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Abstract 

This paper analyzes the relation between inflation and relative price variability for Spain across two 
different monetary regimes: before and after the entry into the European Monetary Union. We use 
disaggregated monthly price data of Consumer Price Index for the 1987.01-2009.08 period. Our 
findings indicate that the overall relation presents significant structural changes and a U-shape 
functional profile, which yields an annual optimal inflation rate around 4%. This is compatible with 
previous researches and higher than the inflation target proposed by the European Central Bank. 
In turn, the key link underlying the inflation-RPV relationship is unexpected inflation, and when it is 
zero RPV is minimal. Our results support the extended signal extraction model, and suggest that 
monetary policy matters: the welfare costs of inflation caused by the distorting impact of inflation 
on RPV can be removed with a credible and predictable inflation targeting policy.  
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1. Introduction 

There is a clear consensus in the literature on the welfare costs caused by the distorting 

impact of inflation on relative price variability (RPV). Several theoretical approaches try to explain 

the links underlying the relationship between inflation and RPV: search and menu cost models 

emphasize the role of expected inflation, while the Lucas-type incomplete information approach 

argues that non-neutrality is explained by uncertainty and unexpected inflation. Search models 

argue that buyers have incomplete information. Thus, higher expected inflation has two opposite 

effects: lowers the value of fiat money, which increases sellers’ market power and RPV, but 

increases search benefits, which lowers sellers’ market power, and then RPV. However, at higher 

inflation the RPV increasing effect should dominate, i.e. expected inflation may increase RPV only 

if it exceeds a critical value. 

Menu cost models assume that nominal price changes are subject to price adjustment 

costs, which provoke that firms set prices discontinuously, according to an (S, s) pricing rule -see 

Sheshinski and Weiss (1977), Rotemberg (1983), Caplin and Spulber (1987) and Caplin and 

Leahy (1991)-. Hence, nominal prices are changed only when the real price hits a lower threshold, 

s, so that the new real price equals a higher return point S. In turn, as Caglayan et al. (2008) and 

Becker and Nautz (2009a) argue, the crucial point is that expected inflation induces to a higher 

width of the (S, s) band to conserve on menu costs.  Thus, price dispersion increases and the 

frequency of price changes is reduced. During deflationary periods the model works in reverse, so 

RPV is increasing in the absolute value of expected inflation (i.e., the relationship is V-shaped). 

Furthermore, an increase in firms’ menu cost or consumers’ search cost also widens firms’ band, 

increases dispersion, and lowers the frequency of price changes. And with different menu costs 

among firms or firms experiencing specific shocks, staggered price setting will arise exacerbating 

the effect of higher inflation on RPV.  

Finally, the signal-extraction model proposed by Lucas (1973) and Barro (1976) states that 

ex ante inflation uncertainty generates “misperceptions” of absolute and relative prices, creating 

confusion between aggregate and relative shocks. However, in presence of firms with identical 
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elasticity of supply, realized aggregate shocks have no effect on RPV, because all firms respond 

identically to any given aggregate shock, while ex ante inflation uncertainty has a positive effect on 

RPV. The extension of the signal extraction model developed by Hercowitz (1981) and Cukierman 

(1983) assumes firms with different price elasticity of supply, which implies different responses of 

prices to unexpected aggregate demand shock. Thus, the higher unexpected inflation the higher 

RPV, i.e. the key factor is the size of the shock, while the sign of unexpected inflation is irrelevant.  

On the other hand, although empirical evidence does not support unambiguously any of the 

above approaches, the positive relationship between RPV and inflation has practically become a 

stylized fact in economics. Traditional works as Vining and Elwertowski (1976) and Parks (1978) 

conclude that such relation is linear but there is increasing evidence in favour of a non-linear 

relationship. In turn, more recent findings show that this is both non-linear and unstable among 

different monetary policy and inflation regimes -see Caglayan and Filiztekin (2003) for Turkey and 

Caraballo et al. (2009) for Argentina, Brazil and Peru-. Moreover, recent research presents three 

types of evidence. Firstly, Nautz and Scharff (2005) for Germany, and Nautz and Scharff (2006) 

for the Euro area find that RPV is increasing in inflation even in low inflation environments. 

Secondly, Bick and Nautz (2008), in a panel threshold model for several USA cities verify positive 

and negative effects of inflation on RPV, while the suggested annual inflation to minimize RPV is 

in the rank of 1,8-2,8%. In this branch, and more important, Fielding and Mizen (2008) for USA 

and Choi (2009) for USA and Japan do show evidence of a U-shape profile of the inflation-RPV 

relationship. These findings have relevant implications for monetary policy. If such relation is 

linear, the lower the inflation, the lower the RPV and therefore the optimal inflation rate that 

minimizes the welfare costs of price dispersion is zero. But this reasoning is no longer true if the 

inflation-RPV relationship shows a U-shape, because in this case the inflation rate that minimizes 

RPV is positive, so that reducing inflation beyond it could be harmful.  

In short, empirical results suggest a changing inflation-RPV relationship, and support the 

idea of non-neutrality, independently of the inflation environment. Thus, inflation should provoke 
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distorting effects, because it impedes the efficient allocation of resources, even in low inflation 

economies, with the consequent welfare costs. 

          From that evidence, the goal of this paper is to analyze the features of the inflation-RPV 

relationship in Spain for the 1987-2009 period. The main motivation is to find new insights across 

the two monetary policy regimes experienced by the Spanish economy before and after its entry 

into the European Monetary Union (EMU). More precisely, we focus on the functional form of such 

relationship among such regimes. This analysis allows us to obtain the optimal inflation rate that 

minimizes RPV, as well as to determine the role of mechanisms underlying the effects of inflation 

on RPV, i.e. the role of inflation expectations and uncertainty.   

Similarly to Fielding and Mizen (2008) and Choi (2009), we find that the inflation-RPV 

relationship for Spain takes a U-shape profile, which allows us to obtain a rank for the optimal 

inflation rate. RPV falls with inflation but rises back when inflation increases over a certain positive 

rate, i.e. inflation affects positively RPV only beyond certain inflationary threshold.  

Furthermore, unlikely Nautz and Scharff (2005) for Germany, who find that RPV is mainly 

affected by expected inflation, our results indicate that unexpected inflation is the key link between 

inflation and RPV. On the contrary, neither expected inflation nor uncertainty affect price 

dispersion. Finally, from a policy perspective, our results show that disinflation benefits due to a 

lower inflation may not necessarily bring about welfare improvement if they are outweighed by the 

cost of increased price dispersion. 

The paper is organized as follows. Section 2 presents a brief description of the data and 

variables used in this study. Section 3 contains the basic of econometric analysis of the relation 

between inflation and RPV across the two monetary regimes: before and after the entry of Spain 

into the EMU. The results suggest that such relation can be changing across those periods. In 

fact, we find a non-stable relation: this is positive and significant before the entry of Spain into the 

EMU, but it vanishes in the post-EMU period. Thus, in section 4 we check the stability of 

coefficients and carry out semiparametric estimations, which in turn allow us to seek for the 
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optimal inflation rate. In order to determine the links between inflation and RPV, in section 5 we 

introduce inflation expectations and uncertainty. Finally, section 6 concludes.  

 

2.  Price data and variables 

This study covers the period between January 1987 and September 2009 and employs 

monthly data for 57 categories of the consumer price index (CPI), extracted from the Instituto 

Nacional de Estadística. This disaggregation offers an advantage in order to calculate RPV, 

because a higher aggregation hides price variability, and then underestimates the true RPV.   

The inflation rate is the monthly log-difference of the CPI. RPV is a measure of the non-

uniformity of the variations of individual prices, relative to the average inflation rate.  It is obtained 

as a modified version of the coefficient of variation (CV), using the weighted sum of individual 

prices inflation rate. At time t, RPV can be defined as follows:1 
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where wit is the weight of price i in the price index, INit  the inflation rate of group i and INt  the 

overall inflation rate at time t. Both series, IN and RPV, were deseasonalised by tramo-seats 

method. 

On the other hand, as Elliott and Timmermann (2008) point out, univariate time series 

models seem to be appropriate to forecast inflation. Therefore, a univariate autoregressive 

moving-average model was chosen for mean inflation and we have specified a GARCH equation 

for the variance of the inflation model error term, which allows us to estimate a proxy for inflation 

uncertainty (UN). As inflation in Spain has experienced relevant changes, the parameters of the 

ARMA-GARCH model are not stable along the period, so that rolling equations were used to 

                                                           
1 We consider that this is the best option to estimate RPV because it avoids two important problems. In first place, 
instead of the simple variance or standard deviation, it is not is spuriously correlated with the mean of the distribution –
the inflation rate. Secondly, and more important in cases of low inflation like Spain, unlikely the traditional formula of CV, 
this alternative can be defined when inflation is close to zero or in periods of deflation. In fact, previous studies based on 
CV (e.g. Reinsdorf (1994) and Silver and Ioannidis (2001)), find a negative relationship, and these could be due to an 
“artefact” of the formula: RPV tend to infinite when inflation is near zero.  
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obtain expected inflation (EIN) and UN. 2 EIN is derived as the one-period-ahead inflation forecast 

and unexpected inflation (UIN) is the resulting forecast error: UIN=IN-EIN. 

Moreover, we take into account the updating information process for CPI inflation in Spain. 

Following the standard modelization of inflation forecast, it was assumed that disposable 

information in t-1 to forecast inflation in period t is the actual inflation until t-2 and the expected 

inflation for t-1, given that the actual inflation for t-1 is known about the middle of period t.  

          EIN was obtained from a two-step procedure. In a first step, inflation has been modelled as 

an ARMA process using the standard Box-Jenkins methodology.3 As usual, the standard Akaike 

information criterion has been applied to determine the optimal lag structure, from which an ARMA 

(1,6,12)(12) was selected as the best fitting ARMA model. Nonetheless, the forecast errors of this 

model were heteroskedastic, so that the inflation model could signal uncertainty. To estimate a 

proxy for UN, we have specified a GARCH equation for the variance of the inflation model error 

term. A GARCH (1,1) minimizes the Akaike criterion and by the simultaneous estimate of the 

ARMA process for the mean inflation and the GARCH equation, the following new inflation model 

with homocedastic forecast errors is obtained: 

tttttt aINaINaINaIN εε ++++= −−−− 1241236211                                                                  (2) 

2

1,2

2

11

2

−− += ttt bb εε σεσ                                                                                                           (3) 

where σεt
2 is the inflation uncertainty.  

Equations (2) and (3) were estimated using the Marquardt algorithm. As the residuals were 

not conditionally normally distributed, the covariance matrix and standard errors were computed by 

using the methods proposed by Bollerslev and Wooldridge (1992). The p-value of the z-statistic is 

shown into brackets. 

tttttt ININININ εε +−++= −−−− 12
)00,0(

12
)00,0(

6
)00,0(

1
)01,0(

35,075,013,006,0                                                   (2’) 

                                                           
2 In order to apply rolling equations to obtain EIN and UN, we have used data for monthly inflation from December 1979 
to August 2009.   
3 As it is well known, the first step to model uncertainty with the variance of the errors terms of the inflation model is to 
test if inflation is stationary –see section 3.1.-; if this is not the case, the variance of errors explodes and it makes no 
sense to use such variance as a proxy of uncertainty.  
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2 90,0082,0 −− += ttt εε σεσ                                                                                                (3’) 

Adjusted R2 0,58. 

          In a second step and given the relevant changes experienced by inflation along the period, 

the parameters stability was analyzed by the recursive coefficients technique. Results show 

instability (see appendix 1). Thus, EIN was derived by means of this technique. From the 

December 1979-November 1986 period we estimated EIN for January 1987,4 and for the rest of 

the period we estimate the following model from December 1979 until t to derive EINt+2, as follows:  

tttttttttt aINaINaINaIN εε ++++= −−−− 12,412,36,21,1                                                            (4) 

2

1,,2

2

1,1

2

−− += ttttt bb εε σεσ                                                                                                      (5) 

 

3. Monetary regimes, inflation and RPV: basic regression analysis 

3.1 Stationarity 

Previous to the analysis of the inflation-RPV relationship, stationarity of inflation and RPV is 

checked by applying ADF y Phillips-Perron unit root tests to the seasonally adjusted series for the 

total period. The results are presented in Appendix 2, Table 1. Unit root is rejected for inflation, 

even though for ADF test only at 10%. On the contrary, results for RPV are ambiguous: ADF test 

accepts unit root, while Phillips-Perron result rejects it. Nonetheless, since ADF test has low power 

under the presence of a structural break, it may falsely detect a unit root, and then both, ADF and 

Phillips-Perron tests, could cast different results. Hence, we apply unit root tests proposed by 

Perron (1994) and Volgelsan and Perron (1994) which allow for a break in the series at an 

unknown time. The results are presented in Appendix 2, table 2. Both inflation and RPV present 

possible breaks from 1997.04 to 1998.05, and once again unit root is rejected only for inflation. To 

deal with this result lags of RPV are included in the OLS regressions. 

In turn, in order to check the robustness of our results, in this section we employ the 

seasonally adjusted monthly core inflation (CIN), i.e., inflation obtained by excluding food and 
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energy prices, from which the corresponding RPV has been calculated (CRPV). ADF and PP show 

different results for CIN and CRPV. Once we apply Perron (1994) and Volgelsan and Perron 

(1994) tests, a unit root with a break is accepted for both variables. The possible break appears 

between 1997.08 and 1999.01. Clearly, in all cases the breaks are detected around the entry of 

Spain into the EMU. This was associated to a change of monetary policy regime, and then to a 

different inflation behavior: before the entry the inflation rate slumped from an annual rate of 6,9% 

to 1,4% and after the entry it has been fluctuating between 4,2-0,8%.  

3.2. Basic regression analysis 

A first approach to the relation between inflation and RPV is obtained from OLS regression 

analysis. Taking into account the results of previous section, the total period was divided into two 

sub-periods, leaving out the months in which the variables present possible breaks: for IN and 

RPV, the first period spans from January 1987-March 1997, and the second from June 1998 to 

September 2009. For CIN and CRPV the first period is 1987.01-1997.08 and the second is 

1999.02-2009.08. In turn, to capture the impact of inflation and deflation on price dispersion, RPV 

is regressed on absolute value of inflation (AIN) and CRPV on the absolute value of core inflation 

(ACIN).   

 The estimations include the number of lags of AIN, ACIN, RPV and CRPV that minimize 

the Akaike criterion. Thus, the resulting regression equations are: 

∑
=

− +++=
12

1

1

h

ththtt RPVAINRPV εδβα                                                                           (6) 

∑∑
=

−

=

− ++++=
10

1

2

1

1

h

thth

i

ititt CRPVACINACINCRPV εδφβα                                           (7) 

Table 1 presents the results. They show that AIN and ACIN are positive and significant for 

the first period, the pre-EMU stage, while they are negative and not significant for the second 

period, the post-EMU stage.5 These results can hide structural changes in the inflation-RPV 

                                                                                                                                                                                                 
4 In this sense, to consider the delays in updating information, the expected value for January 1987 is calculated with the 
actual value until November 1986 and the expected value for December 1986.  
5 The same conclusions are achieved when inflation and core inflation, instead of their absolute values, are taken as 
explanatory variables. 
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relationship. Since the parametric model seems to be too restrictive to capture a changing relation, 

in the next section we undertake a test of stability and a semiparametric approach. 

TABLE 1: BASIC REGRESSION ANALYSIS 
DEPENDENT VARIABLE: RPVt   DEPENDENT VARIABLE: CRPVt   

PERIOD 
1987.01-
2009.08 

1987.01- 
1997.03 

1998.06-
2009.08 

PERIOD 
1987.01-
2009.08 

1987.01-
1997.08 

1999.02-
2009.08 

α 
0,0007 
 (0,18) 

-0,0001 
(0,88) 

0,001 
(0,08) 

α 
0,0004 
(0,27) 

0,003 
(0,00) 

0,0005 
(0,44) 

AINt 
0,07 

(0,29) 
0,20 

(0,08) 
-0,03 
(0,65) 

ACINt 
0,11 

(0,43) 
0,47 

(0,00) 
-0,15 
(0,49) 

RPVt-1  
0,18 

(0,00) 
0,16 

(0,03) 
0,29 

(0,00) 
CRPVt-1 

0,86 
(0,00) 

0,77 
(0,00) 

0,90 
(0,00) 

R2adj. 0,81 0,78 0,85 R2adj. 0,93 0,56 0,95 
 
t-statistics are based on standard errors computed according to Newey-West procedure to allow for residuals that 
exhibit both autocorrelation and heteroskedasticity of unknown form. Terms in brackets are the p-values associated to t-
statistics. To simplify the presentation only the first lag of RPV appears in table. 
 

4. Coefficients stability and non-linearities 

          In order to determine the true shape of the relation between inflation and RPV, in this 

section the stability of coefficients is checked, and then we try to approximate the true shape of 

this relation by means of a semiparametric analysis.  

4.1 Coefficients stability 

          Additional precisions on previous evidence on a time-varying pattern of the inflation-RPV 

relationship were obtained by employing rolling regression equations, which allow to capture 

variations of the explanatory variables coefficients (in this case AIN) without imposing any prior on 

the timing of break points. Hence, it is flexible in detecting structural changes over time, by 

allowing for each rolling sample to have a completely different estimation. A parametric model is 

used where RPV is dependent variable, and the explanatory variables are inflation and the number 

of lags of RPV and inflation that minimize the Akaike criterion. Therefore, we estimate: 

∑
=

− +++=
12

1

,,1

h

thtthtttt RPVAINRPV εδβα                                                                       (8) 

Thus, changes in the inflation-RPV relationship can be outlined by the parameters 

instability over rolling samples. Figures 1.1 to 1.5 present the results for β1,t, our parameter of 

interest, obtained from different rolling regressions. 
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FIGURES 1.1 TO 1.5: ROLLING REGRESSIONS 
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FIGURE 1.1
RECURSIVE REGRESSION
WITH FIXED START DATE (1987.01)

FIGURE 1.2
SIX YEARS-WINDOW

FIGURE 1.3
EIGHT YEARS-WINDOW

FIGURE 1.4
TEN YEARS-WINDOW

FIGURE 1.5
TWELVE YEARS-WINDOW

 

Note: Figure 1.1 presents recursive coefficients, which were obtained by successive additions of one month to the 
1987.01-1991.12 sub-sample. Figures 1.2 to 1.5 show the results for the 6, 8, 10 and 12-years windows, respectively 
(the results for windows of different extensions were very similar, so that these are omitted here). The significance of 
coefficients is for 10% of confidence intervals, and the months for which they are significant are marked in grey lines. 
The numbers on the horizontal axis represent the ending month of each window. For example, for a six-year window, the 
value of β1,t in 1992.12 captures the estimation of the parameter in (3) for 1987.01-1992.12, and so on. 
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As it can be seen from figures 1.1. to 1.5, in all cases β1,t is strongly unstable, and in 

special decreasing in time in the second half of the total period. In the case of recursive 

coefficients estimation, this result indicates a changing marginal impact of inflation on RPV when 

new months are incorporated in the estimation. In turn, the rolling regressions for fixed windows 

present a lower step of such coefficient for the post-EMU period, i.e. since 1998, approximately, 

and this result is robust for different size of the windows: 6, 8, 10 and 12 years.6  

In short, previous results indicate an unstable relation between inflation and RPV. This 

varies significantly with the monetary policy regime. More precisely, coefficients are clearly 

sensitive to the addition of years from 1998, and they drop and lose significance in the post-EMU 

period. In this sense, the changing results across different samples suggest that parametric 

approach does not seem to be adequate. We try to overcome this problem in the next section. 

4.2. Semiparametric approach and optimal inflation 

          In order to find out additional information on the shape of the inflation-RPV relation, as 

Fielding and Mizen (2008) and Choi (2009), we apply a partially linear model. To compare with our 

previous findings we have used the same number of lags for RPV and IN as in (6): 

( )∑
=

− ++=
12

1

12

h

tttht INgRPVRPV εδ                                                                                    (9) 

where g(INt) is an unknown smooth differential function that tries to capture the non-linear impact 

of inflation on RPV at time t. Therefore, our goal is the estimation of g(INt) in (9).  

The g(INt) function has been estimated semi-parametrically in two stages. In the first one, 

the parameters λk are estimated from the regression equation: 

∑
=

− +=
12

1

12

h

ttht RPVRPV ηλ                                                                                               (10) 

where htRPV − are the residual series from a non-parametric regression of each lag of RPVt on INt.  

In the second stage, g(INt)  function is estimated non-parametrically from the regression: 

                                                           
6 Similar results for core inflation were obtained from rolling equations. Coefficient for core inflation starts to decline very 
sharply since 1998-1999, depending on the size of the window. In contrast to the inflation-RPV relationship, coefficient 
for CIN is strongly significant in the pre-EMU stage for all cases. These results are disposable from authors upon 
request. 
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( ) ttt vINg +=η̂                                                                                                                (11) 

where ∑
=

−−=
12

1

12ˆ
h

thtt RPVRPV λη  

In both stages the non-parametrical regressions have been estimated using a Nadaraya-

Watson kernel regression estimator. Given the data size, we have selected 150 points at which 

each local polynomial regression is evaluated.  In order to know how the estimation of g(INt) is 

affected by the treatment of extreme values of inflation, an unbounded Gaussian kernel and an 

outlier-robust Epanechnikov kernel were used. In turn, as the results of nonparametric regression 

can be sensitive to the bandwidth parameter (h), we have used three bandwidth based on 

automatic bandwidth selection method as follows: we have chosen hlow=0,5·h, hmed=h, hhigh=1,5·h 

where h=0,15·(Xmax-Xmin) and (Xmax-Xmin) is the range of the explanatory variable in the non-

parametric regression. Therefore, we have estimated eighteen g(INt) functions in order to compare 

results. As neither the kernel function nor the bandwidth affect the shape of the function, only eight 

of them are plotted in figure 2. 
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FIGURE 2: g(INt) FUNCTIONS 
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Note: h1 and h2 are the bandwith parameters in the first and second stage of the semiparametric estimation 
respectively. And in this case, the bandwiths used are hlow=0,00213, hmed=0,00427, hhigh=0,006405 

 

Clearly, this hints a non-linear inflation-RPV relationship, but a U-shape profile. RPV fall 

until certain threshold of low positive inflation, and rises back when inflation increases after 

passing this threshold. Thus, inflation affects positively RPV above a certain threshold inflation 

rate, but the relation seems to be negative below it, particularly for very low inflation rates and in 

deflation periods. This evidence is similar to the U-shape relation found by Choi (2009) for USA 

and Japan and by Fielding and Mizen (2008) for USA.  
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Table 2 shows the results for the parametric components of our semi-parametric model in 

(9). For purposes of shortness only λ1 and λ2 are presented. They are very similar to those 

obtained from equation (6) and from the quadratic model, i.e., when g(INt) is defined as 

g(INt)=α+β1 INt+ β2 INt
2  and equation (9) is estimated by OLS. 

TABLE 2: PARAMETRIC COMPONENTS OF SEMIPARAMETRIC MODEL 
Kernel Epanechnikov Gaussian 

model 
bandwidth hlow  hmed hhigh hlow  hmed hhigh 

equation 
(1) 

quadratic 
model 

RPVt-1  0,19 0,19 0,18 0,18 0,17 0,17 0,18 0,18 
RPVt-2  0,14 0,17 0,17 0,17 0,16 0,16 0,16 0,16 

 

On the other hand, the intuition behind the U-shape relationship between inflation and RPV 

found for Spain is the existence of an optimal inflation rate, i.e. one that minimizes RPV. 

Therefore, the next step is to achieve the derivative of the g(INt) function, because it  captures the 

sensitivity of RPV to marginal increase in inflation. If g’(INt) >0 (g’(INt) < 0), then RPV is increasing 

(decreasing) with inflation, while the inflation rate that minimizes RPV is given by g’(INt) = 0. 

The derivative of g(INt) was evaluated at different rates of inflation. Figure 3 presents the 

results for Epanechnikov and Gaussian kernel and different bandwidths.7 They indicate a positive 

optimal inflation. The rank for the optimal annual inflation -obtained from the monthly inflation rate 

shown in figure 3- varies depending on the kernel function used: for the Epanechnikov kernel, the 

optimal inflation rate is in a rank of 2,8-4,8%, while for the Gaussian kernel this rank is 3,9-9,5%. 

Such difference can be due to the fact that the Epanechnikov kernel is outlier-robust, while the 

Gaussian kernel is not robust to outliers. In order to compare these results with additional 

information on optimal inflation values, two different outliers-robust kernel were applied: cosine 

and biweight. For the former the optimal inflation rank is 2,75-4,65% and for the latter is 3,21-

4,44%. Hence, similarly to previous findings, like Fielding and Mizen (2008) for USA, the optimal 

annual inflation rate for Spain is around 4%. In turn, in terms of monetary policy, the U-shaped 

profile found for Spain show that in lower inflation periods with inflation rates under such threshold, 

disinflation efforts are not successful to reduce RPV and improve welfare. 

                                                           
7 Even tough a total of eighteen graphs of derivatives have been obtained, for simplicity we include only four. However, 
all of them are disposable from authors upon request. 
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FIGURE 3: DERIVATIVES AND OPTIMAL INFLATION RATE 

Note: h1 and h2 are the bandwith parameters in the first and second stage of the semiparametric estimation 
respectively. And in this case, the bandwiths used are hlow=0,00213, hmed=0,00427, hhigh=0,006405 
 

In sum, the evidence shown in sections 4.1 and 4.2 hints a changing and non-linear 

relation between inflation and RPV. Moreover, this is significant only for period previous to the 

entry of Spain into the euro zone. This result favours the hypothesis that monetary regimes 

matters. In particular, expected and unexpected inflation and uncertainty can be the underlying 

causes behind this kind of relation (Caraballo et al. (2006), Caraballo and Dabús (2008), Caglayan 

et al. (2008), Becker and Nautz (2009b), Choi (2009)).  This issue is studied in the next section. 

 

5. Inflation expectations and uncertainty 

In order to find out the links between IN and RPV, this section introduces the components 

of inflation: expected and unexpected inflation and uncertainty. EIN series obtained in section 2 

shows a seasonal component which has been removed using the tramo-seat method. UIN is the 
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difference between seasonally adjusted IN and seasonally adjusted EIN. UN does not present a 

seasonal component. 

To capture the V-shaped relationship between inflation and EIN predicted by menu cost we 

should take the absolute value of EIN, but for our data EIN is always positive. In turn, we 

distinguish between positive unexpected inflation (UIN
+) and the absolute value of negative 

unexpected inflation (AUIN
-
)
 to test the implications of the extended signal extraction model. The 

lags of RPV that minimizes Akaike criterion are included, but lags for EIN, UIN
+, AUIN

- and UN 

were not considered because of the speed of information publications: CPI is published with 

monthly periodicity. Finally, the following equation is estimated for the total period and the pre-

EMU and post-EMU periods shown in section 3 for the inflation-RPV relationship: 

tkt

k

kttttt RPVUNAUINUINEINRPV ελββββα ++++++= −

=

−+ ∑
12

1

4320                         (12) 

Table 3 presents the results. Recall that menu costs model predicts β0 >0, β2 = β3 >0 can be 

considered as evidence in favour of the extended signal extraction model, and β4 > 0 is supported 

by signal extraction model. Wald test is used to check if β2 = β3 >0. χ
2 statistic is reported given that 

the variances have been estimated using the Newey-West method, and therefore the F-statistics 

does not possess the desired finite-sample properties 

TABLE 3: RPV, EXPECTED AND UNEXPECTED INFLATION AND UNCERTAINTY 

 1987.01-2009.08 
1987.01- 
1997.03 

1998.06-2009.08 

α 
0,00 

(0,29) 
-0,00 
(0,44) 

0,00 
(0,60) 

EINt 
-0,002 
(0,99) 

1,06 
(0,15) 

0,32 
(0,50) 

UINt
+ 0,31 

(0,00) 
0,74 

(0,00) 
0,06 

(0,61) 

AUINt
- 0,24 

(0,02) 
0,53 

(0,08) 
0,17 

(0,05) 

UN 
0,05 

(0,81) 
0,54 

(0,44) 
0,03 

(0,85) 

RPVt-1 
0,18 

(0,00) 
0,20 

(0,00) 
0,27 

(0,00) 
R2adj. 0,81 0,78 0,85 
Wald test: Ho: β2 = β3 

χ2(1) statistics,  
p-values into brackets 

0,36 
(0,54) 

0,61 
(0,43) 

0,87 
(0,35) 

Note: t-statistics are based on standard errors computed according to Newey-West procedure to allow for 
residuals that exhibit both autocorrelation and heteroskedasticity of unknown form. The terms in brackets are 
the p-values associated to t-statistics. To simplify the presentation only the first lag of RPV appears in the table. 
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As it can be concluded from table 3, EIN and UN are not significant. This result holds when 

rolling equations techniques are applied: none of them are significant independently of the size of 

the window or the sample size. Hence, there is no evidence in favour of menu cost or signal 

extraction models. As far as unexpected inflation is concerned, both UIN
+ and AUIN

- are significant 

for the whole period. However, for the pre-EMU period AUIN
- is significant just at 10%, and for the 

post-EMU period UIN
+ is not significant, but as  Wald test fails to reject the null of β2 = β3 there is 

evidence in favour of extended signal extraction model. Rolling equations show that β2 and β3 

decline along the period and they show weak sensitivity to sample or window size.8 The latter 

result is in line with those presented in section 3, given that if unexpected inflation explains the 

relation between inflation and RPV, and this relation becomes weaker along the period, 

coefficients of unexpected inflation are supposed to decline as well.9   

           Finally, we try to find the true shape of the relationship between inflation and unexpected 

inflation by means of semiparametric approach as in section 4. The variables included in the 

parametric part are the lags of RPV, EIN and UN, while g(UINt) tries to capture a non-linear 

relation between RPV and unexpected inflation. Therefore the following equation is estimated: 

tkt

k

ktttt RPVUINgUNEINRPV ελββα +++++= −

=

∑
12

1

40 )(                                       (13) 

Results for g(UINt) appear in figure 4. Once again the kernel function affects the results. 

The Epanechnikov kernel shows a clear U-shape for the relation between UIN and RPV, but it is 

not so evident for the Gaussian kernel. According to the former method, the unexpected inflation 

that minimizes RPV is around zero. Nonetheless, for the Gaussian kernel RPV is minimized at 

negative values of UIN. As it was mentioned above, it can be due to the different treatment of the 

outliers in each kernel. In fact, results for cosine and biweight kernels are very similar to those 

obtained with the Epanechnikov kernel: UINt around zero minimizes RPVt. 

          

                                                           
8 Results of rolling equations are available from authors upon request. 
9 In this sense, recent works also present evidence of a changing role for inflation expectations. Nautz and Scharff 
(2005, 2006) and Becker and Nautz (2009b) find that the impact of expected inflation on RPV is strongly declining in 
lower inflation periods, because inflation expectations had been stabilized on a low level. 
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FIGURE 4: g(UINt) FUNCTIONS 
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Note: h1 and h2 are the bandwidth parameters in the first and second stage of the estimation respectively. And in this 
case the bandwidths used are hlow=0,00142, hmed=0,00284, hhigh=0,00426 
 

In sum, if unexpected inflation is near zero, i.e. if there is no difference between actual and 

expected inflation, then welfare costs derived from price dispersion are minimal. From a monetary 

policy perspective, this means that credibility and fulfillment of announcements regarding inflation 

matter. Only a credible and predictable monetary policy could reach the goal of minimizing the 

welfare costs caused by the distorting impact of inflation on RPV. 

 

6. Conclusions 

This paper analyzes the relation between inflation and RPV for Spain and the implications 

for monetary policy that can be derived from it. Our results suggest that monetary regimes matter. 

More precisely, the inflation-RPV relationship changes before and after the entry of Spain into the 

EMU. Similarly to previous papers for USA and Japan, we find a changing and U-shape inflation-

RPV relationship, which in turn allowed us to determine an optimal inflation rate in this framework, 

i.e. the inflation that minimizes RPV. Even though results differ depending on the kernel functions 
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used, outlier robust kernels yield a rank of 3-4% for optimal annual inflation rate, higher than the 

inflation target proposed by the European Central Bank.  

   Moreover, the key link underlying the relation between inflation and RPV appears to be 

unexpected inflation, which is significant for the total period and for the first period before the entry 

of Spain into the EMU while only negative unexpected inflation is significant in the second period. 

These results are compatible with extended signal extraction model predictions. Besides, in order 

to minimize RPV, the evidence indicates an optimal value of unexpected inflation near zero. These 

results have clear implications for the monetary policy: the welfare costs of inflation caused by the 

distorting impact of inflation on RPV can be avoided with a credible and predictable inflation 

targeting policy.  

            Finally, further steps in this line of research might include a comparative analysis among 

economies with different inflation regimes. Natural candidates are economies with experience of 

high inflation. A wider sample of countries should help us to determine if the U-shape functional 

relation between inflation and RPV remain among different inflationary environments.  
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Appendix 1: STABILITY OF COEFFICIENTS- ARMA MODEL 

 This appendix shows the results of the recursive coefficients estimation of the ARMA-

GARCH model presented in equations (4) and (5) – see section 2-: 

tttttttttt aINaINaINaIN εε ++++= −−−− 12,412,36,21,1                                              

2

1,,2

2

1,1

2

−− += ttttt bb εε σεσ            
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FIGURE I

 

Figure I presents recursive coefficients estimated using the Marquardt algorithm and computing the covariance matrix 
and standard errors with Bollerslev and Wooldridge (1992) method. Coefficients have been obtained by successive 
additions of one month to the 1979.12-1986.11 sub-sample. The numbers on the horizontal axis represent the ending 
month of each estimation.    
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Appendix 2: UNIT ROOTS TEST 

Table I presents the results of ADF and Phillips-Perron unit root tests for seasonally 

adjusted variables 

TABLE I: ADF AND PHILLIPS-PERRON UNIT ROOT TESTS (1987.01-2009.08) 
 ADF test PP test 

Variabl
e 

Number of lags-
criterion 

Constant Trend t- statistic* Bandwidth Constant Trend 
Adj.  

t-statistics* 

Akaike 14 Yes Yes 
-3,27 
(0,07) 

INt 

Schwarz 0 Yes No 
-6,45 
(0,00) 

6 Yes Yes 
-11,039 
(0,00) 

Akaike 13 Yes Yes 
-3,09 
(0,10) 

CINt 

Schwarz 13 Yes Yes 
-3,09 
(0,10) 

3 Yes Yes 
-6,68 
(0,00) 

Akaike 12 No No 
-0,54 
(0,48) 

RPVt 

Schwarz 4 No No 
1,23 

(0,94) 

6 Yes No 
-4,60 
(0,00) 

Akaike 15 No No 
1,10 

(0,92) 
CRPVt 

Schwarz 3 No Yes 
-2,31 
(0,42) 

13 Yes Yes 
-3,45 
(0,04) 

Note: A Bartlett kernel-based estimator of the frequency zero spectrum is used for the Phillips Perron test 
*MacKinnon (1996) one-sided p-values into brackets. 
 

On the other hand, we check unit root test with structural breaks by applying the tests 

proposed by Vogelsang and Perron (VP test from now on). These allow us to distinguish two key 

properties: 1) if the break affects the constant, the trend or both of them in the series, and 2) if the 

rupture impact on the variable immediately (additional outlier) or gradually (innovational outlier). 

Taking into account the evolution of inflation and RPV series, we consider that additional outlier 

model must fit better to check structural breaks and unit root, because of the entry into the Euro 

affects inflation and RPV once and for all. In second place, we select two models, one includes 

breaks in constant and trend, and the other one considers changes only in trend.  

Following VP (1994), testing for a unit root test in the additional outlier framework includes 

two steps. In the first one, the following equation is estimated:  

tt

i

t

i

t DTgDUvtuy εβ ++++=                                                                                       (1) 

where yt is the variable under study (in our case inflation and RPV), u is a constant, t is the trend, 

and DUt and DTt  are dummies for the constant and the trend respectively. Three models can be 

distinguished: 1) if i=A the break only affects the constant, and g=0, 2) i=C indicates rupture in 
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trend, and then v=0, and 3) i=B corresponds to the case that the rupture is in both constant and 

trend. In turn, calling TB the breakpoint, DUt=1 and DTt=t-TB if t>TB, and zero otherwise. 

In a second stage, and from the residuals of the regression of equation (1), we estimate by 

OLS (2) if i=A, B, and (3) if i=C. 

t
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1 εεαε                                                                             (2) 
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1 εαεε                                                                                                    (3) 

where DTB =1 for t=TB+1  and 0 otherwise. 

Following VP (1994), two data dependent methods can be applied to detect the 

breakpoints. The first one selects TB that minimizes tα (t-statistics corresponding to the estimated α 

in equations (2) and (3)). In this case, the choice of TB corresponds to the break date which is 

most likely to reject the unit root hypothesis. The second method can be used for model A and B. 

In this case we pay attention to tv and tg (t-statistics associated to v (model A) or g (model B) in 

equation (1)). We choose the breakpoint that maximizes (minimizes) the t-statistics when the 

direction of the break is known a priori to be positive (negative) or the absolute value of the t-

statistics when the direction of the break is unknown. Once TB is determined, the corresponding tα 

in equations (2) allows us to accept or reject unit root.  

On the other hand, to choose k in (2) and (3) we apply two criteria. The first one consists in 

choosing a fix value for k, we have considered k=5 (as in VP (1994)).The second one is based on 

selecting a value of k (k=k*) in such a way that in regressions (2) and (3) coefficient corresponding 

to k* is significant, while it is not significant for k>k*. 

Results of applying the above methodology to IN, RPV, CIN and CRPV are presented in 

tables II-V. These series show a change in trend along the period, therefore in the paper we have 

taken into account results obtained by model C. Nevertheless, we have also included results for 

model B. Trimming is slightly different in each case but in all of them the first twelve months and 

the last twenty four months have been removed. 
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BREAK IN TREND-MODEL C 

TABLE II 
  IN CIN RPV CRPV 
  k=5 k(t-sig) k=5 k(t-sig) k=5 k(t-sig) k=5 k(t-sig) 

TB 1997:07 1997:07 1997:08 1998:02 1997:08 1997:06 1999:01 1998:09 
Min tα tα -4,748** -4,07* -3,052 -4,269 -3,708 -3,630 -3,643 -2,895 

Note: tα-critical values values in Perron(1994) 
*,**,*** indicate significance at the 10%, 5% and 1% levels respectively  
 
As it can be seen from table II, only for IN unit root is rejected 

TABLE III 
  IN CIN RPV CRPV 

TB 1997:05 1998:05 1998:05 1998:02 
Max tg tg 1,84 3,270 18.949 10.451 

Note: obviously for model C, max tg give some information about TB but it can’t be used to test unit root 
 

BREAK IN CONSTANT AND TREND-MODEL B 

TABLE IV 
  IN CIN RPV CRPV 
  k=5 k(t-sig) k=5 k(t-sig) k=5 k(t-sig) k=5 k(t-sig) 

TB 1999:03 1997:08 1994:09 1995:03 1996:07 2000.12 2002.01 2002.01 
Min tα tα -5.084** -4,82* -3.493 -4,82** -3,908 -4,005 -6.396*** -5,008* 
Note: tα-critical values values in Vogelsang and Perron (1994) 
*,**,*** indicate signicance at the 10%, 5% and 1% levels respectively  
 

TABLE V 
   IN CIN RPV CRPV 

TB 1997:07 1998:06 1998:02 1997:06 
Max tg tg 1.859 3.283 18,783 11.742 

 tα k=5 -4,771 -3,009 -3,678 -3,643 
  k(t-sig) -4.698 -4.269** -3,556 -2,699 

Note: tα-critical values values in Perron(1994) 
*,**,*** indicate signicance at the 10%, 5% and 1% levels respectively  

 

With model B, results are not conclusive with respect to IN, CIN and CRPV. Only for RPV, unit 

root can’t be rejected in all cases 


