Product Differentiation in a regulated market:

A welfare Analysis

Hamid Hamoudilsabel Rodriguez

Departamento del Analisis Econémico, Universiday Buan Carlos, Spain.

October / 2009

Abstract
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regulator. We consider a three stage game in wincthe first stage the regulator
chooses the size of the space where firms willobated (the commercial area), in the
second stage firms choose locations and in the giérge they compete in prices.

We find that with this type of market configuratiomdependently of space considered
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1. Introduction

Models used on spatial competition consider conssimed firms distributed
along a liné or a circlé. Price competition and product choice in a duogwy been
studied in the linear space, whereas the maindstenf a circular space has been
claimed to determine the number of firms in an 'thﬁ. In this context, various
authors have used the circular city model and asduthat firms locate equidistantly
around the circle Gupta et al (2004) showed dispersed locationlieguim where

firms may choose distinct but not equidistant |oorz.

Nevertheless a regulated model as proposed allowarf analysis of product
choice in both a circular and a linear space uddepoly. Such restrictions on firm and
consumer location have seldom been considereckifitdrature, with the exception of
the linear vertical differentiation model in Gabsz and Thisse (1986) and the
circular model in Hamoudi and Risuefio (2007). Rresaticle instead develops two
regulated market models, circular and linear wregnesumers are spread all over the
whole market while firms are located only withirband established by the regulator.
This model differs from the linear city model preed by Gabszewicz and Thisse in
which the market is divided into two regions in athiconsumers distribute uniformly in

the linear-city [0,1] and two firms locate in intat [1,+ ). This is interpreted as an

example of vertical differentiation, whereas bothd®els proposed in this paper are an

example of horizontal differentiation.

! Linear model pioneered by Hotelling (1929)

2 The first adaptation is due to Lerner and Sindg@B7). After this early version, Vickrey (1964) éipgd
a similar model which became widely disseminateith Balop’s work (1979).

3 The circular model is symmetric and no locatiobester than another a priori. (Tirole (1988), gh.7

4 For example, Noveshek (1980), Anderson (1986)nBoudes (1989 y 1993), Kats (1995), Junichiro
and Noriaki (2004), Matsumura and Okamura (2006).



The configuration studied herein implies that firae not able to offer all
possible characteristics in goods and, specificallg ideal consumer variety. Very
often there is a limit in the product range. Nog¢mgwvproduct is offered and the spectrum
of goods becomes incomplete. Pharmaceutical corapdacking technical knowledge
or profit incentives to produce an ideal mediciae dpecific consumer needs; polluting
firms in the geographic context of the environméptablem constrained to move away

from victims (consumers), are two examples.

The main purpose of this paper will be to show hoansistently with his bias,
a regulator by restricting the space allowed tmgircan influence total welfare resulting
from the industry and the consumers. Thus, theqeeg model is built as a three-stage
game. In the first stage, the regulator choosesitteeof the commercial areg, in the
second stage, firms choose locations withirand in the third stage they compete in

prices.

In the location-then-price duopoly subgame, the obsransport is assumed to
be paid by consumers proportionally to the squdréheir distance as in horizontal
product differentiation modela la Hotelling The location problem of firms has been
examined rather extensively with the convex trarspost function and, particularly,
with the quadratic function (see, D’Aspremont et(#79), Gabszewicz and Thisse
(1986), Economides (1986), (1989), Anderson (1986988), (1997), Tabuchi and
Thisse (1995), Junichiro and Noriaki (2004) and riBer (2005), among others).
Clearly, this assumption is made for mathematicaivenience using the quadratic
transportation costs, to ensure a perfect NasHileguin of a two-stage location-price

non-cooperative game. This result holds in thealirend circular city model. In both

° Exceptionally, a few authors also consider a ceadeansport cost function. See, De Frutos et 2991
2002), Hamoudi and Moral (2005), Matsumura and Qkan2006), Hamoudi and Risuefio (2007).
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cases, the location equilibrium involves maximurfiedéntiation, in contrast with the
principle of minimum differentiation claimed by Hiling (1929). However, several
studies have proven that such equilibria are chenaed by intermediate levels of

differentiatiors.

Transport cost function considered in this papercdsvex quadratic In a
circular market though, there exists a linear gaaclrconcave function for any linear
quadratic convex function such that the locaticentprice games induced by both
functions are strategically equivalent (see De d3utt al., 1999). Furthermore, the
same authors prove that only two cost functionsnfrihe linear quadratic family:
C*(x) =b*x* and C~(x) =b™(x—x*) ensure existence of a perfect equilibrium in pure
strategies in a two-stage game. Subsequently,dthanarticle the equivalence result is
generalised by the same authors to show the egisteha concave transport cost for
any arbitrary convex transport cost such that wedames induced are equivalent (see
Frutos et al, 2002). In the present article, itas proved that the equivalent result could

be extended to the model proposed.

When maximizing the total welfare function, insteafdanalyzing alternative
scenarios of the regulator bias (see Hamoudi arstidRb 2007) a continuum of
political approach is considered. It is only at teeclusion of the effects in the welfare,
by the weight attributed to the individuals thateg the political approach attached to

the regulator.

6 For instance, Economides (1986) considers trahspsts functions of the forrd £ with 1<B=<2.
Lambertini (1994) considers a standard model irctvfirms are free to locate outside the linear.city
Bockem (1994), generalizes the model on the dersted Neven (1986), Tabuchi and Thisse (1995)
consider general distributions of the consumersenBer (2005) extends the interval Hotelling model t
the n-players case.

The linear quadratic convex transport cost fumcti@s introduced by Gabszewicz and Thisse (1986),
whereas Hamoudi (1990) introduced the linear quadcancave case.



When maximizing the total welfare function, a weighformula is used to
combine the effects of firms’ profit and consumatsutility. Such weighed approach
was defined by Baron and Myerson (1982) and usedeilfiare function formulation

with several regulated models by Armstrong et H89@). There the weights 1 ang

0<n<1, applied by those authors, leads to asymmettative proportions varying

(oo%j for the first component anEjO,%) for the second. The approach included in this

paper consists instead in using complementary wimggiactorsA, 1-A, 0<A<1 ,
thus providing a continuum of proportiovﬁ@,l] for both components and allowing for

the intuitive interpretation of relative percentageight (0%, 100%).

The literature on spatial competition under regatabhas mainly focused on the
guestion of whether and how competition betweemdiwill be modified with respect
to previous results of equilibrium in a charactécispace or a geographic space. For
example, Anderson and Merger (1994) demonstratefahapatial duopoly with price—
taking firms and a perfectly inelastic demand, thécome corresponds to minimum
differentiation. In a related article, HinloopenO(@) studies the location choices of
firms in a price-regulated spatial duopoly when dathis not completely inelastic. This
analysis leads to three different equilibria, defieg on the structure of the market:
agglomerate at the market center, form two localnopolies or differentiate
intermediately. Another example is found in Breldteal (2006) where a three-stage
game is considered. First, the regulator sets eepiecondly firms simultaneously

choose locations and finally firms simultaneoushpase the quality levels From

8 The degree of horizontal differentiation is detaraad by the intensity of quality competition.
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another perspective, Dijkstra and De Vries (208&)dy the equilibrium that will occur
when both firms (polluters) and households (victiofspollution) can choose their
location in a two-region model. The authors, uswglutionary game theory, analyse
three policy regimes: no environmental policy, téo@on pollution, and compensation
of damage for the victims. Price regulation andl@gical policy, however, are not an

issue in the present paper.

The remainder of this paper is organized as followsSection 2, the circular
model is first introduced, then the game is devethpo finalize with the optimization
of the size of the commercial area and the commimateof. In section 3, the linear

model follows the same pattern. Section 4 is del/tdeconclusions on both models.

2. Thecircular Market
2.1.The modd

We consider a circular market of length 1 where régulator chooses a commercial

area given by the arc of circumferen[iqe vz]. There are two firms selling a homogeneous

product, with zero production costs, locatedatndx,, such thab<v, < x <X, <v, <1.

Pricesp, andp, are chosen by firm 1 and firm 2, respectively, gitleeir locations.

Consumers are uniformly distributed along the miarked each one of them purchases
just one unit of the industry’s product at the fiah which the delivered price (total price
resulting from the addition of mill price and traost cost) is the lowest. They can travel along

the whole circle and will always take the directtbat implies the shorter distance to the chosen

firm. The distance between consumemnd firm locatior; is given byd, =|x—xi| J=12. We

will consider that transportation costs are quadrai particular, we will assume th@t(d) = b

d?, b>0 (1).



Fig. 1. The circular model

The model described above gives rise to a thregeggame in which in the first stage
the regulator chooses the size of the commerced, ar wherev=v,-v; and X, - X, <v<1

(2).In the second stage firms decide simultaneouslir theation and in the third stage they
simultaneously choose pricéhe choice of the transportation costs functiorcdbed in (1) is
a technical assumption that avoids non-existenceqaflibrium problems in the second and

third stages of the game.

In order to determine the market boundaries aniveléne demands faced by each firm,

we will have to find the marginal consumers. A agnsr is indifferent to buying from one firm

or the other if and only if: p, +C(d,) =p,+C(d,) (3).

Since consumers will travel to firms taking theedtion that minimizes the distance to

the chosen firm, there are three possible indiffecensumers each one belonging to a different
segment of the circumference given byl [0, x+%2], a, O [X+%, %+%2 ], and a0 [X+%%,

1], respectively (se€igure 1). In order to calculate the location of the indint consumer, let



g=x+Xxandz = % — % . Substituting (1) into (3) and computing the expi@sdor the

marginal consumers, it turns out that:

O,:pl_p2+ﬂ a. = PL~ P +H+E a =p1_p2+ﬂ+1
' 2 2

2oz  2' % 2b(-2) ST 2 0 @

In order to analyze the model we start seekingligguim in the prices stage. Then we look
for equilibrium locations given equilibrium pricésund in the previous stage. Finally we will

analyze the optimal market size.

2.2.ThePrice sub gamein the circle mode

The first step is to derive the demands for the fiwnos The demand function of firm 1

9
can be expressed as follows:

1 P~ P, < ~bz(1-2)
D, (py,s Py Xy X, V) =90, — 4, -bz(l-2)< p, - p, <bz(l-2)
0 bz(l-2) < p, - p,

Note that in this representation total market deteaas well as firms’ individual

demands are independentvoHowever it must be remembered thvat;-v, andv<z.

Since production costs are zero, the profit fumcfar firmi, i=1, 2, is given by:

Bi(P1, Por %1, %, V) = Di(P1, P2, X, X, V).

Substituting in the demand functions the expressi@) for the indifferent consumers, we

obtain the following profit functions:

o The corresponding demand of firm 2 is simphy/= 1— D,



Py P =P, < —bZ(l— Z)
By P X V) =g 2 Pw b pso 2y < p - p, <bzi-2)
2bz(1-2) 2
0 bz(l-2) < p, - p,

0 b, P, < -bz(1-2)
- 1
B, (Pys Pys X, X5,V) = pz{% +§:| -bz(Q-2)< p, - p,<bz(l-2)
P, bz(1-q) < p, - p,

Given that the profit functions are quasi-concavprices, the existence of price equilibrium is

assured®. Consequently, from the first order conditionsatatain the equilibrium prices:
P =pz*=b z(1-2) (5)
Substituting the equilibrium prices (4), into th®fit expression, we obtain:

B*=B,*=(12)bz(1-z)  (6)

We now characterize the equilibrium in the follog/iproposition.

Proposition 1.

Independent of the value of v where %y, and for any given location pair (%)
such thatO<v, <X <X, <V, <1, there exist a unique price equilibrium giventhg

expressior(s).

Proof: Since bothprofits are independent efit is clear that prices equilibriusioes not

depend orv.

This concludes the analysis of the price subgame

2.3.Thelocation subgamein thecircle mode



We turn now to the second stage of the game. Wecahpute equilibrium locations,

given, the size of the commercial aregand taking into account the equilibrium priges p.*,
obtained above. Price-location equilibrium is defiras a location paikxz (v),x;(V)J, and a

price pair[pi(xi,x;,v), p;(xz,x;,v)Jsuch that:
B lv.X %, b (v,X X)), P} (v, X, X))|2 Bv,x X, B (v, X)), ) (v, %, X))
For Oi, j =12, i # jandx O vl,vz].

Given the commercial area, and using the expression for profits derived in the
previous section, Eqg. (6), after taking first-ordenditions we obtain the following result

Proposition 2:

For 0<v<1, there exists a unique location equilibrium gilay:

XP =V, X =V, if vs< % (7a)
1 1
X' =V, X)=Vv, + > if v > (7b)

The result is the well-known principle of maximunfferentiation obtained in the literature
when quadratic transportation costs functions asa@ed. Firms choose the two extremes of
the commercial area to keep price competition asds possible. This result is relevant since,
as mentioned above, when regulated markets aredeved, other costs functions that give
good results in terms of equilibrium existence lie free model have been proven to show

equilibrium-existence-problems when regulatiomisaduced.

10



Given that the optimal locations arJeI, x; and substituting in the previous price

pl(v) = pJ(v) =bv(l-v) if vs<
equilibrium functions Eg. (5) we obtain :

pI() = PI(V) =§ it vz

thus the corresponding demand functions and paices

D, (x.,X%,) =D, (lexz)zz )

and next, using Eq (6) we compute profits as:

B =B, = %bv(l— v) if v< % (L0a)
b . 1
B]_Dszuzg if VZE (l(b)

From the best -response price functions given byettpression (9), it is obvious that
. o dp, _dp, , 1 .
when the value of increases, prices mcreasca;— =—==b(l-2v)20 if v<—=;This
\% v
means that a low value for the commercial regiémplies increased price competition.

However, if v (E ,1} the prices are independent of the valuevain this case, the role of

parameter b of the transportation costs must bsidered as a measure of the value attached by
each consumer to his/her favourite version of tleelppct. When b is large, price competition
among firms relaxes. On the other hand, when élaively small, price competition to capture
market share is very intense so that firms willehehe incentive to locate far from each other,
ceteris paribusNotice that as the transportation cost increpses competition for market
share becomes less intensified and firms wouldéoicaeach other.

Turning to the equilibrium locations, from express (7a) and (7b), it is apparent that
locationsx,, % are functions of the commercial argaand are intricately dependent on the

regulator decisions.

We can then proceed to the analysis of the optémal of the commercial area.
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2.4.0ptimal size of thecommercial areain the circle model

To end the analysis of our model, we will focus mtierest in search of the optimal size

of the commercial are&f, given the results obtained above. More precisaywill denote by

v* the optimal strategy of the regulator such Wat ArgMaxW(v) s.t. 0<v<1, where
W (v)is the regulator’s objective function:
W(V)=AB"+(1-1) (p"D"+C,), (11)

A being the weight given by the regulator to firngsbfit, in accordance with his

political bias, whereagl— 1) is the weight given to consumers disutiliys A < 1.

Where p”=p, = p, is the price given by the expressions (8a) or ,(8md
B” = B, +B,, is the total profit such thaB, , B, are given by the expressions (10a) or (10b),

which depends omand D" = D, + D, =1 is the market demand.

SubstitutingB” and D", into the expression (11) for the regulator'sfewe objective

function, we obtain:

W) =24 -)p"-1-1)C; (12)

Cr (v) is the overall transportation costs incurred by consumgigen the optimal

locations obtained above, Egs (7) and (8) and défas:C, (v) =1, +1,

1= [P o x0ax [Lpla-x+x] ax, 1, = [“oo -7 ax

where the first integrdl, corresponds to the overall transportation cosid py those

consumers that address firm 1 and the second aitkgo the overall transportation costs paid

12



by those consumers that address firm 2; wiile , a, are indifferent consumers under

location equilibrium.

Substituting Egqs (7) and (9) or (8) and (10) inke texpression (4), we compute
marginal consumers as:

V, +V 1+v, +v
aD: 1 2 aD: 1 2

, 1

I > a2 5 if v:vz—vlsE @3a)
+ +

af=4v14 l, ZD=4V14 3 it v=v, —vlzé 13)

We now analyze the optimal size of the commerciahadepending on the welfare

objective function of the regulator:

Casel. 0O<vs<

N

Using the expression (13a) we computettiial transportations co€k (v) as:
C, (V) —3(1—3v+3v2)
! 12
thus, using the expression (12), the regulatorjeative function is given by :

W(v) = (24 -1) bv (1—v)—1—b2(1—/1) (1-3v+3v?)

Proposition 3:

For 0 <v<1/2,theoptimal size of the commercial areagisen by:

1 3
Vgl = E, if A2 7 (143)
Ve, D[oa | it A =§ (L4b)
o _ 3
Ves =0, if A< e @L4c)
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Proof:

Using the first order conditiongv,_v = b (1-2v)(7A1 -3) =0, we find thaty, = 1
ov 4 2

Taking into account the second order conditi(ﬁl?\_lzv = _b (74 -3) » we find the following
ov 2

solution:

"W <0 if A= 3 — the maximum is reached gf = 1
7 2

vZ

=

62V2V <0 if A _3 — the maximum is reached gy <y < =
ov

N

62\/2\/ <0 if A< § — the maximum is reached at=0
vV 7 -

With these results (14a), (14b) and (14c), theevalithe welfare function for each of them is:

1 b 3
W(=,A)=— (251 -13), S
(2 ) 48( ) |f/127

3 b 3
W(v,>) = -— L=
( 7) 1 if A =
b
WOA)=-—@L-1) ,  if 1<
12 7

Of these three values it is noteworthy that the imam value of social welfare is

reached for 4 2§ , when the bias of the regulator is inclined tadgathe profit of firms.

Case.

N
IN
<
IN
|_\

Using the expression (13b) we computettital transportations co€ (v) as:
b 2
C;(v) =E(7—24v+24v )

then, using the expression (12), the regulatorjsattye function is given by :
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WV, 1) =g(2a -1) -438(1-@ (7 - 24v + 24v?)

Proposition 4:

For 1/2<v <1, theoptimal size of the commercial area is given by =

NP

Pr oof:

After taking first order-conditionM _b (1-2v)(74 -3) = 0. We obtain the
ov 4

best-response functionﬁ;:l, taking into account the second order condition:
2

R

Y <0

2.5.Welfareanalysison thecircle mode

Figure 2 provides an indication of the values thatregulator must choose to
obtain your aim as the relative weight that you ttargive the profit of firms according

to their political vision of social welfare.

1.0
0.9
0.8
0.7
0.6
w 0.5
0.4
0.3 —
0.2 —

0,1 37
e | [ ]

oo o1 0203 0405 06 0,7 02 09 1.0

A

Fig. 2. Commercial region v upohchosen by the regulator. Circular Model
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It is noted that giving the benefit of the companieeighing less than 3 / 7 (approx.
42%) is particularly surprising because it wouldct them to a fixed location with no
differentiation would mean an equilibriuna 'la Bertrand. On the other hand give the benefit
of the companies weighing more than ( 3 / 7 ) waekllt in having to fix the area commercial
v=1/2. However, setting the area commerciabuch that/2<v<1 , which would mean

giving a weight to firms (or consumers, respectiyélom 3 /7 (4 / 7) of the global welfare.

3. Thelinear model
3.1. The modd

It is considered the same features as the previmel except that the space is linear

instead of circular (See Fig 3).

C : s “3

Fig. 3. The linear model

The regulator chooses, a commercial area, givethédwarc interva{wl, v2] , of lengthv

such thatv=v;-v, and0< v< 1. This area is occupied by two firms which sell a logeneous
commodity with zero production costs. We denotelthe location of firm in this area, such

that 0<v; < % < % <v,<1. There is a continuum of consumer uniformly dizited on a unit-

length interval, with a mass normalized to unitythwiit loss of generalityEach consumer

buys only one unit of the goods at the firm witle fowest total cost, that is, the mill
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price plus the transportation cd8t.The distance between the consumer and fiisn
defined bydi =|x - x|, i = 1, 2 We assume that transportation costs are quadeatic
follows: C(d) =b d? b>0.

In this context there is only one indifferent com&wn whose location is given by the

following expression: a=a,=a,=a, = % +g (15)
z

Remember that z denote the distance between thértwg that isz = % — x. Also letq
be the sum of the two firms locatiorgs= x; + X,. Given firms’ locationsq/2 represents the
equidistant point between the two firms and cout# a useful symmetry measure, as we will
see later on.

We consider a sequential game where firstly a e#gulchoose the commercial area
then firms select their locations in the industriegion and next, they decide prices which
maximize profits given the selected locations. Thus solve backwards, first finding the Nash
equilibrium prices for given locations.

In the next section, we analyze the existence @fsgquential equilibrium in the

linear model of spatial competition.

3.2.Location-price subgamein thelinear mode
Consider the linear model as described in the pusvisection (Figure 1). We

first derive firms’ demands and then we analyzeetkistence of the price equilibrium

By the construction of the model, all consumersled to the left ofo ( See

expression (15)) select firm 1, while the remaintogsumers choose firm 2. Therefore,

0 For simplicity, we assume that all consumers havaugh willingness to pay. This
assumption is common in all the literature on spalifferentiation.

17



depending on the location of the indifferent consuwn the line, the demand of firm 1

is the following**

1 ) pl—pzsb(Z—zq)
Dl(pl,pz,xl,XZ,V): a ) b(2—2q)S pl—pzsbzq
0 ' bzgs< p, - p,

It is also noted here that the demand function améslepend on the limits set
by the regulator. However there is a link throudhich the restriction of the regulator,

given by the relatioa<v.
We now analyze the existence of a Nash-price dxjiuifn for given locations.

It is well known that a Nash price equilibrium dgisinder quadratic transportation
costs when there are no restrictions on firms amwemers’ locations, see D’Aspremont et al.
(1979). With the introduction of the regulator, tiesult is exactly the same and is given by:

g*=(1/3) bz (2+q), p*=(1/3)bz(4-q) (16)
Given this price equilibrium pair p*, p.* we compute the location equilibrium,

considering the regulator restrictiafv obtaining one single solutions, =V, ,X, =V,

First evaluation of this result is that the maximdiffierentiation principle is not altered
by the intervention of the regulator.

The corresponding profits of this equilibrium atgained

1 1
B, :EbV(2+V2 +v,)%, B, :EbV(4—V2 -v;)° (17)

1 The demand of firm 2 is simpp,=1-v-D

18



3.3.Optimal size of thecommercial areain thelinear model

As said above, in the first stage the regulatoroshe the commercial regiom,

anticipating how this choice will affect the firmsglecision about locations and prices. We

concentrate on symmetric equiliblr%aoutcomes to obtain analytical solutions — in viefnthe

complexity of solving this three-stage game — auilifate comparisons with the circular model
studied herein, as all location pairs in the cacuhodel are symmetrical by definition. On the
other hand an asymmetrical choice by the regulebaid be considered discriminatory and

arbitrary as it would mean favouring part of thesamers (the nearest) against the other.

Under such symmetric location condition an giveatthrms choose the maximum

differentiation within the allowed region i.e= vor in other terms:
=V =T (18)
2
To analyze the optimum size of the commercial regiave remember the regulators welfare
function given by Eq. (11) :
W(v) =AB"+(1-A) (pD"+C;)
A being the weight given by the regulator to firngsbfit, in accordance with his

political bias, whereagl— 1) is the weight given to consumers disutili< A < 1.

Where p”=p, = p, is the price given by the expressions (8a) or ,(8md
B" =B, +B,, is the total profit such thaB, , B, are given by the expressions (10a) or (10b),

which depends omand D" = D, + D, =1 is the market demand.

Substituting the equilibrium locations, Eq. (18}t profit functions Eq.(17) we obtain:

12 . .
vcentered thusy, +v, =1, X =V, X, =V,

19



*

B, = B, = =bv and therefore the total profits function resuBs = bv (19)

N[~

Now we compute thglobal transportation costs incurred by consun@rgv), given

the optimal locations obtained above, Eq (18) afihdd as:.C; (v) =1, +1,

a 1 v 1 1 v
I, = b x—=+—| dx, l,=|.b x-=—-—1 dx
1 Jo { 2 2} 2 J.a { 2 2}
where the first integrdl, corresponds to the overall transportation cosid pg those
consumers that address firm 1 and the second aitkgo the overall transportation costs paid
by those consumers that address firm 2; wm@,zé is the indifferent consumer under

location equilibrium.

Finally we compute thiotal transportations cost:as
b 2
Cr(v) == (@1-3v+3v°) (20)
12
Next using Egs. (19) (20) we compute the welfarefion as follows:
W(v,A) = (24 —1)bv—(1—/1)1—b2 (1-3v+3v?) (21)
Proposition 5:

For 0 <v<1,theoptimal size of the commercial areajisen by:

vl =0, it A s% (22a)
VEZ:”_S, it 2<a<> @)
21— A) 7 9

Vi =1, if g < 22c)

20



Proof:

Using the first order condition%w = b (7TA=3-2v-24v) =0, and for A #1we
v

71-3
2-1)

find thatv’ =
o LOW _ b
Taking into account the second order condltl%H:T = _E (1-A1) <0, consequently
\

v’ could be the solution, if and only il <v* < 1 equivalent > g <A< g

5

While if § > A= aﬂ < 0 so in this case the maximum is reacheda0, and if A > 9

implies that in this case the maximum is reachad-Aim

The corresponding welfares of these values are:
W(v,A) = —(1—/1)£
H 12°

b __[_951 +1451 + 46

W(v,,1) :m

W(V/;,A) =1—b2(25/1 -13).

3.4.Welfareanalysison thelinear model

From the findings above (see Fig.4) we observegivatg to the firms’ profits a weight

values represented by

< A < — (approximately between 42% and 55%) result inv

~N | w
oo

Eq.(22b). l.e. an unbiased regulator giving a wel®'50 to firms and consumers would be

therefore be inclined to restrict the commercial neo to

Byiso if /12:;’ Vel if Asg
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*
*

* * 3 . . e
X, =V, =—. Such situation reflects the political approach aof
4

<

I
N

X

"

<

"
NN

centrist regulator.

Analyzing weights below g (42%) we observe they yield a totally restricted

commercial zones=0, which meansv;, =v, =X, =X, ZE. This result forces the firms to

compete “4 la Bertrand’and surprisingly restores the Hotelling solution winimum

differentiation in the center of the market. Thisild define a typical socialist regulator.

Finally firms’ weights aboveg (55%) render a totally unrestricted space anddiame

allowed to locate freely along the whole marketcgpdore than possibly such approach enters

the profile of a liberal regulator.

0.8

0.8}

06

05

04~

03

0.2

0.1;

07 08 09 1

Fig. 4. Commercial region v upahchosen by the regulator. Linear model

4. Conclusions

One common denominator of both models is that ala¢gr bias below (respectively

above) 42% (58%) favorable to the firms’ profit®rfsumers’ utility) implies to establish a

22



restriction of the commercial zone to a single paind force them to compete intensively in
prices. Such could be characterized as a socaistoach. Nevertheless as it is well known,
such fierce competition exclusively on prices, kad a forecast of death or collusion. The
welfare results become negative as it can be oedarnvFig. 5, where the maximum welfare in

equilibrium is plotted for both models, assumind pwithout loss of generality.

Another common denominator at the opposite endafbberal regulator favorable to
the firms (respectively consumers) above 55% (bel@#o), yields to not to establish any
restriction and allow the firms to locate with timaximum differentiation. Surprisingly enough

such approach yields the maximum welfare in alesas

The possibilities for a regulator to establish gaie zone, other than all or nil, result
exclusively reserved to the centrist approach éuiinity of an unbiased regulator who could
consistently sustain that his is not favoring ariyttte market actors. The welfare results

however are intermediate between the other tworitbestregulator bias.

W linear

08 -

W

04 -

W circular

0z / -

Fig.5. Welfare comparison upon model morphologyl(b=
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The welfare absolute maximum is thus obtained wfiens obtain the maximum

freedom to choose both reaching their maximum fwrafia perfect Nash equilibrium.

The welfare of the circle model being always belbw linear one is explained by the

fact that the last allows double differentiatiorddaur fold welfare.
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