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Abstract 
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1. Introduction 

Models used on spatial competition consider consumers and firms distributed 

along a line1 or a circle2. Price competition and product choice in a duopoly had been 

studied in the linear space, whereas the main interest of a circular space has been 

claimed to determine the number of firms in an industry3. In this context, various 

authors have used the circular city model and assumed that firms locate equidistantly 

around the circle4. Gupta et al (2004) showed dispersed location equilibrium where 

firms may choose distinct but not equidistant locations. 

Nevertheless a regulated model as proposed allows for an analysis of product 

choice in both a circular and a linear space under duopoly. Such restrictions on firm and 

consumer location have seldom been considered in the literature, with the exception of 

the linear vertical differentiation model in Gabszewicz and Thisse (1986) and the 

circular model in Hamoudi and Risueño (2007). Present article instead develops two 

regulated market models, circular and linear where consumers are spread all over the 

whole market while firms are located only within a band established by the regulator. 

This model differs from the linear city model proposed by Gabszewicz and Thisse in 

which the market is divided into two regions in which consumers distribute uniformly in 

the linear-city [0,1] and two firms locate in interval ),1[ ∞+ . This is interpreted as an 

example of vertical differentiation, whereas both models proposed in this paper are an 

example of horizontal differentiation. 

                                                      

1
  Linear model pioneered by Hotelling (1929) 

2
 The first adaptation is due to Lerner and Singer (1937). After this early version, Vickrey (1964) applied 

a similar model which became widely disseminated with Salop’s work (1979). 
3
 The circular model is symmetric and no location is better than another a priori. (Tirole (1988), ch.7) 

4
 For example, Noveshek (1980), Anderson (1986), Economides (1989 y 1993), Kats (1995),  Junichiro 

and Noriaki (2004), Matsumura and Okamura (2006). 
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The configuration studied herein implies that firms are not able to offer all 

possible characteristics in goods and, specifically, the ideal consumer variety. Very 

often there is a limit in the product range. Not every product is offered and the spectrum 

of goods becomes incomplete. Pharmaceutical companies lacking technical knowledge 

or profit incentives to produce an ideal medicine for specific consumer needs; polluting 

firms in the geographic context of the environmental problem constrained to move away 

from victims (consumers), are two examples. 

 The main purpose of this paper will be to show how, consistently with his bias, 

a regulator by restricting the space allowed to firms can influence total welfare resulting 

from the industry and the consumers. Thus, the proposed model is built as a three-stage 

game. In the first stage, the regulator chooses the size of the commercial area, v; in the 

second stage, firms choose locations within v, and in the third stage they compete in 

prices. 

In the location-then-price duopoly subgame, the cost of transport is assumed to 

be paid by consumers proportionally to the square of their distance as in horizontal 

product differentiation models a la Hotelling. The location problem of firms has been 

examined rather extensively with the convex transport cost function5 and, particularly, 

with the quadratic function (see, D’Aspremont et al (1979), Gabszewicz and Thisse 

(1986), Economides (1986), (1989), Anderson (1986), (1988), (1997), Tabuchi and 

Thisse (1995), Junichiro and Noriaki (2004) and Brenner (2005), among others). 

Clearly, this assumption is made for mathematical convenience using the quadratic 

transportation costs, to ensure a perfect Nash equilibrium of a two-stage location-price 

non-cooperative game. This result holds in the linear and circular city model. In both 

                                                      

5
 Exceptionally, a few authors also consider a concave transport cost function. See, De Frutos et al (1999, 

2002), Hamoudi and Moral (2005), Matsumura and Okamura (2006), Hamoudi and Risueño (2007).  
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cases, the location equilibrium involves maximum differentiation, in contrast with the 

principle of minimum differentiation claimed by Hotelling (1929). However, several 

studies have proven that such equilibria are characterized by intermediate levels of 

differentiation6. 

Transport cost function considered in this paper is convex quadratic7. In a 

circular market though, there exists a linear quadratic concave function for any linear 

quadratic convex function such that the location-then-price games induced by both 

functions are strategically equivalent (see De Frutos et al., 1999).  Furthermore, the 

same authors prove that only two cost functions from the linear quadratic family: 

2)( xbxC ++ =  and  )()( 2xxbxC −= −−  ensure existence of a perfect equilibrium in pure 

strategies in a two-stage game. Subsequently, in another article the equivalence result is 

generalised by the same authors to show the existence of a concave transport cost for 

any arbitrary convex transport cost such that the two games induced are equivalent (see 

Frutos et al, 2002). In the present article, it is not proved that the equivalent result could 

be extended to the model proposed. 

When maximizing the total welfare function, instead of analyzing alternative 

scenarios of the regulator bias (see Hamoudi and Risueño 2007) a continuum of 

political approach is considered. It is only at the conclusion of the effects in the welfare, 

by the weight attributed to the individuals that gives the political approach attached to 

the regulator.  

                                                      

6
 For instance, Economides (1986) considers transport costs functions of the form βd with 1≤β≤2. 

Lambertini (1994) considers a standard model in which firms are free to locate outside the linear city. 
Böckem (1994), generalizes the model on the demand side. Neven (1986), Tabuchi and Thisse (1995) 
consider general distributions of the consumers. Brenner (2005) extends the interval Hotelling model to 
the n-players case. 
7
 The linear quadratic convex transport cost function was introduced by Gabszewicz and Thisse (1986), 

whereas Hamoudi (1990) introduced the linear quadratic concave case.  
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When maximizing the total welfare function, a weighed formula is used to 

combine the effects of firms’ profit and consumers’ disutility. Such weighed approach 

was defined by Baron and Myerson (1982) and used in welfare function formulation 

with several regulated models by Armstrong et al. (1994). There the weights 1 and ,π  

10 ≤≤ π  , applied by those authors, leads to asymmetric relative proportions varying 








∞
2

1
,  for the first component and 









2

1
,0 for the second. The approach included in this 

paper consists instead in using complementary weighing factors 10,1, ≤≤− λλλ   , 

thus providing a continuum of proportions [ ]1,0  for both components and allowing for 

the intuitive interpretation of relative percentage weight (0%, 100%).  

The literature on spatial competition under regulation has mainly focused on the 

question of whether and how competition between firms will be modified with respect 

to previous results of equilibrium in a characteristic space or a geographic space. For 

example, Anderson and Merger (1994) demonstrate that for spatial duopoly with price–

taking firms and a perfectly inelastic demand, the outcome corresponds to minimum 

differentiation. In a related article, Hinloopen (2002) studies the location choices of 

firms in a price-regulated spatial duopoly when demand is not completely inelastic. This 

analysis leads to three different equilibria, depending on the structure of the market: 

agglomerate at the market center, form two local monopolies or differentiate 

intermediately. Another example is found in Brekke et al (2006) where a three-stage 

game is considered. First, the regulator sets a price, secondly firms simultaneously 

choose locations and finally firms simultaneously choose the quality levels8. From 

                                                      

8
 The degree of horizontal differentiation is determined by the intensity of quality competition. 
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another perspective, Dijkstra and De Vries (2004), study the equilibrium that will occur 

when both firms (polluters) and households (victims of pollution) can choose their 

location in a two-region model. The authors, using evolutionary game theory, analyse 

three policy regimes: no environmental policy, taxation on pollution, and compensation 

of damage for the victims. Price regulation and ecological policy, however, are not an 

issue in the present paper. 

The remainder of this paper is organized as follows. In Section 2, the circular 

model is first introduced, then the game is developed, to finalize with the optimization 

of the size of the commercial area and the comments thereof. In section 3, the linear 

model follows the same pattern. Section 4 is devoted to conclusions on both models.  

 

2.  The circular  Market 

2.1. The model 

We consider a circular market of length 1 where the regulator chooses a commercial 

area given by the arc of circumference[ ]21, vv . There are two firms selling a homogeneous 

product, with zero production costs, located at x1 and x2, such that 10 2211 ≤≤≤≤≤ vxxv . 

Prices p1 and p2 are chosen by firm 1 and firm 2, respectively, given their locations. 

Consumers are uniformly distributed along the market, and each one of them purchases 

just one unit of the industry’s product at the firm at which the delivered price (total price 

resulting from the addition of mill price and transport cost) is the lowest. They can travel along 

the whole circle and will always take the direction that implies the shorter distance to the chosen 

firm. The distance between consumer x and firm location xi is given by ii xxd −= , 2,1=i . We 

will consider that transportation costs are quadratic. In particular, we will assume that C (di) = b 

di
2, b>0 (1). 
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Fig. 1. The circular model 

 

The model described above gives rise to a three-stage game in which in the first stage 

the regulator chooses the size of the commercial area, v, where v=v2-v1 and 112 ≤≤− vxx  

(2).In the second stage firms decide simultaneously their location and in the third stage they 

simultaneously choose prices. The choice of the transportation costs function described in (1) is 

a technical assumption that avoids non-existence of equilibrium problems in the second and 

third stages of the game. 

In order to determine the market boundaries and derive the demands faced by each firm, 

we will have to find the marginal consumers. A consumer is indifferent to buying from one firm 

or the other if and only if:     )()( 2211 dCpdCp +=+   (3). 

Since consumers will travel to firms taking the direction that minimizes the distance to 

the chosen firm, there are three possible indifferent consumers  each one belonging to a different 

segment of the circumference given by 1α ∈ [0, x1+½], 2α  ∈ [x1+½, x2+½ ], and 3α ∈ [x2+½, 

1], respectively (see Figure 1). In order to calculate the location of the indifferent consumer, let 
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q = x1 + x2 and z = x2 – x1 . Substituting (1) into (3) and computing the expression for the 

marginal consumers, it turns out that: 

22
21

1

q

bz

pp
+

−
=α , 

2

1

2)1(2
21

2 ++
−

−
= q

zb

ppα
   

1
22

21
3 ++

−
= q

bz

ppα
 
    (4) 

In order to analyze the model we start seeking equilibrium in the prices stage. Then we look 

for equilibrium locations given equilibrium prices found in the previous stage. Finally we will 

analyze the optimal market size. 

2.2. The Price sub game in the circle model 

The first step is to derive the demands for the two firms The demand function of firm 1 

can be expressed as follows:
9
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Note that in this representation total market demands as well as firms’ individual 

demands are independent of v. However it must be remembered that v=v1-v2 and v<z. 

Since production costs are zero, the profit function for firm i, i= 1, 2, is given by:  

Bi(p1, p2, x1, x2, v) = Di(p1, p2, x1, x2, v) pi.  

Substituting in the demand functions the expressions (4) for the indifferent consumers, we 

obtain the following profit functions: 

                                                      

9
 The corresponding demand of firm 2 is simply D2 = 1– D1  
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Given that the profit functions are quasi-concave in prices, the existence of price equilibrium is 

assured 10. Consequently, from the first order conditions we obtain the equilibrium prices: 

p1* =p 2* = b z (1-z)    (5) 

Substituting the equilibrium prices (4), into the profit expression, we obtain: 

B1* =B2* = (1/2) b z (1-z)   (6) 

 

We now characterize the equilibrium in the following proposition.  

Proposition 1.  

Independent of the value of v where v=v2-v1 , and for any given location pair (x1, x2) 

such that 10 2211 ≤≤≤≤≤ vxxv ,  there exist a unique price equilibrium given by the 

expression (5). 

Proof: Since both profits are independent of v, it is clear that prices equilibrium does not 

depend on v. 

This concludes the analysis of the price subgame 

2.3. The location subgame in the circle model 
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We turn now to the second stage of the game. We will compute equilibrium locations, 

given, the size of the commercial area, v, and taking into account the equilibrium prices p1*, p2*, 

obtained above. Price-location equilibrium is defined as a location pair [ ],)(),( *
2

*
1 vxvx  and a 

price pair [ ]),,(),,,( *
2

*
1

*
2

*
2

*
1

*
1 vxxpvxxp such that: 

[ ] [ ]),,(),,,(,,,),,(),,,(,,, ***************
jijjiijiijijjiijii xxvpxxvpxxvBxxvpxxvpxxvB ≥  

For jiji ≠=∀ ;2,1, and [ ]21,vvxi ∈∀ . 

Given the commercial area, v, and using the expression for profits derived in the 

previous section, Eq. (6), after taking first-order conditions we obtain the following result 

Proposition 2:  

For 0 ≤ v ≤ 1, there exists a unique location equilibrium given by: 
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The result is the well-known principle of maximum differentiation obtained in the literature 

when quadratic transportation costs functions are assumed. Firms choose the two extremes of 

the commercial area to keep price competition as low as possible. This result is relevant since, 

as mentioned above, when regulated markets are considered, other costs functions that give 

good results in terms of equilibrium existence in the free model have been proven to show 

equilibrium-existence-problems when regulation is introduced.  
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Given that the optimal locations are *1x , *
2x  and substituting in the previous price 

equilibrium functions Eq. (5) we obtain :     
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thus the corresponding demand functions and prices are: 
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and next, using Eq (6) we compute profits as:  
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From the best -response price functions given by the expression (9), it is obvious that 

when the value of v increases, prices increase;
 2

1
0)21(21 ≤≥−== vifvb

dv

dp

dv

dp
 ; This 

means that a low value for the commercial region v implies increased price competition. 

However,  





∈ 1,
2

1
vif  the 

 
prices are independent of the value of v. In this case, the role of 

parameter b of the transportation costs must be considered as a measure of the value attached by 

each consumer to his/her favourite version of the product. When b is large, price competition 

among firms relaxes. On the other hand, when b is relatively small, price competition to capture 

market share is very intense so that firms will have the incentive to locate far from each other, 

ceteris paribus. Notice that as the transportation cost increases price competition for market 

share becomes less intensified and firms would locate to each other. 

Turning to the equilibrium locations, from expressions (7a) and (7b), it is apparent that 

locations x1, x2 are functions of the commercial area, v, and are intricately dependent on the 

regulator decisions. 

We can then proceed to the analysis of the optimal size of the commercial area. 
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2.4. Optimal size of the commercial area in the circle model 

To end the analysis of our model, we will focus our interest in search of the optimal size 

of the commercial area, v*, given the results obtained above. More precisely we will denote by 

v* the optimal strategy of the regulator such that 10..)(* ≤≤= vtsvWArgMaxv
v

, where 

W (v) is the regulator’s objective function: 

     )()1()( TCDpBvW +−+= ∗∗∗ λλ ,             (11) 

λ  being the weight given by the regulator to firms’ profit, in accordance with his 

political bias, whereas (1 )λ−  is the weight given to consumers disutility, 0 1λ≤ ≤ . 

Where *
2

*
1 ppp ==∗  is the price given by the expressions (8a) or (8b), and 

*
2

*
1 BBB +=∗ , is the total profit such that *

2
*
1 ,BB  are given by the expressions (10a) or (10b), 

which depends on v and 1*
2

*
1 =+=∗ DDD  is the market demand.  

Substituting ∗B  and  ∗D  , into the expression (11) for the regulator’s welfare objective 

function, we obtain: 

TCpvW )1()12()( λλ −−−= ∗  ,                    (12) 

CT (v) is the overall transportation costs incurred by consumers, given the optimal 

locations obtained above, Eqs (7) and (8) and defined as: 21)( IIvCT +=  

                 [ ] [ ] dxxxbdxxxbI
21

10

2
11

2

1

)1()( ∫∫ ∗

∗
∗∗ +−+−=

α

α
,       [ ]dxxxbI ∫

∗

∗
−= ∗2

1

2
22 )(

α

α
 

where the first integral I1 corresponds to the overall transportation costs paid by those 

consumers that address firm 1 and the second integral I2 to the overall transportation costs paid 
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by those consumers that address firm 2; while ∗
1α

 
 , ∗

2α
 
are indifferent consumers under 

location equilibrium. 

Substituting Eqs (7) and (9) or (8) and (10) into the expression (4), we compute 

marginal consumers as: 
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We now analyze the optimal size of the commercial area depending on the welfare 

objective function of the regulator: 

Case 1. 
2

1
0 ≤≤ v  

Using the expression (13a) we compute the total transportations cost CT (v) as: 

)331(
12

)( 2vv
b

vCT +−=  

thus, using the expression (12), the regulator’s objective function is given by : 

  )331()1(
12

)1()12()( 2vv
b

vbvvW +−−−−−= λλ  

 

Proposition 3:  

For 0 ≤ v ≤ 1/2, the optimal size of the commercial area is given by: 
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Proof:           

Using the first order conditions, 0)37)(21(
4

=−−=
∂

∂ λv
b

v

W , we find that 
2

1=v   . 

Taking into account the second order condition:  )37(
22

2

−−=
∂
∂ λb

v

W  , we find the following 

solution: 

⇒≥≤
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∂
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λif
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W  the maximum is reached at  
2

1=v
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∂
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3
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λif
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W  the maximum is reached at  
2

1
0 ≤≤ v
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∂
∂

7

3
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2

λif
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W the maximum is reached at 0=v  
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With these results (14a), (14b) and (14c), the value of the welfare function for each of them is: 

,)1325(
48
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1
( −= λλ b
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7
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vW −=                 ,     

7
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12
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3≤λif
 

 
Of these three values it is noteworthy that the maximum value of social welfare is 

reached for 
7

3≥λ  , when the bias of the regulator is inclined towards the profit of firms. 

 
 

Case . 1
2

1 ≤≤ v  

Using the expression (13b) we compute the total transportations cost CT (v) as: 

)24247(
12

)( 2vv
b

vCT +−=  

then, using the expression (12), the regulator’s objective function is given by : 
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  )24247()1(
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)12(
2

),( 2vv
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vW +−−−−= λλλ  

Proposition 4:  

For 1/2≤ v ≤ 1, the optimal size of the commercial area is given by:
2

1=v .   

Proof:           

After taking first order-conditions, 0)37)(21(
4

=−−=
∂

∂ λv
b

v

W , we obtain the 

best-response functions:
2

1=v , taking into account the second order condition:  

0
2

2

≤
∂
∂

v

W  .
      

 
2.5. Welfare analysis on the circle model 

Figure 2 provides an indication of the values that the regulator must choose to 

obtain your aim as the relative weight that you want to give the profit of firms according 

to their political vision of social welfare.  

 

 
Fig. 2. Commercial region  v upon  λ chosen by the regulator. Circular Model 



 16 

It is noted that giving the benefit of the companies weighing less than 3 / 7 (approx. 

42%) is particularly surprising because it would force them to a fixed location with no 

differentiation would mean an equilibrium "á la Bertrand". On the other hand give the benefit 

of the companies weighing more than ( 3 / 7 ) would result in having to fix the area commercial 

v=1/2. However, setting the area commercial v such that 12/1 ≤≤ v  , which would mean 

giving a weight to firms (or consumers, respectively) from 3 / 7 (4 / 7) of the global welfare. 

 

3. The linear model 

3.1. The model 

It is considered the same features as the previous model except that the space is linear 

instead of circular (See Fig 3). 

 

 

Fig. 3. The linear model 

 

The regulator chooses, a commercial area, given by the arc interval[ ]21, vv , of length v 

such that, v=v1-v2 and 0≤ v≤ 1. This area is occupied by two firms which sell a homogeneous 

commodity with zero production costs. We denote by xi the location of firm i in this area, such 

that 0 ≤v1 ≤ x1 ≤ x2 ≤v2≤1. There is a continuum of consumer uniformly distributed on a unit-

length interval, with a mass normalized to unity without loss of generality. Each consumer 

buys only one unit of the goods at the firm with the lowest total cost, that is, the mill 
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price plus the transportation cost.10  The distance between the consumer and firm i is 

defined by di =|x - xi|, i = 1, 2. We assume that transportation costs are quadratic, as 

follows: C(di) = b di
2,   b>0.

   
 

In this context there is only one indifferent consumer whose location is given by the 

following expression:
        22

21
321

q

bz

pp
+

−
==== αααα                         (15)

                                                                                                          

Remember that z denote the distance between the two firms, that is, z = x2 – x1. Also let q 

be the sum of the two firms locations, q = x1 + x2. Given firms’ locations, q/2 represents the 

equidistant point between the two firms and constitutes a useful symmetry measure, as we will 

see later on.  

We consider a sequential game where firstly a regulator choose the commercial area  

then firms  select their locations in the industrial region and next, they decide prices which 

maximize profits given the selected locations. Thus, we solve backwards, first finding the Nash 

equilibrium prices for given locations. 

In the next section, we analyze the existence of the sequential equilibrium in the 

linear model of spatial competition. 

 

3.2. Location-price  subgame in the linear model 

Consider the linear model as described in the previous section (Figure 1). We 

first derive firms’ demands and then we analyze the existence of the price equilibrium. 

By the construction of the model, all consumers located to the left of α  ( See 

expression (15)) select firm 1, while the remaining consumers choose firm 2. Therefore, 

                                                      

10 For simplicity, we assume that all consumers have enough willingness to pay. This 
assumption is common in all the literature on spatial differentiation. 
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depending on the location of the indifferent consumer on the line, the demand of firm 1 

is the following:11 
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It is also noted here that the demand function does not depend on the limits set 

by the regulator. However there is a link through which the restriction of the regulator, 

given by the relation z≤v. 

We now analyze the existence of a Nash-price equilibrium for given locations.  

It is well known that a Nash price equilibrium exists under quadratic transportation 

costs when there are no restrictions on firms and consumers’ locations, see D’Aspremont et al. 

(1979). With the introduction of the regulator, the result is exactly the same and is given by:  

             p1* = (1/3) b z (2+ q),  p2* = (1/3) b z (4-q)                        (16) 

Given this price equilibrium pair   p1*, p2*  we compute the location equilibrium, 

considering the regulator restriction z≤v obtaining one single solution: 2
*
21

* , vxvxi == . 

First evaluation of this result is that the maximum differentiation principle is not altered 

by the intervention of the regulator. 

The corresponding profits of this equilibrium are obtained  

2
122

2
121 )4(

18

1
,)2(

18

1
vvbvBvvbvB −−=++= ∗∗    (17) 

 

 

 

 

                                                      

11 The demand of firm 2 is simply D2 = 1 - v – D1 
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3.3. Optimal size of the commercial area in the linear model 

As said above, in the first stage the regulator chooses the commercial region, v, 

anticipating how this choice will affect the firms’ decision about locations and prices. We 

concentrate on symmetric equilibria
12

 outcomes to obtain analytical solutions – in view of the  

complexity of solving this three-stage game – and facilitate comparisons with the circular model 

studied herein, as all location pairs in the circular model are symmetrical by definition. On the 

other hand an asymmetrical choice by the regulator could be considered discriminatory and 

arbitrary as it would mean favouring part of the consumers (the nearest) against the other. 

 

Under such symmetric location condition an given that firms choose the maximum 

differentiation within the allowed region i.e. z = v or in other terms: 

22

1
,

22

1
2211

v
vx

v
vx +==−== ∗∗   (18) 

To analyze the optimum size of the commercial region v we remember the regulators welfare 

function given by Eq. (11) : 

)()1()( TCDpBvW +−+= ∗∗∗ λλ  

λ  being the weight given by the regulator to firms’ profit, in accordance with his 

political bias, whereas (1 )λ−  is the weight given to consumers disutility, 0 1λ≤ ≤ . 

Where *
2

*
1 ppp ==∗  is the price given by the expressions (8a) or (8b), and 

*
2

*
1 BBB +=∗ , is the total profit such that *

2
*
1 ,BB  are given by the expressions (10a) or (10b), 

which depends on v and 1*
2

*
1 =+=∗ DDD  is the market demand.  

Substituting the equilibrium locations, Eq. (18), into profit functions Eq.(17) we obtain: 

                                                      

12
 v centered thus, 2

*
21

*
121 ,,1 vxvxvv ===+  
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bvBB
2

1*
2

*
1 ==  and therefore the total profits function results bvB =∗    (19) 

Now we compute the global transportation costs incurred by consumers CT (v), given 

the optimal locations obtained above, Eq (18) and defined as: 21)( IIvCT +=  

                 dx
v

xbI
2

01

*

22

1
∫ 




 +−=
α

,       dx
v

xbI
2

1

2 * 22

1
∫ 




 −−=
α

 

where the first integral I1 corresponds to the overall transportation costs paid by those 

consumers that address firm 1 and the second integral I2 to the overall transportation costs paid 

by those consumers that address firm 2; while, 
2

1=∗α
 
is the indifferent consumer under 

location equilibrium.  

Finally we compute the total transportations cost as: 

)331(
12

)( 2vv
b

vCT +−=   (20) 

Next using Eqs. (19) (20) we compute the welfare function as follows: 

)331(
12

)1()12(),( 2vv
b

bvvW +−−−−= λλλ   (21) 

Proposition 5:  

For 0 ≤ v ≤ 1, the optimal size of the commercial area is given by: 
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Proof:           

Using the first order conditions, 0)2237(
4

=−−−=
∂

∂
vv

b

v

W λλ , and for 1≠λ we 

find that 
)1(2

37*

λ
λ

−
−=v .  

Taking into account the second order condition: 0)1(
22

2

<−−=
∂
∂ λb

v

W
, consequently 

*v  could be the solution, if and only if:  0 ≤ v* ≤ 1 equivalent to
13

: 
9

5

7

3 ≤≤ λ  

While if  ⇒≥ λ
7

3
 0≤

∂
∂

v

W
 so in this case the maximum is reached at v*=0 , and if   

9

5≥λ  

implies that in this case the maximum is reached at v=1.■ 

The corresponding welfares of these values are: 

 ,
12

)1(),( 1

b
vW L λλ −−=∗  

[ ]4614595
)1(48

),( 2
2 ++−

−
=∗ λλ

λ
λ b

vW L , 

)1325(
12

),( 3 −=∗ λλ b
vW L . 

 

3.4. Welfare analysis on the linear model 

From the findings above (see Fig.4) we observe that giving to the firms’ profits a weight   

9

5

7

3 ≤≤ λ (approximately between 42% and 55%) result in  v values represented by 

Eq.(22b). I.e. an unbiased regulator giving a weight 50/50 to firms and consumers would be 

therefore be inclined to restrict the commercial zone to  

                                                      

13
 

7

3
0 ≥≥∗ λifv ,

9

5
1 ≤≤∗ λifv
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4

3
,

4

1
,

2

1 *
2

*
2

*
1

*
1

* ===== vxvxv . Such situation reflects the political approach of a 

centrist regulator. 

 Analyzing weights below  
7

3
 (42%) we observe they yield a totally restricted 

commercial zone v=0, which means 
2

1*
2

*
1

*
2

*
1 ==== xxvv . This result forces the firms to 

compete “á la Bertrand” and surprisingly restores the Hotelling solution of minimum 

differentiation in the center of the market. This could define a typical socialist regulator. 

Finally firms’ weights above  
9

5
 (55%) render a totally unrestricted space and firms are 

allowed to locate freely along the whole market space. More than possibly such approach enters 

the profile of a liberal regulator. 

 

Fig. 4. Commercial region v upon λ chosen by the regulator. Linear model 

 

4. Conclusions 

One common denominator of both models is that a regulator bias below (respectively 

above) 42% (58%) favorable to the firms’ profits (consumers’ utility) implies to establish a 
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restriction of the commercial zone to a single point and force them to compete intensively in 

prices. Such could be characterized as a socialist approach. Nevertheless as it is well known, 

such fierce competition exclusively on prices, leads to a forecast of death or collusion. The 

welfare results become negative as it can be observed in Fig. 5, where the maximum welfare in 

equilibrium is plotted for both models, assuming b=1, without loss of generality.  

Another common denominator at the opposite end, for a liberal regulator favorable to 

the firms (respectively consumers) above 55% (below 45%), yields to not to establish any 

restriction and allow the firms to locate with the maximum differentiation. Surprisingly enough 

such approach yields the maximum welfare in all cases. 

The possibilities for a regulator to establish a certain zone, other than all or nil, result 

exclusively reserved to the centrist approach in the vicinity of an unbiased regulator who could 

consistently sustain that his is not favoring any of the market actors. The welfare results 

however are intermediate between the other two described regulator bias. 

.  

Fig.5. Welfare comparison upon model morphology (b=1) 
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The welfare absolute maximum is thus obtained when firms obtain the maximum 

freedom to choose both reaching their maximum profits in a perfect Nash equilibrium.  

The welfare of the circle model being always below the linear one is explained by the 

fact that the last allows double differentiation and four fold welfare. 
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