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encompassing the different approaches in the dual economy literature. Following appropriate
empirical specification and testing we estimate production functions in agriculture and man-
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assumption in panels. We investigate the potential for bias in the production parameter co-
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ogy coefficient in a stylised aggregate economy made up of agricultural and manufacturing
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1. INTRODUCTION

“The reason why savings are low in an undeveloped economy relatively to national income is
not that the people are poor, but that capitalist profits are low relatively to national income.
As the capitalist sector expands, profits grow relatively, and an increasing proportion of na-
tional income is re-invested.” Lewis (1954, p.190)

In the early literature on developing countries a distinction was made between the processes of eco-
nomic development and of economic growth. Economic development was seen to be a process of
structural transformation by which in Lewis’ frequently cited phrase an economy which was “previ-
ously saving and investing 4 or 5 percent of its national income or less, converts itself into an economy
where voluntary savings is running at about 12 to 15 percent of national income” (Lewis, 1954, p.155).
An acceleration in the investment rate was only one part of this process of structural transformation;
of equal importance was the process by which an economy moved from a dependence on subsistence
agriculture to one where an industrial modern sector absorbed an increasing proportion of the labour
force (Jorgensen, 1961; Kaldor, 1966; Kindleberger, 1967; Kuznets, 1961; Leibenstein, 1957; Ranis &
Fei, 1961; Robinson, 1971). In contrast to these models of “development for backward economies”
(Jorgensen, 1961, p.309), where duality between the modern and traditional sectors was a key feature
of the model, was the analysis of economic growth in developed economies.1 Here the processes of
factor accumulation and technical progress occur in an economy which is already ’developed’, in the
sense that it has a modern industrial sector and agriculture has ceased to be a major part of the
economy (e.g. Solow, 1956, 1957; Swan, 1956; Cass, 1965).

A common feature across these literatures on both economic development and growth was the use
of closed economy models. The basic models put forward by Lewis and by Solow-Swan were closed
economy models in which structural transformation and growth occurred within economies.2 However
it was soon realised that these were not the most appropriate models for economies which were small
in geographical area and open to the world economy in the sense that their influence on the prices of
their products was minimal. As noted by Lucas (1988), the theory of trade as developed by Ricardo
and Heckscher-Ohlin implies that trade can have “a level effect, analogous to the one-time shifting
upward in production possibilities, [but] not a growth effect” (12) on income. The strong correlation
apparent in the data between income growth and trade led to much new work on the theory of how
trade may impact growth (e.g. Grossman & Helpman, 1991; Rivera-Batiz & Romer, 1991; Aghion &
Howitt, 1992; Matsuyama, 1992), one key mechanism being via improvement in technical progress,
another being externalities. In fact much of the empirical work on this topic (Coe, Helpman, & Hoff-
maister, 1997; Frankel & Romer, 1999; Rodriguez & Rodrik, 2001; Greenaway, Morgan, & Wright,
2002; Dollar & Kraay, 2002, 2004) used reduced form models and side-stepped the theoretical issues
as to exactly why more open economies might grow faster.

Much of the early growth modelling work proceeded without close connection to observed data. The
models were in Solow’s classic exposition of growth theory inspired by stylised ‘Kaldor’ facts (Kaldor,
1957). As Solow (1970, p.2) notes, “[t]here is no doubt that they are stylized, though it is possible to
question whether they are facts.” The dual economy models of structural transformation used case

1A note on nomenclature: we refer to ‘duality’ or ‘dual economy models’ as representing economies with two stylised
sectors of production (agriculture and manufacturing), while ‘dualism’ refers to wage or marginal labour product differ-
ences between sectors. Total Factor Productivity (TFP) is referred to as technology or technology levels, TFP growth as
technical/technological progress. We use productivity to refer to income/output per worker, and commonly make this
clear by referring to ‘labour productivity’ in contrast to productivity referring to TFP levels.

2This is in one sense not surprising as the major ‘development’ question of the 1930s still influencing these authors’
thinking was the experiment in the Soviet Union to industrialise in autarky in the space of a decade. This aside, the
largest economy in the world – the United States – occupying as it does an entire continent was one in which external
trade certainly did not seem the major agent in the growth process.
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studies (e.g. Paauw & Fei, 1973) and facts at least as stylised as those in the Solow-Swan growth
context. Empirical studies employed a vast array of explanatory variables of growth, while method-
ological, statistical, and conceptual difficulties on top of sample heterogeneity made it difficult to
draw reliable conclusions from the existing literature (Levine & Renelt, 1991). The key papers which
brought modelling and data together were the contributions of Barro (1991) and Mankiw, Romer,
and Weil (1992), which initiated a major revival in the Solow-Swan model and effectively merged the
concerns of economic development with those of growth.3

The literature begun in the early 1990s has yielded a large array of models in which there has been
increasing interaction between the theory and the empirics (see discussion in Aghion & Howitt, 1998;
Durlauf & Quah, 1999; Easterly, 2002; Durlauf, Johnson, & Temple, 2005). It remains true that the
empirical analysis continues to be dominated by the empirical version of the aggregate Solow-Swan
model (Temple, 2005) with much of the empirical debate focusing on the roles of factor accumula-
tion versus technical progress (Young, 1995; Chen, 1997; Klenow & Rodriguez-Clare, 1997a, 1997b;
Easterly & Levine, 2001; Lipsey & Carlaw, 2001; Baier, Dwyer, & Tamura, 2006). While there is
some new theoretical and empirical work using a dual economy model (e.g. Vollrath, 2009c, 2009a,
2009b), this is largely absent from textbooks on economic growth and has not been the central focus of
attention for most of the empirical analyses (Temple, 2005). A primary reason for the focus has been
the availability of data. The Penn World Table (PWT) dataset — most recently (Heston et al., 2009)
— and the Barro-Lee data on human capital (Barro & Lee, 1993, 2001) have supplied macro-data
which ensure that the aggregate Solow-Swan model can be readily estimated. In recent years there
has however been a development of datasets that allow a closer matching between the dual economy
models and the data (Larson, Butzer, Mundlak, & Crego, 2000), which this paper will exploit to throw
light on several of the empirical issues that have been central to the analysis of the sources of growth.

Cross-country growth regressions represent one of the most active fields of empirical analysis within
applied development economics, however the viability of this empirical approach has been seriously
questioned over the past decade and at present these methods are deeply unfashionable. We have
argued elsewhere that much can be learned from cross-country empirics provided the empirical setup
allows for greater flexibility in the estimation equation and recognises the salient data properties of
macro panel datasets (Eberhardt & Teal, 2010). Methods developed in the emerging panel time series
literature (Bai & Ng, 2002, 2004; Coakley, Fuertes, & Smith, 2006; Pesaran, 2006; Bai, 2009) can
go further in providing robust estimation and inference for nonstationary panel data where variable
series may be correlated across countries and where common shocks are likely to impact all countries
in the sample, albeit to a different extent.

This paper, providing empirical analysis of panel data for developing and developed economies, sets
out to address three main objectives: (i) rather than using a calibrated dual economy model for
quantitative analysis we provide empirical estimates for technology coefficients in sectoral production
functions. This allows for the integration of recent developments in the literature on applied panel
data econometrics, including the insights of the emerging panel time series literature. (ii) We estimate
a stylised aggregate production function model from agriculture and manufacturing data, and compare
results with those from disaggregated regressions. This will allow us to judge whether neglecting a
dual economy structure leads to bias in the empirical technology coefficients. (iii) In the light of the
results from our sectoral production function estimations we assess the relative sources of growth in a
dual economy model: TFP growth and level differences across sectors, and marginal factor dualism.

3The addition of human capital to the Solow model in Mankiw et al. (1992) “leads to quantitative predictions that
look consistent with the data” (Temple, 2005, p.436).
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The remainder of this paper is organised as follows: Section 2 provides an encompassing concep-
tual framework for the analysis of dual economy effects at the macro level and discusses technology
heterogeneity. In the following section we then introduce an empirical specification of our dual econ-
omy framework, discuss the data and briefly review the empirical methods and estimators employed.
Section 4 reports and discusses empirical findings at the sector-level. 5 then investigates the poten-
tial sources of bias in aggregate economy data, employs Monte Carlo simulations to provide support
and presents empirical findings from stylised and PWT aggregate data. Section 6 summarizes and
concludes.

2. DUALITY AND AGGREGATE EMPIRICS

The literature on dual economy models is surprisingly large, given the relatively limited impact this
approach has had in entering textbooks on economic growth theory and analysis, and economics
‘orthodoxy’ in general. With the availability of sectoral data for a cross-section of countries limited
until recently, some of the existing work in this area is built on models relatively disjoint from the
formulation of empirically testable questions, while other studies have focused on very specific details
of the growth and development process which are then ‘tested’ using simulation or calibrated models.
As a result many of the dual economy models, given their complexity and data requirements, do not
suit themselves for empirical testing. In this section we present a theoretical dual economy model
based on the existing literature and motivate our emphasis on technology heterogeneity across sectors
and economies.

2.1 A model of an open dual economy

The early literature on structural change did not pursue formal modelling of the small open dual
economy setup, but limited itself to a conceptual understanding of the link between structural change
and potential growth in a closed economy. Lewis (1954), Kaldor (1966), Kindleberger (1967) and
Ranis and Fei (1961), for instance, all emphasize the potential for surplus labour in agriculture to act
as a major driver for structural change via the migration of labour into the emerging manufactur-
ing sector. In their analyses elastic labour supply enables economic growth by keeping wages in the
modern sector low and preserving industrial peace (Temple, 2001; Temin, 2002; Barbier & Rauscher,
2007). A somewhat more complex analysis suggests that agricultural income and food supply con-
straints should be the focus of analysis, since they represent barriers to structural change and thus
development (Jorgensen, 1961). Openness to trade, however, somewhat relaxes these constraints. As
noted in the introduction, modelling structural change and growth in a closed economy model is not
deemed appropriate to model the development process in small open economies.

The supply side of a small, open dual economy model can be represented by two sectors, assumed to
be agriculture (‘traditional sector’) and manufacturing (‘modern sector’), producing distinct goods. It
is posited that these two types of production are geographically distinct, the former present in rural
areas and the latter in urban areas. Their respective technologies are assumed Cobb-Douglas but
unrestricted with regard to returns to scale4

Ya,t = Aa,t F (Ka,t, La,t, Na,t) = Aa,tK
α
a,t, L

β
a,t, N

γ
a,t α, β, γ < 1 (1)

Ym,t = Am,tG(Km,t, Lm,t) = Am,tK
φ
m,t, L

ψ
m,t φ, ψ < 1 (2)

Aj,t = Aj,0 exp(λjt) for j = a,m (3)

4Our model specification is guided by Temple (2005) and Corden and Findlay (1975).
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where A represents disembodied technical efficiency of production (TFP),5 K is physical, reproducible
capital, and L is labour (either raw labour or adjusted for human capital differences) for both agri-
cultural and manufacturing sectors a and m.6 Capital and labour are stock variables which can be
accumulated infinitely, but are subject to diminishing returns. N is non-reproducible capital (assumed
to be arable land and other forms of capital), and only enters the agricultural production function.
We drop the time subscript for ease of exposition.

In the most general specification TFP growth rates λj and TFP levels Aj,0 are allowed to differ across
sectors, countries, and in case of TFP growth across time. When a country’s manufacturing sector
enjoys higher TFP growth than its agricultural sector, this implies ceteris paribus higher output growth
in manufactured goods, and (deflated by sector share in total output sa, sm) higher aggregate output
growth g.

g = Ẏ /Y = Ż/Z
[
+ηL̇/L+ µK̇/K

]
= Ż/Z = saȦa/Aa + smȦm/Am (4)

Allowing TFP growth λj to vary over time allows for a more realistic dynamic evolvement of the
sectoral technology level than a constant TFP growth rate. Given differential TFP levels between
sectors, say Aa < Am, structural transformation in the form of labour migration to manufacturing
would result in a temporary level effect on output. Unlike in the TFP growth case this would not change
the perpetual growth trajectory of the economy.7 Persistent and significant TFP level differences
between sectors signal the presence of barriers to technology acquisition or some other form of friction
in the low-TFP sector, while TFP level differences across countries signal frictions on the country-
level (Caselli, 2005; Restuccia, Yang, & Zhu, 2008). We assume that the economy is open to trade in
products but closed to cross-country factor migration such that

Y = Ya + pYm (5)

where the price of the agricultural good Ya is the numeraire and p provides the relative price of
manufactures, exogenously determined by the world price. We restrict discussion to incompletely
specialised economies, i.e. both sectors have positive output. We assume full capital employment

K = Ka +Km (6)

with capital perfectly mobile between the two sectors leading to rental rate equalisation

ra = MPKa = Aa∂F/∂Ka = α
Ya
Ka

rm = MPKm = pAm∂G/∂Km = pφ
Ym
Km

rm = ra (7)

The first-best equilibrium for the economy is defined by equations (1)-(3) and (5)-(7), in addition to
equilibrium conditions in the labour market: under full employment and with wages equal to marginal
products, workers will (freely) migrate between sectors until wages (deemed to equate marginal labour
products) are equalised. However, in order to provide a specification as general as possible, we do not
impose wage equalisation (and first-best solution), but assume labour market disequilibrium in form
of some exogenously-determined wedge 0 < k < 1 which drives manufacturing wages above those in

5We see this as a ‘catch-all’ for disembodied levels of productive efficiency and technology as well as characteristics
such as taxation, regulation, climate, soil conditions etc., following Gollin, Parente, and Rogerson (2002).

6Note that agricultural and rural labour should not be taken as homogeneous, but we can assume a setup that
allows us to keep the model as it is laid out above, without losing the appeal of this notion (Temple, 2005): using our
specification, we assume human capital to be embodied partly within capital and partly within the technical progress
term . Human capital data in Timmer (2000) taken from Chai (1995) would halve the number of countries in our
manufacturing dataset since only developing nations are discussed. A UNESCO dataset discussed in Córdoba and Ripoll
(2009) contains only a handful of observations across time and countries. Due to reasons of limited space in this paper
the option to experiment with these datasets was not pursued.

7Nevertheless, TFP levels “capture the differences in long-run economic performance that are most directly relevant
to welfare” (Hall & Jones, 1999, p.85).
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agriculture:8

wa = MPLa = Aa∂F/∂La = β
Ya
La

wm = MPLm = pAm∂G/∂Lm = pψ
Ym
Lm

wa = kwm (8)

where k > 0. We know that wage equalisation across sectors would provide the optimal output solution
and can deduce that a wage differential between sectors leads to an equilibrium characterised by lower
output. Adopting the Harris and Todaro (1970) approach to inter-sectoral labour market equilibrium,
we assume unemployment in the urban labour market (Lu), such that

L = La + Lm + Lu (9)

The key assumption in this approach is that in the presence of wage differentials and urban unemploy-
ment, rural (agricultural) migrants discount the urban wage, such that migration occurs until actual
rural wage is equal to expected urban wage:9

wa = E[wm] = (1− u)wm (10)

The expectation of the urban wage is simply the probability of obtaining a job (1 − u), which is
determined by the urban unemployment rate

u = Lu/(Lm + Lu) (11)

In analogy to the wage dualism developed here we can relax the assumption of rental rate equalisation
across sectors, replacing the parity condition in equation (7) with

ra = hrm h > 0 (12)

In the presence of rental rate dualism the equilibrium capital allocation will result in lower output
than in the first-best solution. The resulting open economy Harris-Todaro model is represented by
equations (1)-(3), (5)-(6), the labour market conditions (9)-(11), the rental rate condition (12) and
the assumption that the manufacturing wage is exogenously fixed above the agricultural wage, while
returns to capital can differ freely across sectors. Since we are developing a small open economy
and thus prices are fixed exogenously, the demand side and preferences need not enter our study of
equilibrium in the economy (Temple, 2005; Córdoba & Ripoll, 2009). As will become clear, the above
model encompasses the various modelling approaches taken in the existing literature on dual economy
models.

2.2 Technology heterogeneity

2.2.1 Heterogeneity across sectors

From a technical point of view, an aggregate production function only offers an appropriate construct
in cross-country analysis if the economies investigated do not display large differences in sectoral
structure (Temple, 2005), since a single production function framework assumes common produc-
tion technology across all firms facing the same factor prices. Take two distinct sectors within this
economy, assuming marginal labour product equalisation and capital homogeneity across sectors, and

8Temple (2005) suggests migration restrictions, or institutional reasons such as minimum wage legislation, trade
unions, or an efficiency wage system in manufacturing as possible sources of this wage gap. Further, migration costs
between sectors should be regarded as non-negligible. Additional considerations relate to the family organisation of asset
returns (Ranis & Fei, 1961) whereby the wage in agriculture is equal to the average, rather than the marginal labour
product which results in too little employment in the modern sector (Robertson, 1999).

9Assuming risk-neutral agents who obtain no wage at all if unemployed.
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Cobb-Douglas-type production technology. Then if technology parameters differ between sectors, ag-
gregated production technology cannot be of the Cobb-Douglas form (Temple & Wößmann, 2006;
Córdoba & Ripoll, 2009). Finding differential technology parameters in sectoral production function
estimation thus is potentially a serious challenge to treating production in form of an aggregated
function.

An alternative motivation for a focus on sector-level rather than aggregate growth across countries
is as follows: it is common practice to exclude oil-producing countries from any aggregate growth
analysis, since “the bulk of recorded GDP for these countries represents the extraction of existing
resources, not value added” (Mankiw et al., 1992, p.413). The underlying argument is that sectoral
‘distortions’, such as resource wealth, justify the exclusion of the country observations. By extension of
the same argument, we could suggest that given the large share of agriculture in GDP for countries such
as Malawi (25-50%), India (25-46%) or Malaysia (8-30%) over the period 1970-2000, these countries
should be excluded from any aggregate growth analysis since a significant share of their aggregate GDP
derives from a single resource, namely land.10 Sector-level analysis, in contrast, does not face these
difficulties, since sectors such as manufacturing or agriculture are defined closely enough to represent
a reasonably homogeneous conceptual construct.

[Table I about here]

Having already indicated the importance of agriculture for GDP for a number of countries, we complete
this section by providing some more data to highlight the importance and dynamics of agriculture in
a wider set of countries. As can be seen in Table I the shift away from agriculture has been most
dramatic in the East Asia group, whereas the Sub-Saharan Africa has seen virtually no change over
the same period.

2.2.2 Heterogeneity across countries

A theoretical justification for heterogeneous technology parameters across countries can be found in
the ‘new growth’ literature. This strand of the theoretical growth literature argues that production
functions differ across countries and seeks to determine the sources of this heterogeneity (Durlauf,
Kourtellos, & Minkin, 2001). As Brock and Durlauf (2001, p.8/9) put it:

“. . . the assumption of parameter homogeneity seems particularly inappropriate when one
is studying complex heterogeneous objects such as countries . . . ”

The model by Azariadis and Drazen (1990) can be seen as the ‘grandfather’ for many of the theoretical
attempts to allow for countries to possess different technologies from each other (and/or at different
points in time). Their model incorporates a qualitative change in the production function, whereby
upon reaching a critical ‘threshold’ of human capital, economies will jump to a higher steady-state
equilibrium growth path represented by a different production function. Further theoretical papers
lead to multiple equilibria interpretable as factor parameter heterogeneity in the production function
(e.g. Murphy, Shleifer, & Vishny, 1989; Durlauf, 1993; Banerjee & Newman, 1993). A simpler
justification for heterogeneous production functions is offered by Durlauf et al. (2001), as quoted at
the beginning of this chapter: the Solow model was never intended to be valid in a homogeneous
specification for all countries, but may still be a good way to investigate each country, i.e. if we allow
for parameter differences across countries.

10The quoted shares are from the World Bank World Development Indicators database (World Bank, 2008). For
comparison, maximum share of oil revenue in GDP, computed as the difference between ‘industry share in GDP’ and
‘manufacturing share in GDP’ from the same database yields the following ranges for some of the countries omitted in
Mankiw et al. (1992): Iran (12-51%), Kuwait (15-81%), Gabon (28-60%), Saudi Arabia (29-67%).



AGGREGATION VERSUS HETEROGENEITY 7

3. AN EMPIRICAL MODEL OF A DUAL ECONOMY

In seeking to understand processes of growth at the macro-level, empirical work has focused primarily
on an aggregate production specification (see surveys in Barro & Sala-i-Martin, 1995; Aghion & Howitt,
1998; Temple, 1999; Aghion & Durlauf, 2005). While duality has featured prominently in theoretical
developments there has been only a very limited matching of this theory to empirical models. This
disjunction between theory and testing has reflected in large part the availability of data. In this
paper we employ a large-scale cross-country dataset made publicly available by the World Bank in
2003 (henceforth Crego et al (1998), although the data is also described in detail in Larson et al., 2000)
which allows us to specify manufacturing and agricultural production functions and thus provides a
macro-model of a dual economy that can be compared with the single sector models dominating the
empirical literature. In the following we first present a general empirical specification for our sector-
specific analysis of agriculture and manufacturing. Next we review a number of empirical estimators,
focusing in particular on those arising from the recent panel time series literature, before we briefly
discuss the data.

3.1 Empirical specification

The analysis of growth and development using cross-country data is still dominated by variants on
the ‘convergence equation’ introduced by Mankiw et al. (1992), where variables are averaged over the
entire time-horizon and estimation is carried out in a single cross-country regression (Durlauf et al.,
2005). The multiple short-comings of this approach have been discussed elsewhere in great detail,
most recently in Eberhardt and Teal (2010). The latter also point to a number of modelling concerns
we will address in our empirical analysis, namely parameter heterogeneity, cross-section dependence
and variable time-series properties. Briefly, the notion that equilibrium relationships may differ fun-
damentally across countries (perhaps at different stages of development) is a familiar one, both in the
theoretical (Murphy et al., 1989; Azariadis & Drazen, 1990; Durlauf, 1993; Banerjee & Newman, 1993)
and empirical literatures (Durlauf et al., 2001; Basturk, Paap, & Dijk, 2008; Kourtellos, Stengos, &
Tan, 2008; Cavalcanti, Mohaddes, & Raissi, 2009) on cross-country growth. In contrast, the notion
of cross-section correlation, hypothesised to arise from common global shocks and/or local spillover
effects, and concerns about variable nonstationarity have received little attention in the mainstream
growth empirics literature. This is despite the rapid developments in econometrics theory over recent
years (Bai & Ng, 2004; Andrews, 2005; Pesaran, 2006, 2007; Kapetanios, Pesaran, & Yamagata, 2009;
Bai, 2009; Bai, Kao, & Ng, 2009), particularly in panel time series econometrics. In the context of
cross-country growth and development analysis, the potential for cross-section dependency is particu-
larly salient, given the interconnectedness of countries through history, geography and trade relations.
Besides a number of spatial econometric approaches, where the nature of the spatial association is
imposed by the econometrician (Conley & Ligon, 2002; Ertur & Koch, 2007), only a limited number
of applied papers have concerned themselves with these matters (Eberhardt & Teal, 2008; Cavalcanti
et al., 2009; Costantini & Destefanis, 2009).

Our empirical setup will follow the general model laid out in Eberhardt and Teal (2010), adopting a
common factor representation for a standard log-linearised Cobb-Douglas production function model.
Each sector/level of aggregation (agriculture, manufacturing, aggregated data, PWT data) is modelled
separately — for ease of notation we do not identify this multiplicity in our general model. Let

yit = β′i xit + uit uit = αi + λ′i ft + εit (13)
xmit = πmi + δ′mi gmt + ρ1mi f1mt + . . .+ ρnmi fnmt + vmit (14)

ft = %′ft−1 + ωt and gt = κ′gt−1 + εt (15)
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for i = 1, . . . , N , t = 1, . . . , T and m = 1, . . . , k, where f ·mt ⊂ ft and the error terms εit, vmit, ωt
and εt are white noise. Equation (13) represents the production function model, with y as sectoral
or aggregated value-added and x as a set of inputs: labour, physical capital stock, and a measure for
natural capital stock (arable land and permanent crops) in the agriculture specification (all variables
are in logs). We consider additional inputs (human capital, livestock, fertilizer) as robustness checks
for our general findings. The output elasticities associated with each input (βi) are allowed to differ
across countries. For unobserved TFP we employ the combination of a country-specific TFP level (αi)
and a set of common factors (ft) with country-specific factor loadings λi — TFP is thus in the spirit
of a ‘measure of our ignorance’ (Abramowitz, 1956) and operationalised via an unobserved common
factor representation.11 Equation (15) provides some structure for the unobserved common factors,
which are modelled as simple AR(1) processes, where we do not exclude the possibility of unit root
processes (% = 1, κ = 1) leading to nonstationary observables. Note that from this the potential for
spurious regression results arises if the empirical equation is misspecified. Equation (14) details the
evolution of the set of m = 1, . . . , k regressors; crucially, some of the common factors contained in the
covariates are also assumed to be driving the unobservables in the production function equation (uit).
This setup leads to endogeneity whereby the regressors are correlated with the unobservables, making
it difficult to identify βi separately from λi and ρi (Kapetanios et al., 2009).

Our empirical specification thus allows for a maximum of flexibility with regard to the impact of
observables and unobservables on output. Empirical implementation will necessarily lead to different
degrees of restrictions on this flexibility, which will then be tested by formal statistical means: the
emphasis is on comparison of different empirical estimators allowing for or restricting the heterogeneity
in observables and unobservables outlined above. A conceptual justification for the pervasive character
of unobserved common factors is provided by the nature of macro-economic variables in a globalised
world. In our mind latent forces drive all of the variables in our model, and their presence makes it
difficult to argue for the validity of traditional approaches to causal interpretation of cross-country
growth analyses. For instance, instrumental variable estimation in standard cross-section growth
regressions (Clemens & Bazzi, 2009, p.2) or (Arellano & Bond, 1991)-type lag-instrumentation in
pooled panel models (Pesaran & Smith, 1995; Lee, Pesaran, & Smith, 1997) are both invalid in the
face of common factors and/or heterogeneous equilibrium relationships. We now introduce a novel
estimation approach developed by Pesaran (2006) which allows us to bypass these issues by adopting
panel time series methods for estimation and inference.

3.2 Empirical implementation

Our empirical approach emphasises the importance of parameter and factor loading heterogeneity
across countries. The following 2× 2 matrix indicates how the various estimators implemented below
account for these matters.12

11The parameters βi are unknown random coefficients with fixed means and finite variances. The same applies for the
unknown factor loadings, i.e. λi = λ + ηi where ηi ∼ iid(0, Ωη), similarly for δmi and ρmi. The assumption of random
coefficients is for convenience. Based on the findings by Pesaran and Smith (1995, footnote 2, p.81) the coefficients could
alternatively be fixed but differing across groups. See also Kapetanios et al. (2009, p.6).

12Abbreviations: POLS — Pooled OLS, 2FE — 2-way Fixed Effects, FD2FE — OLS with variables in first differences
and accounting for year fixed-effects, GMM — Arellano and Bond (1991) Difference GMM and Blundell and Bond
(1998) System GMM, MG — Pesaran and Smith (1995) Mean Group with linear country trend, FDMG — dto. but with
variables in first difference and country drift, PMG — Pesaran, Shin, and Smith (1999) Pooled Mean Group estimator,
CPMG — dto. but augmented with cross-section averages following Binder and Offermanns (2007), CCEP/CMG —
Pesaran (2006) Common Correlated Effects estimators. Note that like our 2FE estimator the OLS models is augmented
with T − 1 year dummies.



AGGREGATION VERSUS HETEROGENEITY 9

Factor loadings:

homogeneous heterogeneous

Technology parameters: homogeneous POLS, 2FE, CCEP,
FD2FE, GMM, PMG CPMG

heterogeneous MG, FDMG CMG

The Common Correlated Effects estimator developed in Pesaran (2006) and extended to nonstationary
variables in Kapetanios et al. (2009) augments the regression equation with cross-section averages of
the dependent and independent variables to account for the presence of unobserved common factors.
For the Mean Group version (CMG), the individual country regression is specified as

yit = ai + b′ixit + c0iȳt +
k∑

m=1

cmix̄mt + eit (16)

for k = 1, . . . ,m covariates and eit white noise, whereupon the parameter estimates are averaged
across countries akin to the Pesaran and Smith (1995) Mean Group estimator. The pooled version
(CCEP) is specified as

yit = ai + b′xit +
N∑
j=1

c0i(ȳtDj) +
k∑

m=1

N∑
j=1

cmi(x̄mtDj) + eit (17)

Thus in the MG version we have individual country regressions with 2k + 2 RHS variables (including
the intercept) and in the pooled version we have a single regression equation with k + (k + 2)N RHS
variables (including N intercepts), where k is the number of observed covariates.

In order to get an insight into the workings of this approach, consider the cross-section average of our
common factor model in equation (13): given that ε̄t = 0

ȳt = ᾱ+ β̄′x̄t + λ̄′f̄t (18)

which can be expressed as
f̄t = λ̄−1(ȳt − ᾱ− β̄′x̄t) (19)

where the Dj represent country dummies. Thus we can see that the unobserved common factors can
be captured by the cross-sectional means of y and x since f̄t

p→ ft as N → ∞. Given the assumed
heterogeneity in factor loadings across countries (λ′i) the estimator is implemented in the fashion de-
tailed above which allows for each country i to have different parameter estimates on ȳt and the x̄t.
Simulation studies (Pesaran, 2006; Coakley et al., 2006; Kapetanios et al., 2009) have shown that
this approach performs well even when the cross-section dimension N is small, when variables are
nonstationary, subject to structural breaks and in the presence of weak unobserved factors.

We abstract from discussing the standard panel estimators here in great detail and refer to the overview
article by Coakley et al. (2006), as well as the article by Bond (2002) for more details. As a robustness
check we also investigate the Pooled Mean Group estimator by Pesaran et al. (1999). For a detailed
discussion of the pooled Mean Group estimator in the context of cross-country regressions refer to
Arnold, Bassanini, and Scarpetta (2007); we further implement a simple extension to the PMG where
we include cross-section averages of the dependent and independent variables, as suggested in Binder
and Offermanns (2007).
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A number of alternative nonstationary panel estimators for the case of homogeneous factor loadings
are available in the literature (Pedroni, 2000, 2001), however given our emphasis on cross-section
dependence we do not consider them in this work. Finally, we do not adopt any empirical methods
accommodating unobserved factor via a two-step method where the number of significant factors in an
equilibrium relationship is determined first (Bai & Ng, 2002) before estimates of the factors, loadings
and slope parameters are determined jointly (Bai & Kao, 2006; Bai et al., 2009). The reason for
this choice is the failure of these methods to account for cross-section dependence of the ‘weak’ type,
such as that arising from local spillover effects (Chudik, Pesaran, & Tosetti, 2009), whereas the CCE
estimators are robust to both cross-section dependence of the ‘strong’ and ‘weak’ type (Pesaran &
Tosetti, 2007) — in fact, it can be shown that the method is robust to the inclusion of an infinite
number of weak factors (Chudik et al., 2009).

3.3 Data description

Descriptive statistics and a more detailed discussion of the data can be found in the Appendix. Briefly,
we conduct all empirical analysis for four datasets:

(1) for the agricultural sector, building on the sectoral investment series developed by Crego, Larson,
Butzer, and Mundlak (1998) and output from the World Development Indicators WDI World
Bank (2008), as well as sectoral labour and land data and FAO (2007);

(2) for the manufacturing sector, building on the sectoral investment series developed by Crego et
al. (1998), output data from the WDI and labour data from UNIDO (2004);

(3) for a stylised aggregate economy made up of the summed data for the agriculture and manufac-
turing sectors;

(4) for the aggregate economy, building on data provided by the Penn World Table (PWT; we use
version 6.2, Heston, Summers, & Aten, 2006).

The capital stocks in the agriculture, manufacturing and PWT samples are constructed from in-
vestment data following the perpetual inventory method (see Klenow & Rodriguez-Clare, 1997b, for
details), for the aggregated sample we simple added up sectoral capital stock for agriculture and man-
ufacturing. Comparison across sectors and with the stylised aggregate sector is possible due to the
efforts by Crego et al. (1998) in providing sectoral investment data for agriculture and manufacturing.
All monetary values in the sectoral and aggregated datasets are transformed into US$ 1990 values
(in the capital stock case this transformation is applied to the investment data before the capital
stocks are constructed), following the suggestions in Martin and Mitra (2002). Given concerns that
the stylised aggregate economy data may not represent a good proxy for aggregate economy data we
have adopted the PWT data, which measures monetary values in International $ PPP, as a benchmark
for comparison — despite a number of vocal critics (Johnson, Larson, Papageorgiou, & Subramanian,
2009) the latter is without doubt the most popular macro dataset for cross-country empirical analysis.
We are of course aware that the difference in deflation between our sectoral and aggregated data on
the one hand and PWT on the other makes them conceptually very different measures of growth and
development: the former emphasise tradable goods production whereas the latter puts equal empha-
sis on tradable and non-tradable goods and services. However, we believe that these differences are
comparatively unimportant for estimation and inference in comparison to the distortions introduced
by neglecting the sectoral makeup and technology heterogeneity of economies at very different stages
of economic development.

Our sample is an unbalanced panel for 1963 to 1992 made up of 41 developing and developed countries
with a total of 928 observations (average T = 22.6) — our desired aim to compare estimates across
the four datasets requires us to we match the same sample, thus reducing the number of observations
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to the smallest common denominator. A detailed description of the sample is available in Table A-I,
descriptive statistics in Table A-II are provided for each of the four samples (both tables can be found
in the appendix).

Note that in our production function regressions we adopt a very common trick whereby the output
and non-labour input variables are all expressed in ‘per worker’ terms (all variables in logs). If the
labour variable is added to this its estimated parameter coefficient provides a simple test for constant
returns to scale: if insignificant the relationship is subject to constant returns, if positive (negative)
significant the relationship is suggested to be subject to increasing (decreasing) returns. In addition,
this setup allows for easy imposition of constant returns by simply dropping the labour variable from
the regression equation. Variable tests for stationarity and cross-section dependence are therefore
carried out for the variables entering the regression equations, namely output, capital, land (all in logs
of per worker terms) and labour (in logs).

4. EMPIRICAL RESULTS

Preliminary data analysis (unit root and cross-section dependence tests) have been confined to the
technical appendix of the paper. We adopt the Pesaran (2007) CIPS panel unit root test which
assumes a single unobserved common factor. This is clearly restrictive, however given the data re-
strictions (unbalanced panel, relatively short) we were unable to implement the newer CIPSM version
of this test (Pesaran, Smith, & Yamagata, 2009) which allows for multiple common factors. Results
(see Table TA-1) strongly suggest that variables in levels for all four datasets are nonstationary. Addi-
tional analysis of variables in first difference further suggests that our measure for agricultural labour
may in fact be I(2) — this is almost definitely the outcome of variable construction: FAO (2007) data
on economically active population in agriculture (and for that matter for all the other labour-related
measures) are not evaluated annually, but at 5- or 10-year intervals.

In the following we discuss the empirical results from sectoral production function regressions for
agriculture and manufacturing respectively, first assuming technology parameter homogeneity (Section
4.1) and then allowing for differential technology across countries (Section 4.2).

4.1 Pooled models

Table II presents the empirical results for agriculture and manufacturing, Panel A for unrestricted
returns to scale and Panel B for the specification with CRS imposed. Beginning with agriculture,
the empirical estimates for the models neglecting cross-section dependence are quite similar, with
the capital coefficient around .63 and statistically significant decreasing returns to scale. Diagnostic
tests indicate that the residuals in these models are cross-sectionally dependent, and that the levels
models (POLS, 2FE) have nonstationary residuals and thus may represent spurious regressions. It
is important to point out that in the presence of nonstationary residuals the t-statistics in the levels
models are invalid (Kao, 1999). The CCEP model yields cross-sectionally independent and stationary
residuals, a capital coefficient of around .5 and insignificant land coefficient. Imposition of CRS does
not change these results substantially, with the exception of the 2FE estimates, where the land variable
(previously negative and significant) is now insignificant and the capital coefficient has been inflated.

In the manufacturing data the models ignoring cross-section dependence yield increasing returns to
scale and capital coefficients in excess of .85 for POLS and 2FE while the FD model yields .7. While
residuals for the former two models again display nonstationarity the CD tests now suggest that they
are cross-sectionally independent. Surprisingly the CCEP model, with a capital coefficient of around
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.5 (like in agriculture) does not pass the cross-section correlation test. Following imposition of CRS
all models reject cross-section independence, while parameter estimates are more or less identical to
those in the unrestricted models.

[Table II about here]

Based on these pooled regression results, the diagnostic tests seem to favour the CCEP results in
the agriculture data, whereas in the manufacturing data no estimator seems without concern. For the
agriculture sample we conducted a number of robustness checks, including further covariates (livestock
per worker, fertilizer per worker) in the pooled regression framework. Results (available on request)
did not change from those presented above, with the CCEP estimator emerging as the most reliable
empirical model.13 The CCEP therefore remains our estimator of choice for the pooled agriculture
data. For manufacturing, we conducted robustness checks including human capital in the estimation
equation (linear & squared terms)14 — as a result a number of countries drop out of our sample (CRI,
IRN, KOR, MDG) which now contains n = 860 observations (N = 37). Results for unconstrained
and CRS regressions are presented in Table III.

[Table III about here]

Results for the CCEP are very similar as in the previous specifications: the capital elasticity is around
.5, while CRS is not rejected by the data. Returns to eduction follow a concave function (wrt years of
schooling) and for the mean education value across countries are quite high in these models, around
8%pa and 11% pa in the unrestricted and restricted models respectively. In either case residuals are
stationary and cross-sectionally independent. Our shift to heterogeneous technology models in the
next session will allow us to judge whether violation of the homogeneity assumption is at the heart of
the problem.

4.2 Averaged country regressions

Table IV presents the robust means for each regressors acrossN country regressions for the unrestricted
(Panel A) and CRS models (Panel B) respectively. We adopt robust means15 as these are more reliable
than unweighted means, which are subject to greater distortion by outliers. The t-statistics reported for
each average estimate test whether the average parameter is statistically different from zero, following
Pesaran et al. (2009). In addition we also provide test statistics for the ‘panel t-statistic’ following
Pedroni (1999).

[Table IV about here]

Beginning with the unrestricted models in Panel (A), we can see that MG and FDMG suffer from high
imprecision in both agriculture and manufacturing equations. This aside, in the agriculture model
MG yields decreasing returns to scale that are nonsensical in magnitude. Monte Carlo simulations for
nonstationary and cross-sectionally dependent data (Coakley et al., 2006; Bond & Eberhardt, 2009)
frequently show that MG estimates are commonly severely affected by their failure to account for
cross-section dependence. As in the pooled models, the CMG estimator yields an insignificant land
coefficient in agriculture and in both sectors results are generally very much in line with the CCEP

13In some more detail: The specification including livestock and fertilizer (both in log of per worker terms) could not
reject CRS. The CRS specification yielded a capital coefficient of .383 [t = 5.64] which is lower than the comparable
elasticity presented in Table II (.493) but the two estimates are still contained in each other’s 95% confidence intervals;
residual diagnostics indicate stationary and cross-sectionally independent resiudals. The livestock coefficient of .097
[t = 3.70] seems to capture the difference.

14We follow convention and pick the average years of schooling in the population as a proxy for Human Capital stock.
We assume that the aggregate economy data for schooling developed by Barro and Lee (2001) which is available in 5-year
intervals. Simple interpolation to obtain annual data (as is done here) is not ideal, however the evolution of this variable
over time is commonly very stable (linear), s.t. we do not feel that linear interpolation creates additional issues.

15We use robust regression to produce a robust estimate of the mean — see Hamilton (1992) for details.
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results in Table II.

All unrestricted models yield stationary residuals, however the agriculture CMG is the only model that
cannot reject cross-sectionally independent residuals. Moving to the models where CRS is imposed
in Panel (B), we can see that MG and FD-MG estimates are now somewhat more precise, while the
CMG estimates are virtually unchanged. The residual diagnostics are sound in the agriculture CMG,
but the manufacturing CMG still suffers from cross-sectionally dependent residuals. We therefore
implement an alternative specification for manufacturing which includes a proxy for human capital
(average years of schooling in the adult population) as additional covariate.

[Table V about here]

We also estimated the human-capital augmented models for manufacturing allowing for heterogeneous
technology parameters. Results for the MG and FDMG in Table V mirror those in the unaugmented
models presented above. In the unrestricted models these estimators yield very imprecise estimates,
although if CRS is imposed the capital coefficients are again estimated around .3; average estimates
on the linear and quadratic eduction terms are insignificant and the implied returns to education are
negative albeit insignificant by the robust regression approach we adopted. For the CMG models
we find capital coefficients somewhat below those in the unaugmented models, albeit still within
each other’s 95% confidence intervals. Average education coefficients are significant in both models
(marginally so in the CRS version) and indicate rather high returns to eduction: 11% and 12% in
the unrestricted and CRS model respectively. This merits two comments: firstly, we might argue for
the validity of this high estimate given that the manufacturing sector is arguably the more dynamic
sector in comparison to agriculture, which builds on innovation and R&D, thus relying on knowledge-
accumulation which is heavily linked to human capital. Secondly, adopting country-wide education
data as a proxy for manufacturing may severely distort the results we present here — firm-level data
(Baptist & Teal, 2008) on Ghana and Korea in the late 1990s for instance indicates that average
worker eduction (crudely measured in years of schooling) does not differ substantially between these
countries.

5. AGGREGATION BIAS

In this section we will return to the themes developed in Section ?? and ask what the implications
of the dual economy model are for aggregate cross-country growth analysis. First we discuss the
econometric concerns arising from aggregation of heterogeneous sectoral data created by separate
technologies. Our hypotheses are put to the test in a Monte Carlo simulation exercise of stylised
aggregate data constructed from heterogeneous sectors. We then investigate whether the assumption
of an aggregate production function yields biased estimation results. To the best of our knowledge this
is the first paper to consider this issue empirically, enabled by pioneering work of Crego et al. (1998)
in providing comparable investment and capital stock measures for Agriculture and Manufacturing.
Finally we test our hypotheses about the sources of aggregation bias in cross-country growth empirics
using our data.

5.1 Aggregation bias — Conceptual development

This section provides an insight into the problems for estimation arising from aggregation.

[Add conceptual literature on aggregation and econometrics considerations.]
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5.2 Aggregation bias — some Monte Carlo evidence

This section provides simulation results based on a sample of stylised aggregate economies made up
of two heterogeneous sectors.

[Add Monte Carlo simulations.]

5.3 Aggregation bias — empirical evidence

Our empirical results in Section 4 suggested fairly similar pooled and averaged capital coefficients for
manufacturing and agriculture across the various empirical models. This might lead one to suggest
that carrying out cross-country growth empirics may best be conducted taking the aggregate econ-
omy, and thus the Penn World Table (PWT) data (Heston et al., 2009), as the basic unit of analysis.
Our empirical approach emphasised the importance of unobserved heterogeneity across countries, but
our analysis refrained from testing technology parameter differences across sectors with any formal
methods — our justification is that in our most flexible specification (CMG) the individual country-
estimates are not reliable (Pedroni, 2007) and should not be the basis for comparison. In this section
we will instead provide practical evidence that the use of an aggregate production function will lead to
seriously biased estimates of the capital coefficient. We carry out this analysis by creating a stylised
‘aggregated economy’ from our data on agriculture and manufacturing. Since it might be suggested
that results could be severely distorted by the overly simplistic nature of our inquiry, we compare
results with those from a matched sample of data from the PWT.

We begin with the pooled models in Table VI. Across all specifications the estimated capital coefficients
in the aggregated data far exceed those derived from the respective agriculture and manufacturing
samples in Table II. Furthermore, the patterns in the aggregated data are replicated one-to-one in the
PWT data, which also yields excessively high capital coefficients across all models. All models suffer
from cross-sectional dependence in the residuals, while there are also indications that the residuals in
the CCEP model for the aggregated data are nonstationary (those in the two other levels specifications
are always nonstationary). We also investigated the impact of human capital (proxied via average
years of schooling attained in the population over 15 years of age) in these aggregate economy data
models, but as Table TA-IV in the Technical Appendix reveals the basic bias remains.

[Table VI about here]

In addition we estimated pooled dynamic models (introducing the PMG and CPMG estimators) in
Table TA-III in the Technical Appendix — all of these results follow the patterns we described in this
and the previous sections.

Turning to the results from averaged country regressions in Table VII. The MG and FDMG model
point to some differences between the aggregated and PWT data, whereby the capital coefficients in
the former are very imprecisely estimated but seem to centre around .3, whereas in the latter they
are considerably higher at around .7 to .9. Results for the CMG, however, are again very consistent
between the two data samples and across unrestricted and CRS models, with capital coefficients
around .7. Residual testing suggests that all specification yield stationary residuals — this is somewhat
surprising in the MG case, given the misspecification implicit in this equation. Cross-section correlation
tests reject independence in all residual series tests — in case of the aggregated data the CMG rejects
marginally.

[Table VII about here]
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The results from this exercise should perhaps be viewed with caution, given the overly stylised nature
of the aggregate economy data we created from manufacturing and agriculture values. However, given
the standard finding in aggregate growth regressions of an inflated capital coefficient around .7, we
feel vindicated in our claim that empirical estimation at the aggregate economy level hides important
structural differences within countries and yields misleading results.

6. CONCLUSIONS

In this paper we have developed a general framework for dual economy models and used some unique
panel data for agriculture and manufacturing to estimate sector-level and aggregated production func-
tions. Our conceptual development built on the theoretical contributions by Temple (2005) and Corden
and Findlay (1975) and our overview of the literature highlighted a number of ‘sources of growth’ hy-
pothesised in the dual economy literature. Our empirical analysis emphasised the contribution of the
recent panel time-series econometric literature, which suggests to adopt unobserved common factors
to deal with the cross-sectional dependence commonly found in macro panel data. In addition we
took the nonstationarity of observable and unobservable factor inputs into account and emphasised
the importance of parameter heterogeneity — across countries as well as sectors.

We draw the following conclusions from our first, crude attempt at highlighting the importance of struc-
tural makeup and change in the empirical analysis of cross-country growth and development:

(i) Empirical analysis of growth and development at the cross-country level — most commonly
conducted using the Penn World Tables (Heston et al., 2009) — gains considerably from the
separate consideration of modern and traditional sectors that make up the economy. Our anal-
ysis of agriculture and manufacturing versus a stylised aggregated economy suggests that the
latter yields severely distorted empirical results. Across multiple empirical specifications and
estimators we could show that the capital coefficient for aggregated data far exceeds that ob-
tained from separate sector regressions. Analysis of PWT data in parallel with the aggregated
data suggested that this finding is not an artefact of our stylised empirical setup. To the best of
our knowledge this is the first time that these matters are investigated empirically at this level
of aggregation. Our analysis was enabled by the unique data on agricultural and manufacturing
investment and capital stock developed by Crego et al. (1998) — a dataset which deserves far
greater attention than it presently receives.16

(ii) Monte Carlo study results.
(iii) Implications for future work.

16Don Larson and collaborators have more recently developed an updated version of this dataset (1967-2003), albeit
limited to 30 developing and developed countries. In future work we plan to use this new version and a matched
manufacturing dataset to investigate the robustness of our results.



AGGREGATION VERSUS HETEROGENEITY 16

REFERENCES

Abramowitz, M. (1956). Resource and output trend in the United States since 1870. American Economic Review , 46 (2),
5-23.

Aghion, P., & Durlauf, S. (Eds.). (2005). Handbook of economic growth (Vol. 1) (No. 1). Elsevier.
Aghion, P., & Howitt, P. (1992). A model of growth through creative destruction. Econometrica, 60 (2), 323-51.
Aghion, P., & Howitt, P. (1998). Endogenous Growth Theory. Cambridge, Mass.: MIT Press.
Andrews, D. W. K. (2005). Cross-Section Regression with Common Shocks. Econometrica, 73 (5), 1551-1585.
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data. Review of Economic Studies, 58 (2), 277-297.
Arnold, J., Bassanini, A., & Scarpetta, S. (2007). Solow or Lucas?: Testing Growth Models Using Panel Data from

OECD Countries (OECD Economics Department Working Papers No. 592).
Azariadis, C., & Drazen, A. (1990). Threshold externalities in economic development. Quarterly Journal of Economics,

105 (2), 501-26.
Bai, J. (2009). Panel Data Models with Interactive Fixed Effects. Econometrica, 77 (4), 1229-1279.
Bai, J., & Kao, C. (2006). On the estimation and inference of a panel cointegration model with cross-sectional dependence.

In B. H. Baltagi (Ed.), Panel data econometrics: Theoretical contributions and empirical applications. Amsterdam:
Elsevier Science.

Bai, J., Kao, C., & Ng, S. (2009). Panel cointegration with global stochastic trends. Journal of Econometrics, 149 (1),
82-99.

Bai, J., & Ng, S. (2002). Determining the Number of Factors in Approximate Factor Models. Econometrica, 70 (1),
191-221.

Bai, J., & Ng, S. (2004). A PANIC attack on unit roots and cointegration. Econometrica, 72 , 191-221.
Baier, S. L., Dwyer, G. P., & Tamura, R. (2006). How important are capital and total factor productivity for economic

growth? Economic Enquiry , 44 (1), 23-49.
Banerjee, A. V., & Newman, A. F. (1993). Occupational Choice and the Process of Development. Journal of Political

Economy , 101 (2), 274-98.
Baptist, S., & Teal, F. (2008). Why do South Korean firms produce so much more output per worker than Ghanaian

ones? (CSAE working paper, WPS/2008-10)
Barbier, E. B., & Rauscher, M. (2007). Trade and development in a labor surplus economy. The B.E. Journal of

Economic Analysis & Policy , 7 (1).
Barro, R. J. (1991). Economic growth in a cross-section of countries. Quarterly Journal of Economics, 106 (2), 407-443.
Barro, R. J., & Lee, J.-W. (1993). International comparisons of educational attainment. Journal of Monetary Economics,

32 (3), 363-394.
Barro, R. J., & Lee, J.-W. (2001). International data on educational attainment: Updates and implications. Oxford

Economic Papers, 53 (3), 541-63.
Barro, R. J., & Sala-i-Martin, J. (1995). Economic growth. New York: MacGraw-Hill.
Basturk, N., Paap, R., & Dijk, D. van. (2008). Structural differences in economic growth. (Tinbergen Institute Discussion

Paper 2008-085/4)
Binder, M., & Offermanns, C. J. (2007). International investment positions and exchange rate dynamics: a dynamic

panel analysis (Discussion Paper Series 1: Economic Studies Nos. 2007,23). Deutsche Bundesbank, Research
Centre.

Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of
Econometrics, 87 (1), 115-143.

Bond, S. (2002). Dynamic panel data models: a guide to micro data methods and practice. Portuguese Economic
Journal , 1 (2), 141-162.

Bond, S., & Eberhardt, M. (2009). Cross-section dependence in nonstationary panel models: a novel estimator. (Paper
prepared for the Nordic Econometrics Meeting in Lund, Sweden, October 29-31)

Brock, W., & Durlauf, S. (2001). Growth economics and reality. World Bank Economic Review , 15 (2), 229-272.
Caselli, F. (2005). Accounting for Cross-Country Income Differences. In P. Aghion & S. Durlauf (Eds.), Handbook of

Economic Growth (Vol. 1, p. 679-741). Elsevier.
Cass, D. (1965). Optimum growth in an aggregative model of capital accumulation. Review of Economic Studies, 32 (3),

233-240.
Cavalcanti, T., Mohaddes, K., & Raissi, M. (2009). Growth, development and natural resources: New evidence using a

heterogeneous panel analysis (Cambridge Working Papers in Economics (CWPE) No. 0946). (November 2009)
Chen, E. K. (1997). The Total Factor Productivity debate: Determinants of economic growth in East Asia. Asian-Pacific

Economic Literature, 11 (1), 18-38.
Chudik, A., Pesaran, M. H., & Tosetti, E. (2009). Weak and Strong Cross Section Dependence and Estimation of Large

Panels (Cambridge Working Papers in Economics (CWPE) No. 0924). (June 2009)
Clemens, M., & Bazzi, S. (2009). Blunt Instruments: On Establishing the Causes of Economic Growth (Working Papers

No. 171).
Coakley, J., Fuertes, A. M., & Smith, R. (2006). Unobserved heterogeneity in panel time series models. Computational

Statistics & Data Analysis, 50 (9), 2361-2380.



AGGREGATION VERSUS HETEROGENEITY 17

Coe, D. T., Helpman, E., & Hoffmaister, A. W. (1997). North-South R&D spillovers. Economic Journal , 107 (440),
134-49.

Conley, T., & Ligon, E. (2002). Economic Distance and Long-run Growth. Journal of Economic Growth, 7 (2), 157-187.
Corden, W. M., & Findlay, R. (1975). Urban unemployment, intersectoral capital mobility, and development policy.

Economica, 42 , 59-78.
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Tables and Figures

Table I: Evolution of agricultural VA- and employment-share

Agricultural VA †
(in % of GDP; Decadal Medians)

1960s 1970s 1980s 1990s 2000s
Canada & US 4.3 3.0 2.3 1.3
Europe (Euro area) 6.2 4.3 2.9 2.2
Latin America & Caribbean 14.0 12.8 10.2 7.5 6.6
Middle East & North Africa 21.7 15.2 15.2 15.2 12.4
Australia & New Zealand 9.0 6.7 5.3 4.0
East Asia & Pacific 37.8 32.0 27.6 19.0 13.2
Sub-Saharan Africa 26.2 21.5 20.1 19.4 17.5
South Asia 42.3 38.6 31.6 27.5 21.6

Employment in Agriculture ‡
(% of total employment; Means, Medians for 2000s ])

1960 1970 1980 1990 2000s
United States 6.6 4.3 3.5 2.8 2.6
Europe 31.0 21.1 15.9 12.2 4.8
Latin America & Caribbeans 49.0 42.0 34.2 25.4 16.8
Australia & New Zealand 11.9 8.7 7.3 6.3 6.0
Eastern Asia 76.8 70.9 66.9 64.8 45.4
Africa 79.6 75.8 68.7 62.8

Notes: † World Bank (2008) World Development Indicators. ‡ ILO decadal estimates 1950-1990, ‘economically active
population in agriculture’. ] World Bank (2008) WDI; here: ‘employment in agriculture’ and Europe = Euro Area.
2000s includes the most recently available data, which differs somewhat by region but typically includes data up to 2006.
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Table II: Pooled regression models for agriculture and manufacturing

Panel (A): Unrestricted returns to scale

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD2FE POLS 2FE CCEP FD2FE

log labour -0.059 -0.205 -0.203 -0.113 0.043 0.069 0.089 0.125
[7.06]∗∗ [10.03]∗∗ [1.73] [3.13]∗∗ [3.56]∗∗ [3.68]∗∗ [1.77] [6.81]∗∗

log capital pw 0.618 0.654 0.484 0.633 0.897 0.855 0.511 0.720
[74.18]∗∗ [42.29]∗∗ [11.24]∗∗ [21.00]∗∗ [55.53]∗∗ [32.93]∗∗ [8.90]∗∗ [23.95]∗∗

log land pw 0.012 -0.151 -0.092 -0.001
[1.07] [4.89]∗∗ [0.64] [0.01]

Implied RS† DRS DRS CRS DRS IRS IRS CRS IRS
Implied βL

‡ 0.323 0.346 0.516 0.254 0.146 0.214 0.489 0.405
ê integrated\ I(1) I(1) I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value] 0.00 0.00 0.57 0.00 0.44 0.55 0.00 0.00
R-squared 0.94 0.86 1.00 - 0.84 0.67 1.00 -

Panel (B): Constant returns to scale imposed

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD2FE POLS 2FE CCEP FD2FE

log capital pw 0.644 0.724 0.493 0.660 0.920 0.865 0.510 0.767
[85.54]∗∗ [48.86]∗∗ [11.84]∗∗ [22.70]∗∗ [71.30]∗∗ [34.11]∗∗ [11.75]∗∗ [25.60]∗∗

log land pw 0.009 -0.005 0.108 0.002
[0.70] [0.15] [1.57] [0.02]

Implied βL
‡ 0.348 0.281 0.399 0.338 0.080 0.135 0.490 0.233

ê integrated\ I(1) I(1)/I(0) I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value] 0.00 0.00 0.71 0.00 0.00 0.00 0.00 0.00
R-squared 0.94 0.85 1.00 - 0.84 0.66 1.00 -
Observations 928 928 928 879 928 928 928 879

Notes: Dependent variable: value-added per worker (in logs). All variables are suitably transformed in the 2FE and FD2FE equations.
Estimators: POLS — pooled OLS, 2FE — 2-way Fixed Effects, CCEP — Common Correlated Effects Pooled version, FD2FE — 2-way Fixed
Effects with variables in first difference. We omit reporting the estimates on the intercept term. t-statistics reported in brackets are constructed
using White heteroskedasticity-robust standard errors. ∗, ∗∗ indicate significance at 5% and 1% level respectively. N = 41, average T = 22.6
(21.4 for FD2FE). Time dummies are included explicitly in [1] and [5] or implicitly in [2],[4],[6] and [8]. Cross-section average augmentation in [3]
and [7].
† Returns to scale, based on significance of log labour estimate. ‡ Based on returns to scale result. \ Order of integration of regression residuals,
determined using Pesaran (2007) CIPS (full results available on request). ] Based on Pesaran (2004) CD-test (full results for this and other CSD
tests available on request).
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Table III: Pooled regression models for manufacturing (HC-augmented)

Panel (A): Unrestricted returns Panel (B): CRS imposed

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD2FE POLS 2FE CCEP FD2FE

log labour 0.005 0.029 0.121 0.162
[0.62] [0.88] [1.91] [4.62]∗∗

log capital pw 0.692 0.851 0.533 0.654 0.695 0.839 0.472 0.558
[44.38]∗∗ [22.14]∗∗ [8.00]∗∗ [14.56]∗∗ [49.18]∗∗ [24.30]∗∗ [8.87]∗∗ [13.85]**

Education 0.226 -0.006 0.152 0.095 0.226 0.014 0.234 0.220
[11.91]∗∗ [0.21] [2.04]∗ [1.53] [11.80]∗∗ [0.71] [3.67]∗∗ [3.91]∗∗

Educationˆ2 -0.009 0.002 -0.006 -0.005 -0.009 0.001 -0.010 -0.010
[6.22]∗∗ [1.39] [1.32] [1.10] [6.11]∗∗ [0.98] [2.55]∗ [2.41]∗

Implied RS† CRS CRS CRS IRS
Implied βL

‡ 0.308 0.149 0.467 0.508 0.305 0.162 0.528 0.443
ê integrated\ I(1) I(1) I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value] 0.87 0.18 0.58 0.00 0.88 0.04 0.08 0.00
Mean Education 5.87 5.87 5.87 5.94 5.87 5.87 5.87 5.94
Returns to Edu 12.2% 1.9% 8.4% 4.1% 12.2% 2.7% 11.6% 10.5%

[t-statistic][ [19.88] [1.30] [3.11] [1.54] [20.20] [2.30] [5.25] [4.62]
Observations 860 860 860 817 860 860 860 817
R-squared 0.91 0.57 1.00 - 0.91 0.57 1.00 -

Notes: We include our proxy for education in levels and as a squared term. Returns to Education are computed from the sample mean (Ē) as
βE + 2βE2Ē where βE and βE2 are the coefficients on the levels and squared education terms respectively. [ computed via the delta-method. For
more details on other diagnostics see Notes in Table II.
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Table IV: Heterogeneous parameter models (robust means)

Panel (A): Unrestricted returns to scale

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log labour -1.936 -0.414 -0.533 -0.125 -0.154 0.094
[2.50]∗ [0.48] [0.91] [0.90] [1.36] [1.12]

log capital pw -0.053 0.135 0.526 0.214 0.139 0.545
[0.28] [0.61] [2.76]∗∗ [1.38] [0.84] [6.34]∗∗

log land pw -0.334 -0.245 -0.352
[1.09] [0.85] [1.12]

country trend/drift 0.018 0.010 0.014 0.019
[1.81] [1.22] [2.54]∗ [3.35]∗∗

Implied RS† DRS CRS CRS CRS CRS CRS
Implied βL

‡ n/a n/a 0.474 n/a n/a 0.455
reject CRS (10%) 27% 12% 20% 44% 12% 39%

panel-t Labour -3.17∗∗ -0.93 -1.02 -2.98∗∗ -2.92∗∗ 4.68∗∗

panel-t Capital 0.89 0.95 8.10∗∗ 4.14∗∗ 0.09 16.15∗∗

panel-t Land -0.32 0.23 -0.02
panel-t trend/drift 14.95∗∗ 5.41∗∗ 16.23∗∗ 8.35∗∗

sign. trends (10%) 20 7 19 10

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.23 0.22 0.25 0.24 0.22 0.23
CD-test (p)] (.00) (.00) (.51) (.00) (.00) (.01)

Panel (B): Constant returns to scale imposed

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log capital pw -0.012 0.297 0.547 0.320 0.388 0.550
[0.07] [2.14]∗ [4.66]∗∗ [2.74]∗∗ [4.02]∗∗ [6.33]∗∗

log land pw 0.360 0.138 0.163
[1.30] [0.71] [0.90]

country trend/drift 0.016 0.014 0.011 0.011
[2.89]∗∗ [3.09]∗∗ [2.63]∗ [3.06]∗∗

Implied βL
‡ 1.012 0.703 0.453 0.680 0.612 0.450

panel-t Capital 5.42∗∗ 2.65∗∗ 13.68∗∗ 10.58∗∗ 6.36∗∗ 20.03∗∗

panel-t Land 6.74∗∗ 1.53 1.24
panel-t trend/drift 14.87∗∗ 5.61∗∗ 22.65∗∗ 8.39∗∗

sign. trends (10%) 22 6 31 15

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.23 0.22 0.26 0.29 0.22 0.26
CD-test (p)] (.00) (.00) (.90) (.00) (.00) (.00)
Obs (N) 928 (41) 928 (41) 879 (41) 928 (41) 928 (41) 879 (41)

Notes: Dependent variable: value-added per worker (in logs). All variables are suitably transformed in the FD
equations. Estimators: MG — Mean Group, FDMG — MG with variables in first difference, CMG — Common
Correlated Effects Mean Group version. We report robust means; estimates on intercept terms are not shown.
t-statistics in brackets following Pesaran et al. (2009). Panel-t statistic following Pedroni (2004). Estimates on
cross-section averages in [3] and [6] not reported. For other details see Table II.
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Table V: Heterogeneous Manufacturing models (HC-augmented)

Panel (A): Unrestricted Panel (B): CRS imposed

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log labour -0.305 -0.293 0.097
[1.20] [1.50] [0.62]

log capital pw 0.059 0.144 0.426 0.352 0.347 0.386
[0.22] [0.74] [3.73]∗∗ [3.25]∗∗ [3.66]∗∗ [3.95]∗∗

Education -0.478 0.237 1.248 -0.228 0.085 0.668
[1.02] [0.81] [2.66]∗ [0.62] [0.29] [2.43]∗

Education squared 0.050 0.011 -0.098 0.005 -0.019 -0.042
[1.38] [0.35] [2.67]∗ [0.13] [0.67] [1.95]

country trend/drift 0.016 0.020 0.008 0.013
[1.55] [2.44]∗ [1.16] [2.23]∗

reject CRS (10%) 38% 8% 38%
Implied βL

‡ n/a 0.857 0.574 0.648 0.653 0.614
Mean Education 5.82 5.91 5.82 5.87 5.94 5.87
Returns to Edu -6.3% -1.3% 10.9% -6.2% -2.1% 11.9%
[t-statistic][ [1.01] [0.25] [1.89] [1.00] [0.47] [1.70]
panel-t Labour 4.49∗∗ -2.51∗ 1.81
panel-t Capital 0.30 -0.25 8.62∗∗ 7.52∗∗ 5.48∗∗ 10.19∗∗

panel-t Edu 2.08∗ 0.93 3.58∗∗ 3.08∗∗ 0.88 3.38∗∗

panel-t Eduˆ2 1.93 -0.91 3.31∗∗ 2.47∗ 0.97 2.67∗∗

panel-t trend/drift 12.59∗∗ 6.41∗∗ 13.89 7.05
sign. trends (10%) 15 9 17 7

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
abs correl. coeff. 0.21 0.22 0.22 0.22 0.22 0.22
CD-test (p)] (.00) (.00) (.71) (.00) (.00) (.27)
Obs (N) 775 (37) 732 (37) 775 (37) 775 (37) 732 (37) 775 (37)

Notes: All averaged coefficients presented are robust means across i. [ The returns to education and associated
t-statistics are based on a two-step procedure: first the country-specific mean education value (Ēi) is used to
compute βi,E + 2βi,E2Ēi to yield the country-specific returns to education. The reported value then represents the
robust mean of these N country estimates, s.t. the t-statistic should be interpreted in the same fashion as that for
the regressors, namely as a test whether the average parameter is statistically different from zero, following Pesaran
et al. (2009). For other details see Tables IV and V.
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Table VI: Pooled regression models for aggregated and PWT data

Panel (A): Unrestricted returns to scale

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD2FE POLS 2FE CCEP FD2FE

log labour 0.011 -0.096 0.036 -0.013 0.034 -0.138 -0.201 0.019
[1.50] [4.49]∗∗ [0.52] [0.54] [7.43]∗∗ [4.74]∗∗ [1.75] [0.94]

log capital pw 0.829 0.792 0.655 0.820 0.742 0.700 0.684 0.729
[108.41]∗∗ [64.71]∗∗ [21.71]∗∗ [66.28]∗∗ [114.77]∗∗ [49.71]∗∗ [16.90]∗∗ [50.08]∗∗

Implied RS† CRS DRS CRS CRS IRS DRS CRS CRS
Implied βL

‡ 0.171 0.111 0.345 0.180 0.292 0.162 0.316 0.271
ê integrated\ I(1) I(1) I(1)/I(0) I(0) I(1) I(1) I(1)/I(0) I(0)
CD test p-value] 0.98 0.01 0.07 0.00 0.02 0.00 0.02 0.00
R-squared 0.96 0.88 1.00 - 0.96 0.82 1.00
Observations 928 928 928 879 922 922 922 873

Panel (B): Constant returns to scale imposed

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD2FE POLS 2FE CCEP FD2FE

log capital pw 0.825 0.823 0.672 0.821 0.730 0.745 0.656 0.726
[120.85]∗∗ [72.25]∗∗ [23.14]∗∗ [66.91]∗∗ [130.53]∗∗ [62.33]∗∗ [20.61]∗∗ [50.88]∗∗

Implied βL
‡ 0.175 0.177 0.328 0.179 0.270 0.256 0.344 0.274

ê integrated\ I(1) I(1) I(1)/I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value] 0.91 0.86 0.05 0.00 0.00 0.00 0.03 0.00
R-squared 0.96 0.88 1.00 - 0.96 0.81 1.00
Observations 928 928 928 879 922 922 922 873

Notes: See Table II for details.
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Table VII: Heterogeneous parameter models (robust means)

Panel (A): Unrestricted returns to scale

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log labour -0.233 -0.169 0.057 -0.442 -1.089 -0.172
[0.55] [0.51] [0.31] [0.74] [2.35]∗ [0.45]

log capital pw 0.233 0.289 0.651 0.625 0.976 0.715
[1.28] [1.71] [7.00]∗∗ [4.64]∗∗ [6.40]∗∗ [5.49]∗∗

country trend/drift 0.026 0.022 0.011 -0.005
[2.93]∗∗ [2.57]∗ [1.12] [0.83]

Implied RS† CRS CRS CRS CRS DRS CRS
Implied βL

‡ n/a n/a 0.349 0.375 n/a 0.285
reject CRS (10%) 56% 15% 29% 74% 26% 51%

panel-t Labour -0.77 -0.16 4.12∗∗ -0.65 -4.42∗∗ -4.36∗∗

panel-t Capital 5.97∗∗ 1.83 22.39∗∗ 24.66∗∗ 18.12∗∗ 26.16∗∗

panel-t trend/drift 23.44∗∗ 9.31∗∗ 16.65∗∗ 7.41∗∗

sign. trends (10%) 27 13 30 12

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.24 0.23 0.23 0.25 0.19 0.24
CD-test (p)] (.00) (.00) (.00) (.00) (.00) (.00)
Observations 928 928 879 922 922 873

Panel (B): Constant returns to scale imposed

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log capital pw 0.324 0.222 0.745 0.681 0.892 0.785
[2.12]∗ [2.09]∗ [11.78]∗∗ [8.38]∗∗ [7.47]∗∗ [12.59]∗∗

country trend/drift 0.013 0.018 0.001 -0.004
[2.69]∗ [4.65]∗∗ [0.23] [1.24]

Implied βL
‡ 0.676 0.778 0.255 0.319 0.108 0.215

panel-t Capital 11.61∗∗ 2.68∗∗ 40.06∗∗ 34.32∗∗ 18.49∗∗ 51.35∗∗

panel-t trend/drift 21.26∗∗ 8.72∗∗ 19.33∗∗ 8.75∗∗

sign. trends (10%) 25 11 27 12

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.29 0.23 0.26 0.32 0.23 0.30
CD-test (p)] (.00) (.00) (.07) (.00) (.00) (.00)
Observations 928 928 879 922 922 873

Notes: See Table IV for details.
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Appendix

A-1 Data construction and descriptives

We use a total of four datasets in our empirical analysis, comprising data for agriculture and manu-
facturing (Crego et al., 1998; UNIDO, 2004; FAO, 2007), an ‘aggregated dataset’ where the labour,
output and capital stock values for the two sectors are added up, and finally a Penn World Table
(PWT 6.2) dataset (Heston et al., 2006) for comparative purposes. It is important to stress that
the former three datasets differ significantly in their construction from the latter, primarily in the
choice of exchange rates and deflation: the former use international (US$-LCU) exchange rates for the
year 1990, whereas the Penn World Table dataset comprises Purchasing Power Parity (PPP) adjusted
International Dollars taking the year 2000 as the comparative base. The former thus put an empha-
sis on traded goods, whereas the latter are generally perceived to account better for non-tradables
and service. Provided that all monetary values making up the variables used in each regression are
comparable (across countries, times), and given that the comparison of sectoral and aggregated data
with the PWT is for illustrative purposes, we do not feel there is an issue in presenting results from
these two conceptually different datasets. In all cases the results present are for matched observations
across datasets: the four datasets are identical in terms of countries and time-periods — we prefer this
arrangement for direct comparison despite the fact that more observations are available for individual
data sources (e.g. the PWT are now available in the latest version 6.3, covering up to 188 countries
for 1950 to 2004, see Heston et al., 2009), which may improve the robustness of empirical estimates.
We provide details on the sample makeup in Table A-I. The next two subsections describe data con-
struction. Descriptive statistics for all variables in the empirical analysis are presented in Table A-II.

Table A-I: Descriptive statistics: Sample makeup

# wbcode country obs # wbcode country obs

1 AUS Australia 20 22 JPN Japan 28
2 AUT Austria 22 23 KEN Kenya 29
3 BEL Belgium-Luxembourg 22 24 KOR South Korea 29
4 CAN Canada 30 25 LKA Sri Lanka 17
5 CHL Chile 20 26 MDG Madagascar 20
6 COL Colombia 26 27 MLT Malta 23
7 CRI Costa Rica 10 28 MUS Mauritius 16
8 CYP Cyprus 18 29 MWI Malawi 23
9 DNK Denmark 26 30 NLD Netherlands 23

10 EGY Egypt 24 31 NOR Norway 22
11 FIN Finland 28 32 NZL New Zealand 19
12 FRA France 23 33 PAK Pakistan 24
13 GBR United Kingdom 22 34 PHL Philippines 24
14 GRC Greece 28 35 PRT Portugal 20
15 GTM Guatemala 19 36 SWE Sweden 23
16 IDN Indonesia 22 37 TUN Tunisia 17
17 IND India 29 38 USA United States 23
18 IRL Ireland 23 39 VEN Venezuela 19
19 IRN Iran 25 40 ZAF South Africa 26
20 ISL Iceland 20 41 ZWE Zimbabwe 25
21 ITA Italy 21 Total 928

Notes: Sample makeup for all 4 datasets.
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Table A-II: Descriptive statistics

AGRICULTURE DATA MANUFACTURING DATA

Panel (A): Variables in untransformed level terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 1.74E+10 5.91E+09 2.95E+10 3.54E+07 2.24E+11 Output 7.47E+10 8.31E+09 2.07E+11 7.20E+06 1.43E+12
Labour 9.51E+06 1.21E+06 3.45E+07 3.00E+03 2.33E+08 Labour 1.73E+06 4.75E+05 3.42E+06 9.56E+03 1.97E+07
Capital 6.42E+10 1.01E+10 1.45E+11 2.90E+07 8.64E+11 Capital 1.33E+11 1.91E+10 2.97E+11 1.41E+07 1.81E+12
Land 1.73E+07 3.50E+06 4.06E+07 6.00E+03 1.91E+08

in logarithms
Output 22.369 22.500 1.737 17.382 26.134 Output 22.812 22.840 2.292 15.790 27.991
Labour 13.984 14.006 2.011 8.006 19.267 Labour 13.081 13.072 1.653 9.166 16.794
Capital 22.933 23.037 2.276 17.183 27.485 Capital 23.619 23.675 2.269 16.462 28.222
Land 15.089 15.068 1.986 8.700 19.066

in growth rates
Output 1.75% 1.94% 10.36% -41.54% 53.86% Output 4.45% 3.83% 10.09% -40.91% 84.23%
Labour -0.63% 0.00% 3.00% -28.77% 13.35% Labour 1.96% 1.13% 6.83% -38.84% 78.12%
Capital 1.89% 1.25% 3.61% -5.13% 31.40% Capital 4.84% 3.62% 4.97% -5.10% 53.03%
Land 0.06% 0.00% 2.17% -23.06% 13.57%

Panel (B): Variables in per worker terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 12,615.6 6,419.6 13,130.6 44.2 57,891.3 Output 26,898.2 20,212.6 22,071.3 753.0 101,933.8
Capital 51,847.1 9,661.9 63,427.8 13.1 222,396.5 Capital 63,080.3 42,543.9 64,355.0 1,475.5 449,763.4
Land 9.57 2.94 20.25 0.29 110.00

in logarithms
Output 8.385 8.767 1.817 3.788 10.966 Output 9.731 9.914 1.084 6.624 11.532
Capital 8.950 9.176 2.694 2.573 12.312 Capital 10.538 10.658 1.083 7.297 13.016
Land 1.105 1.078 1.404 -1.244 4.701

in growth rates
Output 2.33% 2.52% 10.49% -43.67% 55.98% Output 2.51% 2.48% 9.00% -66.95% 73.01%
Capital 2.47% 2.00% 4.17% -7.83% 31.12% Capital 2.90% 2.91% 6.59% -71.65% 42.44%
Land 0.70% 0.50% 3.40% -18.37% 28.77%

AGGREGATED DATA PENN WORLD TABLE DATA

Panel (A): Variables in untransformed level terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 9.22E+10 1.69E+10 2.31E+11 1.14E+08 1.55E+12 Output 4.24E+11 1.27E+11 1.01E+12 1.34E+09 7.98E+12
Labour 1.12E+07 2.31E+06 3.55E+07 2.23E+04 2.40E+08 Labour 5.05E+07 1.30E+07 1.19E+08 2.12E+05 8.54E+08
Capital 1.97E+11 2.79E+10 4.31E+11 1.02E+08 2.25E+12 Capital 1.21E+12 3.25E+11 2.93E+12 3.30E+09 2.27E+13

in logarithms
Output 23.470 23.553 2.016 18.552 28.069 Output 25.423 25.564 1.716 21.018 29.708
Labour 14.640 14.653 1.736 10.011 19.297 Labour 16.469 16.380 1.627 12.266 20.565
Capital 24.078 24.052 2.213 18.438 28.442 Capital 26.359 26.506 1.801 21.918 30.753

in growth rates
Output 3.17% 3.15% 7.37% -33.87% 42.14% Output 4.00% 4.00% 4.96% -37.12% 26.63%
Labour 0.19% 0.49% 2.56% -11.39% 19.30% Labour 1.56% 1.43% 1.14% -1.87% 4.82%
Capital 3.57% 2.73% 3.62% -5.00% 25.14% Capital 4.60% 4.19% 2.84% -1.30% 16.43%

Panel (B): Variables in per worker terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
in levels
Output 19,327.1 10,736.2 19,174.0 72.5 76,031.1 Output 11,396.7 10,308.1 8,162.3 594.3 31,074.1
Capital 49,187.4 22,087.4 55,406.5 52.7 236,312.1 Capital 36,832.4 32,026.3 31,668.2 660.8 136,891.2

in logarithms
Output 8.830 9.281 1.845 4.284 11.239 Output 8.945 9.241 1.016 6.387 10.344
Capital 9.438 10.003 2.191 3.964 12.373 Capital 9.868 10.374 1.365 6.493 11.827

in growth rates
Output 2.95% 3.30% 7.04% -31.02% 44.49% Output 2.44% 2.57% 4.96% -41.22% 23.19%
Capital 3.38% 3.14% 3.74% -18.43% 22.16% Capital 3.04% 2.77% 2.87% -4.23% 14.26%

Notes: We report the descriptive statistics for value-added (in US$1990 or PPP I$2000), labour (headcount), capital stock (same monetary values
as VA in each respective dataset) and land (in hectare) for the full regression sample (n = 928; N = 41).
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A-1.1 Sectoral and aggregated data

Investment data Data for agricultural and manufacturing investment (AgSEInv, MfgSEInv) in
constant 1990 LCU, the US$-LCU exchange rate (Ex Rate, see comment below) as well as sector-
specific deflators (AgDef, TotDef) were taken from Crego et al. (1998).17 Note that Crego et al.
(1998) also provide capital stock data, which they produced through their own calculations from the
investment data. Following Martin and Mitra (2002) we believe the use of a single year exchange rate
is preferrable to the use of annual ones in the construction of real output (see next paragraph) and
capital stock (see below).

Output data For manufacturing we use data on aggregate GDP in current LCU and the share of
GDP in manufacturing from the World Bank World Development Indicators (WDI) (World Bank,
2008). For agriculture we use agricultural value-added in current LCU from the same source. We
prefer the latter over the share of GDP in agriculture for data coverage reasons (in theory they should
be the same, but they are not). The two sectoral value-added series are then deflated using the Crego
et al. (1998) sectoral deflator for agriculture and the total economy deflator for manufacturing, before
we use the 1990 US$-LCU exchange rates to make them comparable across countries.

Note that the currencies used in the Crego et al. (1998) data differ from those applied in the WDI
data for a number of European countries due to the adoption of the Euro: for the latter we therefore
need to use an alternative 1990 US$-LCU exchange rate for these economies.18

Labour data For agriculture we adopt the variable ‘economically active population in agriculture’
from the FAO’s PopSTAT (FAO, 2007). Manufacturing labour is taken from UNIDO’s INDSTAT
UNIDO (2004).

Additional data The land variable is taken from ResourceSTAT and represents arable and perma-
nent crop land (originally in 1000 hectare) (FAO, 2007). The livestock variable is constructed from
the data for asses (donkeys), buffalos, camels, cattle, chickens, ducks, horses, mules, pigs, sheep &
goats and turkeys in the ‘Live animals’ section of ProdSTAT. Following convention we use the below
formula to convert the numbers for individual animal species into the livestock variable:

livestock = 1.1∗camels + buffalos + horses + mules + 0.8∗cattle + 0.8∗asses
+0.2∗pigs + 0.1∗(sheep+goats) + 0.01∗(chickens+ducks+turkeys)

The fertilizer variable is taken from the ‘Fertilizers archive’ of ResourceSTAT and represents agricul-
tural fertilizer consumed in metric tons, which includes ‘crude’ and ‘manufactured’ fertilizers.

Capital stock We construct capital stock in agriculture and manufacturing by applying the perpet-
ual inventory method described in detail in Klenow and Rodriguez-Clare (1997b) using the investment
data from Crego et al. (1998), which is transformed into US$ by application of the 1990 US$-LCU
exchange rate. For the construction of sectoral base year capital stock we employ average sector
value-added growth rates gj (using the deflated sectoral value-added data described above), the av-
erage sectoral investment to value-added ratio (I/Y )j and an assumed depreciation rate of 5% to

17Data is available in excel format on the World Bank website at http://go.worldbank.org/FS3FXW7461. All data
discussed in this appendix are linked at http://sites.google.com/site/medevecon/devecondata.

18In detail, we apply exchange rates of 1.210246384 for AUT, 1.207133927 for BEL, 1.55504706 for FIN, 1.204635181
for FRA, 2.149653527 for GRC, 1.302645017 for IRL, 1.616114954 for ITA, 1.210203555 for NLD and 1.406350856 for
PRT. See Table A-I for country codes.
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construct (
K

Y

)
0j

=
IYj

gj + 0.05

for sector j. This ratio is then multiplied by sectoral value-added in the base year to yield K0j . Note
that the method deviates from that discussed in Klenow and Rodriguez-Clare (1997b) as they use
per capita GDP in their computations and therefore need to account for population growth in the
construction of the base year capital stock.

Aggregated data We combine the agriculture and manufacturing data to produce a stylised ‘ag-
gregate economy’: for labour we simply add up the headcount, for the monetary representations of
output and capital stock we can do so as well. We are afforded this ability to simply add up variables
for the two sectors by the efforts Crego et al. (1998), who have built the first large panel dataset
providing data on investment in agriculture for a long timespan.

A-1.2 Penn World Table data

As a means of comparison we also provide production function estimates using data from PWT ver-
sion 6.2. We adopt Real per capita GDP in International $ Laspeyeres (rgdpl) as measure for output
and construct capital stock using investment data (derived from Investment Share in Real GDP, ki,
and the output variable, rgdpl) in the perpetual inventory method described above, adopting again
5% depreciation (this time we need to use the data on population from PWT, pop, to compute the
average annual population growth rate).
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TECHNICAL APPENDIX

TA-1 Time-series properties of the data

Table TA-I: Second generation panel unit root tests

Panel (A): Agriculture data

Variables in levels Variables in growth rates

log VA pw log Labour log Cap pw VA pw Labour Cap pw
lags Ztbar (p) Ztbar (p) Ztbar (p) lags Ztbar (p) Ztbar (p) Ztbar (p)

0 -0.662 (.25) 7.869 (1.00) 7.182 (1.00) 0 -16.230 (.00) -2.829 (.00) -1.550 (.06)
1 -0.326 (.37) 5.392 (1.00) 3.871 (1.00) 1 -9.960 (.00) 3.394 (1.00) -0.359 (.36)
2 2.911 (1.00) 7.550 (1.00) 5.490 (1.00) 2 -4.970 (.00) 5.639 (1.00) 4.161 (1.00)
3 4.817 (1.00) 9.859 (1.00) 5.417 (1.00) 3 -1.474 (.07) 6.238 (1.00) 5.171 (1.00)
4 7.301 (1.00) 9.686 (1.00) 6.865 (1.00) 4 3.869 (1.00) 9.043 (1.00) 9.442 (1.00)

Land pw Land pw
lags Ztbar (p) lags Ztbar (p)

0 9.432 (1.00) 0 -9.704 (.00)
1 7.223 (1.00) 1 -3.433 (.00)
2 6.069 (1.00) 2 1.324 (.91)
3 3.266 (1.00) 3 3.132 (1.00)
4 5.339 (1.00) 4 6.584 (1.00)

Panel (B): manufacturing data

Variables in levels Variables in growth rates

log VA pw log Labour log Cap pw VA pw Labour Cap pw
lags Ztbar (p) Ztbar (p) Ztbar (p) lags Ztbar (p) Ztbar (p) Ztbar (p)

0 0.903 (.82) 2.539 (.99) 1.668 (.95) 0 -18.029 (.00) -11.824 (.00) -9.259 (.00)
1 2.631 (1.00) 1.971 (.98) 0.667 (.75) 1 -8.603 (.00) -6.586 (.00) -4.928 (.00)
2 2.513 (.99) 4.240 (1.00) 2.060 (.98) 2 -3.585 (.00) -3.700 (.00) -2.263 (.01)
3 4.022 (1.00) 4.066 (1.00) 3.240 (1.00) 3 -1.059 (.14) -0.176 (.43) 0.847 (.80)
4 9.332 (1.00) 7.207 (1.00) 6.194 (1.00) 4 2.134 (.98) 4.982 (1.00) 4.511 (1.00)

Panel (C): Aggregated data

Variables in levels Variables in growth rates

log VA pw log Labour log Cap pw VA pw Labour Cap pw
lags Ztbar (p) Ztbar (p) Ztbar (p) lags Ztbar (p) Ztbar (p) Ztbar (p)

0 2.558 (.99) 6.950 (1.00) 5.920 (1.00) 0 -15.283 (.00) -5.625 (.00) -4.489 (.00)
1 3.112 (1.00) 4.292 (1.00) 3.668 (1.00) 1 -8.185 (.00) -2.324 (.01) -1.073 (.14)
2 5.190 (1.00) 4.906 (1.00) 4.177 (1.00) 2 -3.429 (.00) 0.035 (.51) 1.154 (.88)
3 5.361 (1.00) 5.131 (1.00) 4.307 (1.00) 3 -0.640 (.26) 2.637 (1.00) 3.472 (1.00)
4 7.108 (1.00) 8.155 (1.00) 8.252 (1.00) 4 2.569 (.99) 5.652 (1.00) 6.452 (1.00)

Panel (D): Penn World Table data

Variables in levels Variables in growth rates

log VA pw log Labour log Cap pw VA pw Labour Cap pw
lags Ztbar (p) Ztbar (p) Ztbar (p) lags Ztbar (p) Ztbar (p) Ztbar (p)

0 4.544 (1.00) -1.069 (.14) 2.802 (1.00) 0 -14.287 (.00) 0.711 (.76) -4.690 (.00)
1 6.126 (1.00) 7.647 (1.00) 6.097 (1.00) 1 -6.603 (.00) -1.977 (.02) -2.437 (.01)
2 6.581 (1.00) 7.215 (1.00) 7.215 (1.00) 2 -4.112 (.00) 1.784 (.96) -1.801 (.04)
3 7.772 (1.00) 6.475 (1.00) 7.576 (1.00) 3 -1.050 (.15) 2.205 (.99) -0.468 (.32)
4 7.578 (1.00) 7.484 (1.00) 8.950 (1.00) 4 4.229 (1.00) 3.884 (1.00) 3.656 (1.00)

Notes: We report test statistics and p-values for the Pesaran (2007) CIPS panel unit root test of the variables in our four datasets. In
all cases we use N = 41, n = 928 for the levels data.
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TA-2 Cross-section dependence in the data

Table TA-II: Cross-section correlation analysis

Variables in levels Variables in first diff.

Agriculture data ρ̄ |ρ̄| CD CDZ ρ̄ |ρ̄| CD CDZ

log VA pw 0.41 0.57 57.65 74.45 0.05 0.23 6.57 6.59
(p) (.00) (.00) (.00) (.00)

log Labour -0.01 0.76 -1.10 0.45 0.12 0.52 14.50 22.60
(p) (.27) (.65) (.00) (.00)

log Cap pw 0.41 0.72 56.06 97.01 0.08 0.40 9.09 11.26
(p) (.00) (.00) (.00) (.00)

log Land pw 0.02 0.72 2.90 3.49 0.04 0.28 4.96 5.67
(p) (.00) (.00) (.00) (.00)

Manufacturing data ρ̄ |ρ̄| CD CDZ ρ̄ |ρ̄| CD CDZ

log VA pw 0.43 0.63 66.34 84.24 0.05 0.21 6.27 6.49
(p) (.00) (.00) (.00) (.00)

log Labour 0.26 0.60 38.19 54.53 0.14 0.25 17.82 18.98
(p) (.00) (.00) (.00) (.00)

log Cap pw 0.61 0.77 86.11 136.03 0.07 0.22 8.22 9.04
(p) (.00) (.00) (.00) (.00)

Aggregated data ρ̄ |ρ̄| CD CDZ ρ̄ |ρ̄| CD CDZ

log VA pw 0.61 0.69 83.57 118.17 0.08 0.23 10.65 11.23
(p) (.00) (.00) (.00) (.00)

log Labour 0.01 0.72 1.36 6.42 0.06 0.31 8.24 9.47
(p) (.18) (.00) (.00) (.00)

log Cap pw 0.76 0.85 97.16 188.46 0.07 0.29 7.99 9.81
(p) (.00) (.00) (.00) (.00)

Penn World Table data ρ̄ |ρ̄| CD CDZ ρ̄ |ρ̄| CD CDZ

log VA pw 0.72 0.74 111.55 170.81 0.14 0.20 21.89 19.07
(p) (.00) (.00) (.00) (.00)

log Labour 0.95 0.95 149.58 298.19 0.11 0.38 16.80 17.57
(p) (.00) (.00) (.00) (.00)

log Cap pw 0.76 0.86 116.84 219.82 0.26 0.38 39.69 38.66
(p) (.00) (.00) (.00) (.00)

Notes: In all cases we use N = 41, n = 928 for the levels data. We report the average correlation coefficient across the N(N − 1)
variable series ρ̄, as well as the average absoulte correlation coefficient |ρ̄|. CD and CDZ are formal cross-section correlation tests
introduced by Pesaran (2004) and Moscone and Tosetti (2009). Under the H0 of cross-section independence both statistics are
asymptotically standard normal. We investigated two further tests introduced by Moscone and Tosetti (2009), namely CDLM and
CDABS, which yield the same conclusions as the tests presented (detailed results available on request).
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TA-3 Additional tables and figures

Figure TA-I: Scatter plots — Agriculture and Manufacturing data
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Notes: Scatter graphs for agricultural (manufacturing) VA per worker plotted against capital per worker. The red line
represents a least squares regression line, mimicking a pooled OLS regression model (without TFP growth). The
multi-coloured lines represent N regression lines, mimicking a heterogeneous parameter model (without TFP growth).
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Figure TA-II: Scatter plots — Aggregated/PWT data
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Notes: Scatter graphs for aggregated (Penn World Table) VA per worker plotted against capital per worker. The red
line represents a least squares regression line, mimicking a pooled OLS regression model (without TFP growth). The
multi-coloured lines represent N regression lines, mimicking a heterogeneous parameter model (without TFP growth).
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Table TA-III: Alternative dynamic panel estimators

Panel (A): Agriculture

Dynamic FE PMG CPMG? DGMM SGMM

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
EC [yt−1] -0.293 -0.312 -0.300 -0.460 -0.459 -0.624 -0.466 -0.482 -0.503 -0.455 -1.087 -0.432

[11.80]∗∗ [12.43]∗∗ [11.91]∗∗ [10.63]** [9.34]∗∗ [14.29]∗∗ [10.44]∗∗ [10.06]∗∗ [9.74]∗∗ [9.34]∗∗ [2.60]∗∗ [5.38]∗∗

capital pw 0.672 0.684 0.582 0.652 0.714 0.036 0.132 0.501 0.464 0.530 1.135 0.776
[12.47]∗∗ [12.69]∗∗ [7.50]∗∗ [20.16]∗∗ [18.52]∗∗ [0.57] [3.01]∗∗ [10.78]∗∗ [11.05]∗∗ [10.83]∗∗ [2.85]∗∗ [12.59]∗∗

land pw 0.124 0.121 0.135 0.136 0.367 0.867 0.361 0.247 0.494 0.228 0.083 -0.247
[1.30] [1.29] [1.45] [2.90]∗∗ [6.43]∗∗ [8.27]∗∗ [8.05]∗∗ [5.03]∗∗ [8.95]∗∗ [4.73]∗∗ [0.35] [1.17]

trend(s)† 0.001 0.008 0.012
[1.59] [3.36]∗∗ [12.26]∗∗

Constant 0.667 0.679 0.896 1.072 0.644 4.273 3.084 1.545 1.402 1.298 0.714
[5.03]∗∗ [4.75]∗∗ [4.58]∗∗ [10.48]∗∗ [7.53]∗∗ [13.11]∗∗ [10.27]∗∗ [10.38]∗∗ [9.69]∗∗ [9.94]∗∗ [4.21]∗∗

lags [trends]‡ 1 2 1 [l-r] 1 2 1 [s-r] 1 [l-r] 1 2 1 i: 2-3 i: 2-3
impl. labour 0.328 0.316 0.418 0.212 -0.081 0.098 0.507 0.253 0.042 0.242 -0.135 0.224
obs 894 857 894 894 857 894 894 894 857 872 857 894

Panel (B): Manufacturing

Dynamic FE PMG CPMG? DGMM SGMM

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
EC [yt−1] -0.196 -0.195 -0.195 -0.219 -0.181 -0.543 -0.214 -0.245 -0.194 -0.272 -2.1959 -0.0414

[9.40]∗∗ [9.16]∗∗ [9.31]∗∗ [6.59]∗∗ [5.97]∗∗ [4.04]∗∗ [4.13]∗∗ [7.16]∗∗ [6.45]∗∗ [7.33]∗∗ [0.72] [0.65]
capital pw 0.711 0.708 0.637 1.016 1.044 0.298 1.379 0.598 1.264 0.505 1.866 -1.515

[12.96]∗∗ [12.34]∗∗ [6.85]∗∗ [29.64]∗∗ [33.09]∗∗ [5.34]∗∗ [26.80]∗∗ [11.58]∗∗ [22.28]∗∗ [9.47]∗∗ [3.25]∗∗ [0.40]
trend(s)† 0.001 0.001 -0.010

[1.00] [0.24] [6.77]∗∗

Constant 0.452 0.456 0.588 -0.212 -0.228 3.493 -0.977 0.225 -0.434 0.372 1.042
[3.87]∗∗ [3.73]∗∗ [3.29]∗∗ [5.43]∗∗ [4.95]∗∗ [3.87]∗∗ [4.18]∗∗ [5.68]∗∗ [5.77]∗∗ [6.48]∗∗ [1.80]

lags [trends]‡ 1 2 1 [l-r] 1 2 1 [s-r] 1 [l-r] 1 2 1 i: 2-3 i: 2-3
impl. labour 0.289 0.292 0.363 -0.016 -0.044 0.702 -0.379 0.402 -0.264 0.495 -0.866 2.515
obs 902 880 902 902 880 902 902 902 880 879 880 902

Panel (C): Aggregated data

Dynamic FE PMG CPMG? DGMM SGMM

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
EC [yt−1] -0.172 -0.176 -0.173 -0.279 -0.277 -0.429 -0.284 -0.292 -0.294 -0.317 -0.3803 -0.2426

[8.59]∗∗ [8.39]∗∗ [8.59]∗∗ [6.89]∗∗ [7.25]∗∗ [9.55]∗∗ [6.72]∗∗ [6.98]∗∗ [7.38]∗∗ [7.48]∗∗ [0.71] [4.21]∗∗

capital pw 0.705 0.709 0.668 0.974 1.015 0.128 0.899 0.891 0.949 0.905 0.271 0.896
[15.25]∗∗ [14.65]∗∗ [8.17]∗∗ [36.86]∗∗ [37.38]∗∗ [1.90] [21.11]∗∗ [24.84]** [24.92]∗∗ [27.54]∗∗ [0.27] [22.80]∗∗

trend(s)† 0.000 0.011 0.004
[0.54] [6.07]∗∗ [2.42]∗

Constant 0.390 0.393 0.446 -0.100 -0.200 3.061 0.082 -0.062 -0.169 -0.145 0.120
[4.96]∗∗ [4.62]∗∗ [3.42]∗∗ [3.73]∗∗ [5.18]∗∗ [9.30]∗∗ [4.20]∗∗ [2.53]∗ [4.97]∗∗ [4.58]∗∗ [1.44]

lags [trends]‡ 1 2 1 [l-r] 1 2 1 [s-r] 1 [l-r] 1 2 1 i: 2-3 i: 2-3
impl. labour 0.295 0.292 0.332 0.026 -0.015 0.872 0.102 0.109 0.051 0.095 0.729 0.104
obs 879 836 879 879 836 879 879 879 836 879 836 879

Panel (D): Penn World Table data

Dynamic FE PMG CPMG? DGMM SGMM

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
EC [yt−1] -0.098 -0.101 -0.107 -0.333 -0.138 -0.567 -0.392 -0.338 -0.081 -0.347 0.8351 0.0309

[5.82]∗∗ [6.01]∗∗ [6.22]∗∗ [6.70]∗∗ [4.37]∗∗ [12.63]∗∗ [7.88]∗∗ [6.63]∗∗ [2.56]∗ [8.24]∗∗ [1.07] [0.49]
capital pw 0.538 0.553 0.356 0.923 0.916 0.698 0.652 0.903 -0.125 0.731 0.604 0.863

[8.14]∗∗ [8.66]∗∗ [3.44]∗∗ [130.34]∗∗ [71.72]∗∗ [65.10]∗∗ [67.96]∗∗ [52.90]∗∗ [1.81] [86.83]∗∗ [0.60] [1.88]
trend(s)† 0.001 0.002 0.006

[2.44]∗ [2.57]∗ [19.84]∗∗

Constant 0.363 0.360 0.567 -0.122 -0.020 1.085 0.935 -0.071 0.456 0.504 0.010
[5.38]∗∗ [5.29]∗∗ [5.28]∗∗ [4.44]∗∗ [1.63] [13.05]∗∗ [7.79]∗∗ [3.47]∗∗ [2.99]∗∗ [8.29]∗∗ [0.07]

lags [trends]‡ 1 2 1 [l-r] 1 2 1 [s-r] 1 [l-r] 1 2 1 i: 2-3 i: 2-3
impl. labour 0.462 0.447 0.645 0.077 0.084 0.302 0.349 0.097 1.125 0.270 0.396 0.137
obs 914 904 914 914 904 914 914 904 873 904 914

Notes: We report the long-run coefficients on capital per worker (and in the agriculture equations also land per worker). EC [yt−1] refers to the
Error-Correction term (speed of adjustment parameter) with the exception of Models [11] and [12], where we report the coefficient on yt−1 —
conceptually, these are the same, however in the latter we do not impose common factor restrictions like in all of the former models. Note that in
the PMG and CPMG models the ECM term is heterogeneous across countries, while in the Dynamic FE and GMM models these are common
across i. † In model [6] we include heterogeneous trend terms, whereas in [7] a common trend is assumed (i.e. linear TFP is part of cointegrating
vector). ‡ ‘lags’ indicates the lag-length of first differenced RHS variables included, with the exception of Models [11] and [12]: here ‘i:’ refers to
the lags (levels in [11], levels and differences in [12] used as instruments. ? In the models in [8] and [9] the cross-section averages are only included
for the long-run variables, whereas in the model in [10] cross-section averages for the first-differenced dependent and independent variables
(short-run) are also included. Note that in the agriculture equation for Model [10] we drop CRI (n = 7) as otherwise no convergence would occur.
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Table TA-IV: Aggregate & PWT data: Pooled models (HC-augmented)

Panel (A): Unrestricted returns

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD2FE POLS 2FE CCEP FD2FE

log labour -0.001 -0.058 0.566 0.083 0.040 -0.064 -0.193 -0.032
[0.14] [1.97]∗ [4.13]∗∗ [2.50]∗ [8.99]∗∗ [3.27]∗∗ [1.49] [1.11]

log capital pw 0.662 0.782 0.677 0.766 0.725 0.680 0.601 0.676
[97.95]∗∗ [31.50]∗∗ [7.25]∗∗ [25.24]∗∗ [72.79]∗∗ [24.79]∗∗ [9.12]∗∗ [18.96]∗∗

Education 0.243 -0.004 0.086 0.065 0.041 0.043 0.032 0.103
[16.97]∗∗ [0.15] [1.24] [1.22] [3.42]∗∗ [2.86]∗∗ [0.80] [3.41]∗∗

Education squared -0.010 0.003 -0.007 -0.003 -0.001 -0.002 -0.002 -0.006
[8.05]∗∗ [1.82] [1.57] [0.77] [1.77] [2.97]∗∗ [0.83] [2.94]∗∗

Implied RS† CRS DRS CRS CRS CRS DRS CRS CRS
Implied βL

‡ 0.337 0.160 0.890 0.318 0.315 0.256 0.206 0.292
Mean Education 5.824 5.824 5.824 5.885 5.822 5.822 5.822 5.883
Returns to Edu 12.9% 2.5% 1.0% 3.4% 2.4% 1.9% 0.9% 3.3%
[t-statistic][ [22.35] [1.68] [0.37] [1.40] [6.82] [2.02] [0.56] [2.26]
ê integrated\ I(1) I(1) I(0) I(0) I(1) I(1) I(0) I(1)/I(0)
CD test p-value] 0.00 0.02 0.59 0.00 0.34 0.22 0.01 0.00
R-squared 0.98 0.87 1.00 - 0.97 0.78 1.00 -
Observations 775 775 775 732 769 769 769 726

Panel (B): Constant returns to scale imposed

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD2FE POLS 2FE CCEP FD2FE

log capital pw 0.662 0.798 0.485 0.744 0.694 0.706 0.611 0.691
[102.10]∗∗ [35.45]∗∗ [7.03]∗∗ [25.48]∗∗ [73.08]∗∗ [27.73]∗∗ [10.05]∗∗ [21.13]∗∗

Education 0.243 -0.016 0.210 0.111 0.043 0.037 0.016 0.092
[16.98]∗∗ [0.62] [3.00]∗∗ [2.21]∗ [3.30]∗∗ [2.44]∗ [0.48] [3.22]∗∗

Education squared -0.010 0.004 -0.013 -0.005 -0.001 -0.002 -0.002 -0.006
[8.17]∗∗ [2.75]∗∗ [2.92]∗∗ [1.37] [0.97] [2.12]∗ [0.95] [2.79]∗∗

Constant 1.586 1.843
[21.62]∗∗ [20.44]∗∗

Implied βL
‡ 0.338 0.203 0.515 0.256 0.306 0.294 0.390 0.309

Mean Education 5.824 5.824 5.824 5.885 5.822 5.824 5.824 5.883
Returns to Edu 12.9% 2.6% 6.5% 5.8% 3.3% 2.0% -0.6% 2.7%
[t-statistic][ [22.41] [1.68] [2.56] [2.56] [8.62] [1.99] [0.42] [1.98]
ê integrated\ I(1) I(1) I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value] 0.00 0.00 0.65 0.00 0.25 0.57 0.02 0.00
R-squared 0.98 0.86 1.00 0.97 0.78 1.00
Observations 775 775 775 732 769 769 769 726

Notes: We include our proxy for education in levels and as a squared term. Returns to Education are computed from the sample mean (Ē) as
βE + 2βE2Ē where βE and βE2 are the coefficients on the levels and squared education terms respectively. [ computed via the delta-method. For
more details on other diagnostics see Notes in Table III.
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Table TA-V: Aggregate & PWT data: Heterogeneous models with HC

Panel (A): Unrestricted returns to scale

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log labour -0.066 0.269 -0.428 -1.609 -2.478 -1.324
[0.16] [0.57] [1.22] [1.97] [3.76]∗∗ [2.79]∗∗

log capital pw -0.070 -0.021 0.453 0.963 1.245 1.122
[0.26] [0.07] [2.47]∗ [4.44]∗∗ [5.99]∗∗ [5.52]∗∗

Education 0.601 0.637 0.489 0.123 0.004 -0.012
[1.29] [1.75] [0.98] [0.52] [0.02] [0.05]

Education squared -0.089 -0.065 -0.063 -0.002 0.004 -0.001
[1.76] [1.70] [1.48] [0.11] [0.25] [0.03]

country trend/drift 0.005 0.005 0.021 0.008
[0.33] [0.29] [2.25]∗ [0.77]

Mean Education 5.72 5.84 5.72 5.72 5.84 5.72
Returns to edu -7.1% -3.2% -11.1% -4.5% 0.5% 1.3%
[t-statistic][ [1.33] [0.65] [1.24] [1.33] [0.18] [0.43]
Implied RS† CRS CRS CRS CRS DRS DRS
Implied βL

‡ n/a n/a 0.547 n/a n/a n/a
reject CRS (10%) 38% 3% 19% 38% 18% 33%

panel-t Labour -1.77 0.16 -1.42 -6.37∗∗ -5.60∗∗ -7.30∗∗

panel-t Capital 0.58 0.94 2.79∗∗ 15.62∗∗ 13.48∗∗ 14.39∗∗

panel-t Edu 0.26 1.21 0.86 0.89 0.23 0.68
panel-t Edu ˆ2 -1.07 -1.87 -1.26 -1.55 -0.35 -0.72
panel-t trends 14.73∗∗ 10.93∗∗ 11.09∗∗ 5.83∗∗

# sign. trends 18 13 18 4

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.24 0.24 0.22 0.23 0.24 0.22
CD-test (p)] 7.23(.00) 7.88(.00) -0.50(.61) 7.59.00) 9.29.00) 0.98(.33)

Panel (B): CRS imposed

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log capital pw 0.093 0.151 0.528 0.779 1.052 0.906
[0.49] [0.90] [4.90]∗∗ [5.75]∗∗ [6.43]∗∗ [5.86]∗∗

Education 0.075 0.260 0.683 -0.215 -0.134 0.089
[0.18] [0.99] [1.73] [1.25] [0.84] [0.42]

Education squared -0.023 -0.023 -0.075 0.013 0.014 -0.023
[0.65] [0.89] [1.57] [0.82] [1.13] [1.16]

country trend/drift 0.017 0.015 -0.001 -0.010
[1.96] [1.33] [0.21] [2.08]∗

Implied βL
‡ n/a n/a 0.472 0.221 n/a 0.094

Mean Education 5.79 5.84 5.79 5.79 5.84 5.79
Returns to edu -9.3% -4.0% 3.2% -1.4% 0.3% -0.2%
[t-statistic][ -1.34 -0.88 0.50 0.50 0.16 0.05

panel-t Capital 2.96∗∗ 1.84 7.63∗∗ 16.24∗∗ 11.99∗∗ 15.70∗∗

panel-t Edu -2.05∗ 1.97∗ 3.78∗∗ -1.80 -1.23 0.74
panel-t Edu ˆ2 0.79 -2.77∗∗ -3.83∗∗ 1.20 0.96 -1.11
panel-t trends 15.65∗∗ 12.21∗∗ 11.57∗∗ 7.84∗∗

# sign. trends 15 13 15 14

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.24 0.24 0.23 0.26 0.24 0.22
CD-test (p)] 8.05(.00) 8.59(.00) 0.11(.92) 9.75(.00) 10.84(.00) 3.12(.00)

Notes: All averaged coefficients presented are robust means across i. [ The returns to education and
associated t-statistics are based on a two-step procedure: first the country-specific mean education
value (Ēi) is used to compute βi,E + 2βi,E2Ēi to yield the country-specific returns to education.
The reported value then represents the robust mean of these N country estimates, s.t. the t-statistic
should be interpreted in the same fashion as that for the regressors, namely as a test whether the
average parameter is statistically different from zero, following Pesaran et al. (2009). For other
details see Tables IV and V.


