕ θθθθ  as in (3.2)-(3.3), but the estimated model is 

1

( , ) ( )
m

t t i t i t

i

Y d p I
=

= λ + δ τ + ξ∑        (3.16) 

with m the number of specified interventions, not necessarily equal to m0. When m = 1 

and there is no structural break in the trend function, the OLS residuals are given by 

0

, , , , , 0 , , 0

1

ˆ ˆ ˆ( ) ( ) ( ( ) ( ) ( ))
m

t p t p t k k p i t p i t k k p i

i

M M
=

ξ τ = η − τ η + δ ϕ − τ ϕ∑ θ θθ θθ θθ θ   (3.17) 

with 

1 1
, 0 0 0

1

( ) ( ) ( ) ( ) ( ) ( )
n

jt
t p i t i p n p j in n n

j

p−

=

′ ′ϕ = ϕ − ϕ∑x Q xθ θ θθ θ θθ θ θθ θ θ     (3.18) 

Thus, for the stationarity tests we have that from 

0[ ] [ ] [ ]
1/ 2 1/ 2 1/ 2

[ ], , , 0 , 0 ,

1 1 1 1

ˆ ˆ( , ) ( ) ( ) ( ) ( )
mnr nr nr

i
nr p t p t p i k p i t k p

t i t t

n S n M O n
n

− − −

= = = =

 δ
λ τ = η + ϕ − ϕ τ + 

 
∑ ∑ ∑ ∑θ θθ θθ θθ θ  

the omission of the outliers will have no effect, at least in this component of the 

numerator of the test statististics, for small magnitudes δi as compared with the sample 

size, δi = ci·o(n
1/2
), with ci not very large. 
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Appendix A. Proof of Proposition 1 

From auxiliary regression (2.10) and standard results from OLS estimation, conditional on a 

given value of λ ∈ (0, 1), we have that 
1 1

[ ] [ ] [ ] [ ]

, , , , ,

1 1 1 1

1 1

, [ ] [ ]

1 1ˆ ( ) ( ) ( ) ( )

( ) · ( )

n n n n

t t t
p n t p t p t p t p p n p p p tn n n

t t t t

p p n n n

Y
n n

p n p

− −λ λ λ λ

= = = =
− −

λ λ

   ′ ′λ = = + η   
   

= +

∑ ∑ ∑ ∑β ββ ββ ββ β

ββββ

x x x D x x x

D Q H

 (A.1) 

and 

, , ,
ˆ ˆˆ ( ) ( ) ( )p n p n p nλ = − λ + λα β θα β θα β θα β θ        (A.2) 

with 
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1 1

11
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(A.3) 

where [ ] [ ]( ) ( ) ( )n n n np p p− λ λ= −U Q Q , [ ] [ ]( ) ( ) ( )n n n np p p− λ λ= −J H H  and it is assumed that the 

inverses in (A.1) and (A.3) exist and are finite, with 

[ ]
0

( ) ( ) ( ) ( )n p pp s s ds p
λ

λ λ′→ =∫Q x x Q       (A.4) 

and 

1

[ ] 1 1( ) ( ) ( ) ( ) ( ) ( )n n p pp s s ds p p p− λ −λ λλ
′→ = = −∫U x x Q Q Q    (A.5) 

From (A.1) and (A.3) we can write 

1 1 1

, , [ ] [ ]
ˆ· ( ( ) ) ( )· ( )

v v

p n p n p n nn p n p
− − −

λ λλ − =β ββ ββ ββ βD Q H      (A.6) 

and 

1 1 1

, , [ ] [ ]
ˆ· ( ( ) ) ( )· ( )

v v

p n p n p n n n nn p n p
− − −

− λ − λλ − =D U Jθ θθ θθ θθ θ      (A.7) 

with different values for v depending on the scaling needed to get finite asymptotic limits for 

(A.6) and (A.7). Thus, v takes the value −1/2 under the null of a unit root, and v = 1/2 under the 
null of stationarity together with 2

1 0σ = . Using (2.11), we have that 

[ ]1/ 2 1/ 2 1/ 2

[ ] 1, 1 11
( ) ( )

nr

nr p jj
n O n n W r− − −

=
η = + ε ⇒ω∑      (A.8) 

under a unit root process (where 2

1 0)σ > , and 
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1/ 2 1/ 2 1/ 2 1 1/ 2

0, 1,1
1 1 1

( ) ( )
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t
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η = ε + + ε 

 
∑ ∑ ∑ ∑    (A.9) 

with weak limit 
[ ] [ ]1/ 2 1/ 2 1/ 2

0, 0 01 1
( ) ( )

nr nr

t t pt t
n n O n W r− − −

= =
η = ε + ⇒ω∑ ∑  under stationarity (that 

is, when 2

1 0σ =  so that the last term in (A.9) vanishes). If 2

1 0σ > , from (A.9), we have instead 

the following limit result 

[ ] [ ]
3/ 2 1 3/ 2 1 1/ 2

1, 1 1
0

1 1 1
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nr nr t r

t p p j

t t j
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η = + + ε ⇒ω∑ ∑ ∑ ∫   (A.10) 

that will be used to establish the asymptotic null distribution of Breitung’s variance-ratio unit 

root test statistic and also the the consistency and asymptotic distribution of stationarity tests 

under the unit root alternative. Thus, with (A.8) and (A.9) we have that 

1 11 0
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and 
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as n →∞ in (A.6) and (A.7). Given now that the OLS residuals from (2.10) are given by 

, , , ,
ˆˆ ( ) ( ( ) ( ))t p t t p p t p t

′η λ = η − λ − λx β ββ ββ ββ β       (A.11) 

where 
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, , , , ,
ˆ ˆ ˆ ˆˆ( ) ( ) ( )· ( ) (1 ( ))· ( ) ( )· ( )p t p n t p n t p n t p nh h hλ = λ + λ λ = − λ λ + λ λβ β α β θβ β α β θβ β α β θβ β α β θ   (A.12) 

and thus 

, , , ,
ˆ ˆ ˆ( ) ( ) (1 ( ))·( ( ) ) ( )·( ( ) )p t p t t p n p t p n ph hλ − λ = − λ λ − + λ λ −β β β β θ θβ β β β θ θβ β β β θ θβ β β β θ θ   (A.13) 

then we can write 
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Scaling (A.14) by n
−1/2
, using (A.8) and setting v = −1/2, then we have that 
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with weak limit ( , )pV r λ  as defined in the proposition, where [ ]( ) 1 ( )nrI r h≤ λ = − λ  and 

[ ]( ) ( )nrI r h> λ = λ  as n→∞. The final result follows using the CMP. With v = 1/2, we get 
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 (A.16) 

Thus, under stationarity, 2

1 0σ = , we get the weak limit ( , )pB r λ  as defined in equations (2.22)-

(2.24), and the final result follows from the CMP. 
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Appendix B. Proof of Proposition 4 

If we consider OLS fitting of the auxiliary regression in (3.4) for observations in the first 

subsample, t = 1, ..., [n·λ], we have 
1

, , [ ] ,
ˆ ˆ ˆ( , ) ( ) ( ) · ( , )· ( )p n p n n k p np I

−
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while for the second subsample, that is, for t = [n·λ]+1,...,n, we get 
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by using the structure of the error terms 0,tη  in (3.5) and where we have called k = [n·τ] the 

specified location of the outlier in the sample. In (B.1) and (B.4), ˆ ( , )nδ λ τ  is the OLS estimator 

of the outlier magnitude given by 

1

, 0 ,
ˆ ˆ( , ) ( , )· ( , )n k k k pm

−δ λ τ = λ τ η λ τ        (B.8) 

with 0 ,
ˆ ( , )t pη λ τ  be the sequence of OLS residuals obtained using the parameter vector estimator 

without the dummy variable for the observations in the subsample which contains the specified 

location of the outlier, that is 
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and , ,( , ) ( , )k k t km mλ τ = λ τ  with t = k, where 
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Using now (B.1) and (B.4), we have, as in (A.12), that 
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so that the sequence of residuals from the OLS fitting of the auxiliary regression in (3.4) is 

given by 

, , ,

, , , ,

1

, [ ] ,

1

, [ ] ,

ˆ ˆ ˆ( , ) ( , ) ( )· ( , )

ˆ ˆ( )(1 ( )) ( ) ( )

ˆ ( , )[ ( ) (1 ( )) ( ) ( )

( ) ( ) · ( )]

t p t t p p t t n

t t p p n t t p p n t

n t t t p n k p

t t p n n k p

Y I

Y h h

I h p I

h p I

−
λ

−
− λ

′ξ λ τ = − λ τ − τ δ λ τ
′ ′= − λ − λ − λ λ

′− δ λ τ τ − − λ τ ≤ λ
′− λ τ > λ

x

x x

x Q x

x U x

ββββ
β θβ θβ θβ θ

   (B.12) 

that is 
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and *

, ,( , ) ( , )t k t km mλ τ = λ τ  for t = k, with 
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From the OLS residuals defined in (B.9) and (B.14), we have that 0 ,
ˆ ( )k pη λ  = 0 ,

ˆ ( , )k pη λ τ  in 

(B.8) because 1 ( )kh− λ = ( [ ])I k n≤ λ = ( )I τ ≤ λ  and ( )kh λ = ( [ ])I k n> λ = ( )I τ > λ . In (B.14), 

,
ˆ ( )t pη λ  is as in equation (A.14) in Appendix A, 

0

*

, 0 , 0( , ) ( , )t p t kmϕ λ = λ τθθθθ  when φ0 = 0, and 
0 1

, 0 0 0 [ ] , 0

1

[ ] , 0

( , ) ( ) (1 ( ))· ( ) ( ) ( , )

( )· ( ) ( ) (1, )

t k t
t p t t p n p nn

t
t p n n p nn

H h p

h p

− −
λ

−
− λ

′ϕ λ = φ τ − − λ λ
′− λ

θ θθ θθ θθ θ
θθθθ

x Q G

x U G
   (B.16) 

where , 0( , )p n aG θθθθ  as in (3.10), with a = λ for τ0 ≤ λ and a = 1 when τ0 > λ in the case φ0 ≠ 0. 
Now, from equation (B.13), using (B.8) and (B.14), the sequence of OLS residuals is given by 

, , , 0 , , , 0
ˆ ˆ ˆ( , ) ( ) · ( , ) ( , )·[ ( ) · ( , )]t p t p t p t k k p k pMξ λ τ = η λ + δ ϕ λ − λ τ η λ + δ ϕ λθ θθ θθ θθ θ   (B.17) 
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with 1 * 1

, , ,( , ) ( , )· ( , ) ( ) ( )t k k k t k tM m m I O n− −λ τ = λ τ λ τ = τ + . The leading term for the variance-ratio 

test statistic is given by 
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while for the stationarity tests we need to evaluate the behaviour of 
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where 
1/ 2( ) ·n n−δ α = δ . Under the assumption that the outlier magnitude parameter δ is of order 

1/ 2· ( )c O n −αδ =  with 0 < c < 1 and −1/2 ≤ α ≤ 1/2, then ( ) · ( )n c O n−αδ α = . With α = 0, 

(0)n cδ = , while for 0 < α ≤ 1/2, δ = c·o(n1/2), and ( ) (1)n oδ α =  so that the effect of the outlier 

will become asymptotically negligible. When α = 1/2, we have the case of fixed magnitude, δ = 
c. Otherwise, for −1/2 ≤ α < 0 ( )nδ α → ∞  as n → ∞ but this corresponds to a extremely large 
outlier magnitude of order greater than n

1/2
, which gives very little realistic values. In what 

follows let δ(α) denotes the corresponding limit of δn(α) associated with the value of α. In the 
case of a pure AO (φ0 = 0), [ ], 0 , 0 0( , ) ( , ) ( )nr p r p I rϕ λ → ϕ λ = = τθ θθ θθ θθ θ  as n→∞, while for a persistent 
outlier effect (φ0 ≠ 0) and under Assumption 1, 
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so that 
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with Vp(r, λ) as in the standard case under the unit root hypothesis (see Proposition 1), and 
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where the last equality results from the integral of the point indicator function and the 

assumption that δ(α) does not diverge. The same results follows directly from (B.21) in the case 
of a non-persistent outlier (φ0 = 0) where , 0 , 0( , ) ( ) ( , )r p pI r τϕ λ − = τ ϕ λθ θθ θθ θθ θ  is zero for τ = τ0 and 

0( )I r = τ  otherwise. Also, for the denominator of the variance-ratio UR test statistic we have 

from (B.21) that 
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where the last two terms involving the integral of the point indicator function vanish, so that 

1

1
( )2 2 21

, 1 , 0
0

1

1 ˆ( ( , )) · [ ( , ) ( , )]
n

t p p s pn
t

V s ds
n

δ α
ω

=

ξ λ τ ⇒ ω λ + ϕ λ∑ ∫ θθθθ    (B.23) 



 26

In the simplest case p = 0, the limit equation in (B.20) is given by 
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When φ0 = 0, , 0 0( , ) ( )r p I rϕ λ = = τθθθθ  so it is of application the same argument as before 

concerning the effect of the possible misspecification of the AO location in (B.22) and (B.23). 

Thus, irrespective of the true location of the outlier for any 0 ≤ α ≤ 1/2 the effect is 
asymptotically negligible. Except in the case of correct location of the outlier, τ = τ0, for a 
extremely large outlier, −1/2 ≤ α < 0, both (B.22) and (B.23) will diverge to infinity at the same 
rate Op(n

−α
). For a persistent outlier (φ0 ≠ 0) and 0 ≤ α ≤ 1/2, δ(α) will dominate in (B.22) and 

(B.23) so that the effect is asymptotically negligible irrespective of the location of the outlier. 

Given (B.20), and only under wrong location and an extremely large outlier, −1/2 ≤ α < 0, we 
will encounter with the above divergences. 
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From (B.15), we have that 
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From (B.26), the influence of the AO in the asymptotic behavior of the scaled partial sum of 

OLS residuals depends crucially on the magnitude of δ(α) and the possible difference between 
the true and specified location of the outlier. The term between parenthesis is zero when τ = τ0 
and , 0( , )r pm λ τ  otherwise. When τ ≠ τ0, the final effect depends on the magnitude of δ(α) and 

the true location of the non-persistent AO. For values of δ(α) = c or op(1) the only effect must 

come from the long-run variance estimator, while for a extremely large outlier (B.26) will 

diverge at the rate Op(n
−α
), −1/2 ≤ α < 0. In the case φ0 ≠ 0, (B.24) must be written as 
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where now * 1( ) ( 1) · ( )n n c O n −αδ α = δ α − =  diverges to infinity for all given values of α at the rate 
1( )O n −α . In this case 
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− −αλ τ = , and the term between brackets has a finite 

limit as n→∞ given by 
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(B.28) 

under Assumption 1, with 
00, 0( , ) 0G rγ ≠θθθθ  only for r ≥ τ0. The effect of this term differs 

depending on the values of r, τ0 and p. When the only systematic component is the dummy 
variable, then (B.28) is given by 

00 0, 0 0( , ) ( , ) ( )G r G r I rγ= ≥ τθ θθ θθ θθ θ , while for p = 0 (demeaned 

data) without structural break, then 
0 00 0 0, 0 0 0, 0( , ) ( , ) ( ) · (1, )G r G r I r r Gγ γ= ≥ τ −θ θ θθ θ θθ θ θθ θ θ . With this, the 

limit of (B.27) as n→∞ is given by 

( )*

0

[ ]
( )1/ 2

, 0 0

1

ˆ· ( , ) ( , ) ( , )
nr

t p p p

t

n B r G r
δ α−

ω
=

ξ λ τ ⇒ω λ +∑ θθθθ     (B.29) 

From (B.28) we can see that the wrong location of the outlier in the sample has no effect on the 

behavior of (B.29), and that for small values of c the divergence at the rate Op(n
1−α
) could be 

controlled for 0 < α ≤ 1/2. On the other hand, for the computation of the nonparametric long-run 
variance estimator, the sample autocovariance of order j based on the OLS residuals in (B.17) is 

given by 
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  (B.30) 

where the first component converges to 0 ( )jγ  under stationarity. All the terms involving the 

function , ( , )t kM λ τ  are asymptotically negligible because the selected element is zero or 

1 2

0 ,
ˆ· ( )k pn− η λ , with 2

0 ,
ˆ ( )k pη λ  of order Op(1) or, at most, of order c

2
·Op(n

1−2α
). If we write the 

terms involving products of residuals and , 0( , )t j p−ϕ λ θθθθ  as 

, , 0 , , 0 , , 01 1 1
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and 
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, 0 , 0 , 01

( , ) ( , ) ( , ) ( , )

( , )[ ( , ) ( , )]

n n n

t p t j p t p t pt j t j t j
n

t p t p t j pt j

−= + = + = +

−= +

ϕ λ ϕ λ = ϕ λ − ϕ λ
− ϕ λ ϕ λ − ϕ λ

∑ ∑ ∑
∑

θ θ θ θθ θ θ θθ θ θ θθ θ θ θ
θ θ θθ θ θθ θ θθ θ θ

 

they are dominated by the first term because the differences , 0 , 0( , ) ( , )t p t j p−ϕ λ − ϕ λθ θθ θθ θθ θ  are zero 
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or asymptotically negligible due to the fact that ( ) ( )
t jt

p pn n

−′ ′−x x = 1

1
[ ( ) ( )]

j
t i t i

p pn ni

− + −
=

′ ′−∑ x x  are of 

order O(n
−1
). For φ0 = 0 all the terms are Op(1) due to the orthogonality between OLS residuals 

and the regressors, except 2 1

, 01
( , ) 1 ( )

n

t pt
O n−

=
ϕ λ = +∑ θθθθ  so that 
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0, 0,
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Thus, 
2

2
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2 2 2

0
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n n n pm m O n K− α
ω

ω → ω + , so that 2ˆ ( )n nmω  diverges at the rate 2( · )p nO m n− α , 

but with 0 < c < 1 the effect can be negligible except for very large outlier magnitudes, −1/2 ≤ α 
< 0, where n

−1
·

2 1 2 1

[ ],
ˆˆ ( )· ( , ) ( ) (1)n n nr p p n pm n S O m o

− − −ω λ τ = =  in the case of wrong location. 

For a persistent outlier (φ0 ≠ 0), the quantity 2

, 01
( , )

n

t pt=
ϕ λ∑ θθθθ  is O(n) by the same argument that 

for , 0( , )t pϕ λ θθθθ , and by the orthogonality between OLS residuals and the regressors 
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where the term between parenthesis has a finite limit under Assumption 1, given by 
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where 
0 ,0 0(1, )J γ θθθθ  is defined in (3.11). Then, we have 0 0

ˆ ( , ) ( ) ( ) (1)n n pj j Oγ τ = γ + δ α ω + 

2 ( ) ( ) (1)n pO n oδ α + , that is 2 1 2
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For α = 0, the sample aucovariance is dominated by the term c2·Op(n) and we will have the same 

divergence rate as under the unit root alternative, Op(mn·n), so we will expect a slight increase in 

the empirical size of the tests, greater for higher values of φ0. For α → 1/2, the leading term in 

the autocovariance will be op(n) with the limit c
2
 for α = 1/2, thus making no significant effect. 
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