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Abstract

Groundwater is typically extracted as a supplemental source to surface �ows. How-
ever, today, groundwater table depletes at an alarming level whereas the demand is
still increasing. Could Rainwater Harvesting (RWH) be a solution to water crisis?
RWH could be a supplemental source of water and, above all, upgrade rainfed agri-
culture. However, storing rainwater prevents aquifer from recharging. Instead of
saving groundwater, this technique contributes to its depletion.
We propose a dynamic model to outline this phenomenon. It is based on a trade-o�
between investment to store rainwater and groundwater extraction. By comparing
this situation with an economy without investment, we conclude that the aquifer is
not replenished.
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1 Introduction

The issue of groundwater management remains an important concern, especially
in dry regions, and gets even more attention to the question of how to manage
this resource. Surprisingly, it is used only as a complementarity source whereas it
represents 30% of the Earth' water. Indeed, the main source of supplies comes from
surface water representing only 0.3%. Because of increasing shortages in surface
water, the pressure on groundwater rises such as in India where levels in many
districts have fallen by more than 4 meters during 1981-2000. In fact, river water
is fully used and Indian farmers have been trying to increase supplies by tapping
underground reserves. Estimates show that farmers are pumping annually 100km3

more that the monsoon rains replace.
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The fact that water tables plunge at an alarming rate incites strongly to change our
approach for management. Traditionally, we used to deal with surface water and
groundwater as separated entities as if they were unrelated system. However, this
approach led to allocate twice the same amount of water and contributed to increase a
great stress on the resource. At the opposite, the conjunctive management considers
that surface water and groundwater are two manifestations of a single integrated
resource. After the international conferences on water and environmental issues in
Dublin and Rio de Janeiro held in 1992, scientists became aware of the importance
of this concept. As a consequence, this approach reshapes the planning management
where both resources are used in combination to improve availability and reliability.
More precisely, this process relies on a shift between surface water and groundwater
according to changes and shortages. While the most important supplies comes from
surface water in wet season, the biggest part comes from groundwater extraction in
dry season. Thus, groundwater is typically extracted as a supplemental source to
surface �ows to cope with peak demands or to meet de�cits. This technique allows
human to adapt and to extend water resources. However, since the population is
still growing and dry seasons become more and more longer due to the climate
change, people relies even more heavily on groundwater. Consequently, the risk of
over-pumping and depletion is still increasing. Furthermore, the threat of a global
water crisis may be accompanied by a food crisis. Indeed, food scarcity becomes the
primary concern when water is scarce.

To this end, scholars focus attention on problem-solving technologies in order
to preserve the remaining water sources and to improve the availability of water.
This incentive is enforced by estimations indicating that about 25% of he increased
water requirement needed to attain 2015 hunger reduction target of the Millennium
Development Goal can be contributed from irrigation investment. Consequently,
new methods appear to extend water resources. Amongst various solutions, we
can quote recycling use water, brackish water desalination and ocean and rainwater
harvesting. The two �rst methods are the most costly and only few countries access
to these technologies . Rain Water Harvesting (abbreviated as RWH) is essentially
collecting water. It has been attracted the attention of planners. In fact, this is
not a new technique but a traditional one used by many old civilizations. India had
been a pioneer in RWH methods. Namely, Rajasthan, a rain-de�cient region in the
northwest, is known for its innovative RWH systems. Many di�erent de�nitions of
rainwater harvesting have been given in the literature (Gould and Nissen-Petersen,
1999; Oweis and al. 1999, Frasier, 1994; Reij and al. 1988; Pacey and Cullis, 1986,
Boers and Ben-Asher, 1982; Hollick, 1982; Dutt and al; 1981 Fraiser, 1975). In a
broader sense, RWH is de�ned as the process of concentrating, collecting and storing
water for di�erent uses at a later time in a same area or in another one. For instance,
the monsoon in India is gotten about 100 hours of rain in a year and it is this amount
of water �that must be caught, stored and used over the other 8.660 hours that make
up a year.�1 RWH is therefore used as a solution to overcome the problem of poor
distribution in time by collecting rainwater when it rains and storing it for use to
meet water needs in the preceding dry season. Thereby, this technique may be also

1this information is given by the website http://www.rainwaterharvesting.org/Solution/Solution.htm
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an additional resource to cope with shortages as an aquifer does. Observational
evidences witness that RWH has already been used as a supplemental source of
water, especially in developing countries. Water tanks are very common in Gangsu
province, in China. The Gangsu Research launched projects for water conservancy
and by 2000, a total of 2,183,000 rainwater tanks had been built with a total of
73.1 million cubic meter supplying drinking water and supplementary irrigation. In
middle of the nineties, Sri Lanka adopted the traditional wisdom of harvesting roof
runo� because communities living the north central and southern dry areas had no
access to safe drinking water on one hand and, on the other hand, the available
groundwater was too brackish. In this case, RWH was an ideal solution to cope with
shortages in surface water. In Saharan Algeria, a traditional system - the foggaras -
transports rainwater to oasis through out the year. Concerning the developed world,
even if the use of RWH is quite limited because of large-scale hydrologic project,
there are some evidences of its application, namely in rural locations. In e�ect,
the development of appropriate groundwater resources can be impractical for cost
reasons (fewkes, 2006). Perrens (1982) estimates that in Australia approximately
one million people rely on rainwater as their primary source of supply. RWH for
potable use also occurs in rural areas of Canada and Bermuda (Fewkes, 2006).

Such examples illustrate how RWH can act as a substitute for other water sources.
Several bene�ts have been listed to promote RWH. Namely, it is presented as an ideal
solution to mitigate the over-exploitation of aquifers. But it permits also reducing
energy consumption for lifting of groundwater. Estimates suggest that a one meter
rise in water level saves about 0.40 KWH of electricity. Therefore, a trade-o� between
groundwater extraction and RWH may occur. A �rst contribution of this paper is to
propose a dynamic model to study this trade-o�. Furthermore, it is a matter of fact
that there exists also an interrelationship between groundwater and rainwater. In
e�ect, groundwater is primarily a depletable resource, although at a small proportion
(5%) it can be withdrawn and renewed by seepage precipitations (Koundouri, 2004).
As a consequence, a decreasing of seepage will reduce the replenishment. This study
grapples with the question of how RWH will impact an aquifer.

This paper is organized s following. Section 2 proposes a simple groundwater
extraction model. The dynamic model of groundwater management allows to out-
line some primary results. Section 3 yields an extension of the previous model by
integrating a possibility to invest in capital. This capital provides a new source a
water by storing the rainwater. The trade-o� between both resource lead to observe
an interesting result. Indeed, in this kind of model, the water table is lower than the
water table in the simple groundwater management whereas the level of extraction
is also lower. Section 4 concludes this analysis.

2 A simple model of groundwater extraction

We start from a dynamic, continuous time model of groundwater management for an
aquifer with a constant and natural2 recharge R. The upper-surface of groundwater

2A natural recharge results from snowmelt, precipitation or storm runo�. In this model, we rule
out arti�cial recharge, i.e. the use of water coming from other sources to replenish the aquifer
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is called the water table which can rise and fall in response to recharge and the rate
at which water is extracted. Therefore the depth of the water table is signi�cant
in groundwater management. The depth of the water table has also an e�ect on
whether a region will have a drought or not. The more the water table is deep, the
less there is available groundwater. Assume that the depth measuring at period t
is d(t). Obviously, if d(t) = 0 then the water table reaches its maximum level and
the aquifer is full. At the opposite, if the aquifer is totally empty then the depth
reaches its maximum level denoted d and we have d−d(t) = 0. Moreover, we assume
the aquifer is characterized by a �at bottom and perpendicular sides. Therefore, the
level of the water table is the same in each point of the aquifer. The dynamics of
the water table across the time is given by the relation :

ḋ = R− w(t) (1)

with w(t) the amount of groundwater that is extracted at the period t.
A more realistic dynamics would have taken into account natural discharge, i.e. no
other losses of water that may prevent drainage from reaching the water table and
return �ow to aquifer. Nevertheless, this simpli�cation yields similar results.

Water is used in a production function as the lone variable input. The water social
bene�t derived from the use of groundwater is given by the production function, a
strictly concave function :

f(w(t)), f ′(w(t)) > 0, f ′′(w(t)) ≤ 0 (2)

The resource exploitation involves a cost depending on the amount that is pumped
and on the level of the water table. Farzin (1996) proposes a similar formulation to
take into account the current resource exploitation and a negative externality out-
lined by the cumulative amount exploited. In this study, this speci�cation allows to
take into account the fact the cost is pushed up by the intertemporal exploitation of
the groundwater. Indeed, the use of the resource has an impact on the level of the
water table and, according to this level, the e�ort to extract the groundwater will be
more or less important. The cost is represented by a twice di�erentiable function :

C(w(t); d(t)), Cw > 0, Cd > 0, Cww ≥ 0, Cdd ≥ 0Cwd ≥ 0, CddCww > (Cwd)
2 (3)

It is reasonable to assume that the marginal current exploitation cost will be higher
both at higher exploitation amount and, for a constant extracted amount, at higher
depth. Moreover, it is also reasonable to assume that the marginal cost due to the
depth of the aquifer rises with the level of the depth.
We further assume that C(0, 0) = 0 and Cw(0, 0) = Cd(0, 0) = 0.

Therefore, the social net bene�t of water consumption at period t is de�ned by :

f(w(t))− C(w(t); d(t)) (4)

We further assume that :

fw(R)− Cw(R; 0)− 1
ρ
Cd(R; 0) > 0 (5)

fw(R)− Cw(R; d)− 1
ρ
Cd(R; d) < 0 (6)
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The assumption 5 means that as long as the aquifer is full, there is a marginal
social net bene�t to exploit an additional unit of the resource when we withdraw
the recharge. The assumption 6 means that it is too costly to totally withdraw the
groundwater when we have already extracted the recharge.

2.1 The Model

The social planner will choose the optimal extraction path maximizing the total
present values of social welfare. Formally, the social planner's problem is given by :

max
wt

∫ ∞
0

[
f(w(t))− C(w(t); d(t))

]
e−ρtdt (7)

subject to


ḋ = w(t)−R, d(0) = d0, d(∞) free
g1 (w(t)) ≥ 0
g2(d(t)) = d(t) ≥ 0
g3(d(t)) = d− d(t) ≥ 0

This is a generalized programm with one mixed constraint depending on the control
variable and two pure state constraints. Taking into account all the constraints leads
to the following Lagrangian :

L (w(t), d(t), p(t), q(t), µ1(t), µ2(t)) = L̃ (w(t), d(t), p(t), q(t))− µ1(t) (w(t)−R)
+ µ2(t) (R− w(t)) (8)

where
L̃ (w(t), d(t), p(t), q(t)) = H(w(t), d(t), p(t)) + q(t)w(t) (9)

and
H(w(t), d(t), p(t)) = f(w(t))− C(w(t); d(t)) + p(t) (w(t)−R) (10)

The variable q(t) represents the lagrangian multiplier associated with the mixed
constraint g1(w(t)) and Both µ1 and µ2 are non-decreasing variables associated to
each pure state constraint, i.e. g2(d(t)) and g3(d(t)). Finally, p(t) is the co-state
variable. An usual assumption consists of saying that the presence of pure state
constraints involve a discontinuity in the co-state variable. Therefore, we can assume
that p(t) is piecewise continuous and piecewise continuously di�erentiable with jump
discontinuities at a �nite number of points τk such as k = 1, . . . , N and t0 6 τ1 6
· · · 6 τN 6 t1. The variable βj is a number using to de�ne a jump.

2.1.1 Necessary conditions

The solution of problem 7 has to satisfy the following almost necessary conditions
stated in accordance with theorem 9 and note 6 in Seierstad and Sydsaeter (1987,
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respectively p.381 and p.375).

L̃w = fw(wt)− Cw(w(t); d(t)) + p(t) + q(t) = 0 (11)

q(t)w(t) = 0, q(t) ≥ 0 (12)

µj constant on any interval where gj(d(t)) > 0 j = 2; 3
µj continuous on any interval t ∈]t0, t1[ at which gj(d(t)) = 0

and ∂d � gj(w(t)−R) discontinuous j = 2; 3 (13)

ṗ(t) = ρp(t)− L̃d = ρp(t) + Cd(w(t); d(t)) (14)

p(t) can have a jump discontinuity such as

p(τ−k )− p(τ+
k ) = β1k

∂g1(d(t))
∂d

+ β2k
∂g2(d(t))

∂d
(15)

with βjk ≥ 0 (= 0 if gj > 0) j = 2; 3

In an a priori guess, this framework allows various regimes to occur whether or
not the constraints are binding. To this end, a �rst step consists of studying the
possibility of each regime in order to delete those that are impossible. Two of them
are obviously impossible. Indeed, the constraint g2(d(t)) cannot be simultaneously
binding with the constraint g3(d(t)). In other words, the depth of the water table
cannot be simultaneously equal to zero and to its maximum level. Both constraints
are incompatible whatever the level of extraction. In line with this �rst remark, we
propose the following lemmas.

Lemma 1 ∀t ∈]t0, t1[, the mixed constraint is never binding. An amount of ground-

water is always used, w(t) > 0.

Proof 1 Assume that w = 0 then the dynamics 1 becomes : ḋ = −R. If we resolve

this di�erential equation according to the initial condition d(0) = d0, we �nd that

d(t) = d0 − Rt. But, lim
t→+∞

d(t) = −∞ This result contradicts the fact that d ≥
d(t) ≥ 0 �.

From this lemma, we insure that the lagrangian multiplier q(t) is always equal to zero,
that satis�es condition 12. Moreover, by combining this result with the property of
the partial derivative of the production function, we insures also that the production
sector is always active.

The two following lemmas deal with the pure state constraints.

Lemma 2 ∀t ∈]t0, t1[, the aquifer is never full such as d(t) = 0.

Proof 2 Since d(t) = 0 then ḋ = 0 and equation 1 is written such as : R = w(t)
given lemma 1. We can rewritten equation 11 : p(t) = Cw(R; 0) − fw(R). The co-

state variable is therefore constant ∀t ∈]t0, t1[ and we have ṗ = 0. By computing this

result with 11 and 14, we obtain that fw(R)−Cw(R; 0)− 1
ρCd(R; 0) = 0. This result

contradicts the assumption 5 �.

The symmetric regime can be deleted in the same way.
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Lemma 3 ∀t ∈]t0, t1[, the aquifer is never empty such as d(t) = d.

Proof 3 Since d(t) = d then ḋ = 0 and equation is written such as : R = w(t) given

lemma 1. We can rewritten equation 11 : p(t) = Cw(R; d) − fw(R). The co-state

variable is therefore constant ∀t ∈ [t0, t1] and we have ṗ = 0. By computing this

result with 11 and 14, we obtain that fw(R)−Cw(R; d)− 1
ρCd(R; d) = 0. This result

contradicts the assumption 6 �.

Lemma 2 and 3 show that the pure state constraints are inactive and, therefore,
we know that the aquifer is never full or totally empty at the optimum. The com-
bination of these three lemmas lead to a lone possible regime corresponding to the
interior solution.

Proposition 1 ∀t ∈ [0,∞[, (i) By lemmas 2 and 3, condition 13 is clari�ed by

saying that µj is constant over any interval and condition 16 gives p(t) continuous.

(ii) Moreover, given conditions 14-16 and lemmas 1-3, the optimum is the interior

solution.

By proposition 1, some necessary conditions can be rewrite in order to give some
interpretations. By rewriting condition 11, we obtain an expression of the co-state
variable.

p(t) = Cw(w(t); d(t))− fw(wt) (16)

The shadow price of the resource is equal to the di�erence between the marginal
production cost and the marginal productivity of the resource. This speci�cation is
counter-intuitive comparing with the standard formulation in the literature. Indeed,
by reasoning with the stock of groundwater, we used to get that the marginal bene�t
is equal to the sum of the marginal extraction cost and the opportunity cost of
removing one unit of water from the ground. This scarcity rent re�ects the e�ect
on the pro�t when the stock is diminished. However, with the expression of our
dynamics, if the depth is decreasing then the stock of water is increasing. Rearranging
equation 14 yields :

ṗ− Cd(w(t); d(t)) = ρp(t) (17)

Equation 17 is a standard optimal condition that must hold for all t. The left-hand
side is the marginal bene�t of conservation. The �rst term is the forgone increase
in value that would have been realized by conserving the marginal unit. The second
term is the increase in future cost due to extracting the marginal unit now instead
of later. The right-hand side is the forgone marginal bene�t of extracting water in
terms of monetary value realized after one period. This is the interest rate on the
resource shadow price. We obtain therefore the result that, at the margin, the bene�t
extracting water must equal the cost of extraction.

2.1.2 Su�cient conditions

We turn now to a study of su�cient conditions. According to the Mangasarian's
su�cient conditions in in�nite horizon, an admissible pair (d∗(t), w∗(t)) must satisfy
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some conditions to be an optimum. According to the theorem 11 in Seierstad and
Sydsaeter (1987, .385), we can state these conditions as follows :

w∗(t) maximizes L̃(d∗(t), w(t), p(t)) (18)

ṗ− ρp(t) = −L̃d (19)

qj(t) ≥ 0 (0 if gj (d∗(t), w∗(t) > 0) j = 1, . . . , 3 (20)

gj (d(t), w(t)) quasi-concave in (d(t), w(t)) j = 1, . . . , 3 (21)

H(d(t), w(t), p(t)) is concave w.r.t(d(t), w(t)) (22)

p(τ−k )− p(τ+
k ) =

3∑
j=1

β+
jk

∂gj
(
d∗(τk), w∗(τ+

k )
)

∂d
+

3∑
j=1

β−jk
∂gj

(
d∗(τk), w∗(τ−k )

)
∂d

(23)

where for all k = 1, . . . , N β+
jk ·

∂g
(
d∗(τk), w∗(τ+

k )
)

∂w
= 0 (24)

β−jk ·
∂g
(
d∗(τk), w∗(τ−k )

)
∂w

= 0 (25)

β+
jk ≥ 0 (0 ifgj

(
d∗(τk), w∗(τ+

k ) > 0
)
j = 1, . . . , 3 (26)

β−jk ≥ 0 (0 ifgj
(
d∗(τk), w∗(τ−k ) > 0

)
j = 1, . . . , 3 (27)

lim
t→+∞

(
p(t) exp−ρt(d(t)− d∗(t))

)
= 0 for all admissible d(t) (28)

First of all, notice that the su�cient conditions are quite di�erent from the necessary
conditions because the lagrangian variables qj(t) and the numbers βj(t) are de�ned
for all constraints and not only for the mixed constraint and, respectively, the pure
state constraints. Then, it is easily shown that the other conditions are satis�ed.
Indeed, the two �rst conditions represents the maximum principle. With lemmas
1-3, we know that all constraints are inactive on over any interval. Then, by 20, 26
and 27, we obtain q(t) = 0, β+

jk = 0 ad β−jk = 0. So, from 23, p(t) is continuous. The
constraints function g are linear in (d(t), w(t)) so 21 is trivially satis�ed. Finally, we
show that :

∣∣∣∣ Hww Hwd

Hdw Hdd

∣∣∣∣ =
∣∣∣∣ fww − Cww −Cwd
−Cdw −Cdd

∣∣∣∣ = −fwwCdd + CwdCdd − CwdCdw > 0

Therefore, the hamiltonian is concave.

Proposition 2 The interior solution satis�es the su�cient conditions and then, is

the optimum.

2.2 Steady state and stability

The last step is to outline the steady state. First, we reduce the dimensionality of
the model from three variables (w(t), d(t), p(t)) to two variables (w(t), d(t)). Taking
the time derivative of the shadow price in equation 11 and using this result, equation
11 itself and equation 14 yields :

ẇ =
(w(t)−R)Cwd − ρ[Cw − f ′(w(t))]− Cd

f ′′(w(t))− Cww
(29)
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Thus, we obtain the time derivative of the resource extraction. Therefore, equations
1 and 29 de�ne a system of two di�erential equations whose solution gives the optimal
time paths for w(t) and d(t).

The steady state is investigated by setting the time derivatives 1 and 29 respec-
tively equal to zero. Equation 1 does not depend on d(t) and yields the steady state
for the extraction rate directly : w = R.
On the other hand, we have from equation 29 :

dd

dw

∣∣∣∣
ḋ=0

= −RCwd + ρ[Cww − f ′′(w(t))] + Cdw
Cdd

< 0 (30)

since Cdd ≥ 0, Cww ≥ 0, Cdd ≥ 0, Cwd ≥ 0 and f ′′ ≤ 0.
The slope of the isocline ẇ = 0 is therefore negative. Hence we have to verify that
this isocline cuts the isocline ḋ = 0. In other words, we have to verify the existence
and the uniqueness of the equilibrium.

Lemma 4 There exists a unique steady state.

Proof 4 It is straightforward that there exists a solution :

lim
d→0

(
f ′(R)− Cw(R, d(t))− Cd(R, d(t)

)
> 0

with assumption 5.

Because dd
dw < 0, the solution is unique.

Now, we characterize the steady state. From equation 29, we have :

f ′(R) = Cw(R, d∗) +
1
ρ
Cd(R, d∗) (31)

This condition establishes that marginal bene�t must be equal to the total marginal
cost of production. The total cost is the sum of the marginal cost of extraction
and the opportunity cost of removing one additional unit from the aquifer. In other
words, this expression means that the marginal bene�t when we extract the natural
recharge must be equal to the marginal cost of extraction and the capitalized value of
the increase in marginal cost resulting from a reduction in groundwater stock equal
to the natural recharge. This condition represents a standard result equalizing the
marginal bene�t from using a natural resource with the marginal cost. The second
term in the left-hand side represents the marginal user cost of the resource. As
usual, we verify that this cost is increasing with a decreasing amount of available
freshwater.

Now, we determine the types of this steady state. We linearize the system around
the steady state and analyze the resulting Jacobian matrix. Letting Jmn denote an
element in row m and column n of the Jacobian matrix, the system given by 1 and
29 implies the following elements :(

J11 J12

J21 J22

)
=

(
∂ḋ
∂d

∂ḋ
∂w

∂ẇ
∂d

∂ẇ
∂w

)
(32)
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with J11 = 0, J12 = 1,

J21 = ρ(Cwd+Cdd)(Cww−f ′′)
(f ′′(w(t))−Cww)2

> 0 and J22 = (−RCwd−ρ(Cww−f ′′)−Cdw)(f ′′−Cww)
(f ′′(w(t))−Cww)2

> 0.

Hence, the sign of the determinant of the Jacobian matrix is clear. It is negative
and therefore, since the determinant is equal to the product of the characteristics
roots, we can deduce that the two roots have opposite signs which establishes that
the critical point is locally a saddle point.

Figure 1: The dynamics of the simple groundwater model

Proposition 3 A global Saddle-point

According to the global saddle point theorem of Seierstad and Sydsaeter (p.256),

there exists an optimal trajectory to the system de�ned by equation 1 and 29 such

that d∗(0) = d0, d
∗(t)→ de and w(t)→ we as t→∞.

Proof 5 To demonstrate this proposition, we have to verify two conditions :

(i) J12J21 > 0
(ii) Rename F = ḋ = w(t) − R = 0 and G = ẇ = 0. There exists positive D and B

such that : ∣∣∣∣GF
∣∣∣∣ ≤ D|w| for all |w| ≥ B

where D = (w(t)−R)[ρ(Cw−fw+Cd]
Cww−fww

This proposition allows us to conclude that the interior solution converge to the
equilibrium from the initial condition d(0).

3 Groundwater extraction and investment

We now extend the model to incorporate a new source of water in the produc-
tion function. Farmers can use groundwater and rainwater through their level of
investment. In this model, the production results from the combination of two sub-
stitutable inputs : the groundwater wg(t) and water coming from capital ws(t). As
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previously, we have a positive marginal production but evolves at diminishing rate :

f (wg(t) + ws(t)) , fwg , fws > 0, fwgwg , fwsws ≤ 0 (33)

Moreover, these inputs are perfectly substitutable therefore there are not impact on
the level of the production.

fwgws < 0 (34)

This new water source impacts the dynamics 1 of the groundwater. Indeed, the
recharge is now reduced by the amount of water that can be collected through the
capital stock. Therefore, the motion law of the groundwater is written as follows :

ḋ = wg(t)− (R− ws(t)) (35)

The capital stock varies also across time and can be increased by investing, where
the investment rate is denoted by I(t). As usual, capital stock increases with invest-
ments and decreases with depreciation. Assuming that the capital is depreciated
according to a convex function :

δ(ws(t)), δ(0) = 0; δ′ ≥ 0, δ′(0) = 0 δ′′ ≥ 0, (36)

The dynamics of the capital stock across time is given by the relation :

ẇs = I(t)− δ(ws(t)) (37)

Besides the purchase costs, there is a cost of investment adjustment which as-
sumed to be strictly convex :

Θ(I(t)), Θ(0) = 0; Θ′ ≥ 0, Θ′(0) = 0; Θ′′ > 0 (38)

Further, we assume :
f ′(R)−MCC(R) < 0 (39)

with MCC the marginal cost of capital.
This assumption means that the marginal cost of capital is higher than the marginal
bene�t when we extract the recharge.
At this moment, we leave unde�ned the marginal cost of the capital and we are going
to specify it more precisely later.

The social planner will choose the optimal paths of groundwater and investment
maximizing the total present values of the social welfare. Formally, the problem
becomes :

max
w(t),I(t)

∫ ∞
0

[
f(wg(t) + ws(t))− C(wg(t); d(t))−Θ(I(t))

]
e−ρtdt (40)

subject to



ḋ = wg(t) + ws(t)−R, d(0) = 0
ẇs = I(t)− δ(ws(t))
g1wg(t) ≥ 0
g2(d(t)) = d(t) ≥ 0
g3(d(t)) = d− d(t) ≥ 0
g4(ws(t)) = ws(t) ≥ 0

11



where the extraction cost C(wg(t); d(t)) has the same properties described in 3.

This is a generalized programm with one mixed and three pure state constraints.
Taking into account all the constraints leads to the following modi�ed Lagrangian :

L (wg(t), ws(t), d(t), p1(t), p2(t), q(t), µ1(t), µ2(t), µ3(t)) = L̃ (w(t), ws(t), d(t), p1(t), p2(t), q(t))
−µ1(t)(wg(t) + ws(t)−R) + µ2(t)(R− wg(t)− ws(t))−mu3(t)(I(t)− δ(ws(t))) (41)

where

L̃ (wg(t), ws(t), d(t), p1(t), p2(t), q(t)) = H (wg(t), ws(t), d(t), p1(t), p2(t), q(t))+q(t)wg(t)
(42)

and

H (wg(t), ws(t), d(t), p1(t), p2(t)) = f(wg(t) + ws(t))− C(wg(t), d(t))−Θ(I(t))
+ p1(t)(wg(t)−R) + p2(t)(I(t)− δ(ws(t)))(43)

The co-state variables p1(t) and p2(t) are piecewise continuous and piecewise contin-
uously di�erentiable with jump discontinuities at a �nite number of points τk such
as k = 1, . . . , N and t0 6 τ1 6 · · · 6 τN 6 t1. The variable q(t) represents the
lagrangian multiplier and βj is a number using to de�ne a jump.

3.1 Necessary Conditions

We use the same methodology as previously and according to theorem 9 and note
6 in Seierstad and Sydsaeter (1987, respectively p.381 and p.375), we obtain the
following almost necessary conditions :

L̃wg = ∂wgf(wg(t) + ws(t))− ∂wgC(wg(t); dt(t)) + p1(t) + q(t) = 0 (44)

q(t)wg(t) = 0 q(t) ≥ 0 (45)

L̃I = −∂IΘ(I(t)) + p2(t) = 0 (46)

µi constant on any interval where gj(d(t)) > 0 i = 1 . . . 3 j = 2; 3; 4
µi continuous on any interval t ∈]t0, t1[ at which gj(d(t)) = 0

and ∂dgj � (w(t)−R) discontinuous j = 2; 3
µ3 and ∂wsg4 � (I(t)− δ(ws(t)) (47)

ṗ1(t) = ρp1(t)− L̃d = ρp1(t) + ∂dtC(wg; dt) (48)

ṗ2(t) = ρp2(t)− L̃ws = ρp2(t)− ∂wsf(wg + ws)− p1(t) + p2(t)∂wsδ(ws)(49)
p1(t) and p2(t) can have a jump discontinuity such as

p1(τ−k )− p1(τ+
k ) = β1k

∂g1(d(t))
∂d

+ β2k
∂g2(d(t))

∂d
(50)

p2(τ−k )− p2(τ+
k ) = β3k

∂g3(ws)
∂ws

(51)

with βjk ≥ 0 (= 0 if gj > 0) (52)

As previously, this framework allows various regimes to occur whether or not
constraints are binding. We delete directly all the regimes for which we have the

12



depth of the aquifer simultaneously equal to zero and to its maximum level. In a
same way, we focus on the constraint g4(ws(t)) and we can guess that it is never
binding.

Lemma 5 Over any interval of time (i) where we do not use the groundwater, i.e.

wg(t) = 0, and (ii) where we use groundwater, i.e. wg(t) > 0, it is impossible to do

not use rainwater, i.e. ws(t) = 0.

Proof 6 We show by contradiction the two part of the lemma.

∀ t ∈]t0, t1[, when ws(t) = 0, then ẇs = 0 which implies that I(t) = δ(0) = 0. Then,
from 46, we obtain p2(t) = 0 with the assumption that ∂IC(0) = 0 and therefore,

ṗ2 = 0. From 49, we obtain that p1(t) = −∂wsf [wg(t)].
For both parts of the lemma, it possible to identify 3 cases: either the aquifer is full,

or empty of at a level between both boundaries.

(i) Turn to the �rst part,

• Over any interval of time such that d(t) = 0 or d(t) = d, we know that ḋ = 0.
With (wg;ws) = (0; 0) then R = 0. This contradicts the fact that R > 0

• Over any interval of time such that d > d(t) > 0, we obtain that ḋ = −R. By
integrating, we obtain

∫∞
0 ḋdt = −

∫∞
0 Rdt ⇔ d(t) = −Rt. Since R > 0, this

contradicts the fact that d(t) > 0

(ii) Turn to the second part,

• Over any interval of time such that d(t) = 0 or d(t) = d, we know that ḋ = 0.
Therefore, wg(t) = R and p1(t) = −∂wsf(R). We deduce that ṗ1 = 0. From

48 we obtain a di�erent de�nition for p1.

• Over any interval of time such that d > d(t) > 0, we obtain from 44 that

p1(t) = ∂wgC[wg(t); d(t)]− ∂wgf [wg(t)] that contradicts p1(t) = −∂wsf [wg(t)]

�.

Lemma 6 Over any interval of time such as ws(t) > 0 and d(t) = 0 or d(t) = d,
we have wg(t) > 0.

Proof 7 We show by contradiction that wg(t) > 0 even if ws(t) > 0 ∀d(t) = {0; d}.
Whenever d(t) = 0 or d(t) = d then ḋ = 0. By assuming that wg(t) = 0, we

obtain that ws(t) = R and therefore ẇs = 0 which implies that I(t) = δ(R). By

di�erentiating 46, we obtain ṗ2 = 0 and computing this result with 49, we obtain

ṗ1 = 0.
(i) If d(t) = 0, from 48, we obtain that p1 = −1

ρ∂d(t)C(0; 0) = 0 with the assumption

∂d(t)C(0; 0) = 0. By computing p1 = 0 and equation 44, we �nd that q = −∂wgf(R).
Since ∂wgf(R) > 0, this result contradicts the fact that q ≥ 0. �. (ii) If d(t) = d,

from 48, we obtain that p1(t) = −1
ρ∂d(t)C(0; d) = 0. We compute this result into

equation 49 and we obtain 1
ρ∂d(t)C(0; d) = ∂wsf(R)− p2(t). From 46, we know that

p2(t) = ∂IΘ (δ(R)) therefore 1
ρ∂d(t)C(0; d) = ∂wsf(R)−∂IΘ

[
ρ+(δ(R))

]
. The second

13



term of the right-hand side represents the marginal cost of capital.

Since the right-hand side is negative under our assumption 39, this contradicts the

fact that 1
ρ∂d(t)C(0; d) > 0. �.

Lemma 7 Over any interval of time such as ws(t) > 0 and wg(t) = 0, we have

d− d(t) > 0.

Proof 8 Over any interval of time such that d(t) = d, we know that ḋ = 0. Therefore,
ws(t) = R and ẇs = 0 ⇔ I(t) = δ(R). From 46, we have p2(t) = Θ′(δ(R)) ⇒ ṗ2 = 0.
From 49, we �nd that : [ρ + δ′(R)]Θ′(δ(R)) − f ′(R) = −1

ρCd(0, d). Under our

assumption 39, we know that [ρ+ δ′(R)]Θ′(δ(R))− f ′(R) > 0 which contradicts the

fact that 1
ρCd(0, d) < 0. �.

These lemmas bring additional information for the optimal solution. From lemma
5 and 6, we conclude that the constraint g4(ws(t)) is never binding and therefore,
according to 52, the number associated to a possible jump is β3 = 0. The co-state
variable p2(t) is continuous. Because of the following remaining regimes, we deduce
that there is two possible jumps for the co-state variable p1(t) : either a jump
associated to the constraint g2(d(t)) or to the constraint g3(d(t)).

Table 1: Possible regimes
Regime q d(t) d− d(t)

Full Aquifer 0 0 > 0
Empty Aquifer 0 > 0 0

Interior case 0 > 0 > 0

By studying these last regime, we �nd that only the interior solution can be a
steady state. Therefore, the three others are possible trajectories.

3.1.1 Su�cient conditions

We turn now to a study of su�cient conditions. According to the Mangasarian's
su�cient conditions in in�nite horizon, an admissible pair (d∗(t), w∗g(t), w

∗
s(t)) must

satisfy some conditions to be an optimum. According to the theorem 11 in Seierstad
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and Sydsaeter (1987, .385), we can state these conditions as follows :

w∗g(t), I
∗(t) maximizes L̃(d∗(t), w∗g(t), w

∗
s(t), p1(t), p2(t)) (53)

ṗ1 − ρp1(t) = −L̃d (54)

ṗ2 − ρp2(t) = −L̃ws (55)

qj(t) ≥ 0 (0 if gj
(
d∗(t), w∗g(t), w

∗
s(t) > 0

)
j = 1, . . . , 4 (56)

gj (d(t), wg(t), ws(t)) quasi-concave in (d(t), wg(t), ws(t)) j = 1, . . . , 4 (57)

H(d(t), w∗g(t), w
∗
s(t), p1(t), p2(t)) is concave w.r.t(d(t), wg(t), ws(t)) (58)

p1(τ−k )− p1(τ+
k ) =

4∑
j=1

β+
jk

∂gj
(
d∗(τk), w∗g(τ

+
k ), w∗s(τ

+
k )
)

∂d
+

4∑
j=1

β−jk
∂gj

(
d∗(τk), w∗g(τ

−
k ), w∗s(τ

−
k )
)

∂d
(59)

p2(τ−k )− p2(τ+
k ) =

4∑
j=1

β+
jk

∂gj
(
d∗(τk), w∗g(τ

+
k , w

∗
s(τ

+
k )
)

∂ws
+

4∑
j=1

β−jk
∂gj

(
d∗(τk), w∗g(τ

−
k ), w∗s(τ

−
k )
)

∂ws
(60)

where for all k = 1, . . . , N β+
jk ·

∂g
(
d∗(τk), w∗g(τ

+
k , w

∗
s(τ

+
k )
)

∂wg
= 0 (61)

where for all k = 1, . . . , N β+
jk ·

∂g
(
d∗(τk), w∗g(τ

+
k , w

∗
s(τ

+
k )
)

∂I
= 0 (62)

β+
jk ·

∂g
(
d∗(τk), w∗g(τ

−
k , w

∗
s(τ
−
k )
)

∂wg
= 0 (63)

β−jk ·
∂g
(
d∗(τk), w∗g(τ

−
k , w

∗
s(τ
−
k )
)

∂ws
= 0 (64)

β+
jk ≥ 0 (= 0 ifgj

(
d∗(τk), w∗g(τ

+
k , w

∗
s(τ

+
k )) > 0

)
j = 1, . . . , 4 (65)

β−jk ≥ 0 (= 0 ifgj
(
d∗(τk), w∗g(τ

−
k , w

∗
s(τ
−
k )) > 0

)
j = 1, . . . , 4 (66)

lim
t→+∞

(
p1(t) exp−ρt(d(t)− d∗(t))

)
= 0 for all admissible d(t) (67)

lim
t→+∞

(
p2(t) exp−ρt(ws(t)− w∗s(t))

)
= 0 for all admissible ws(t) (68)

(69)

First of all, notice that the su�cient conditions are quite di�erent from the necessary
conditions because the lagrangian variables qj(t) and the numbers βj(t) are de�ned
for all constraints and not only for the mixed constraint and, respectively, the pure
state constraints. Indeed, the two �rst conditions represents the maximum principle.
With lemmas 5 and 6, we know that the mixed constraint g1(wg(t)) and the pure
constraint g4(ws(t)) are inactive on over any interval. Then, by 56, 65 and 66, we
obtain q1(t) = 0 and q4(t) = 0 on one side, and on the other side, we get β+

1k = 0,
β−1k = 0, β+

4k = 0 and β−4k = 0. So, from 60, p2(t) is continuous. All the constraints
function gj are linear in (d(t), wg(t), ws(t)) so 57 is trivially satis�ed. Finally, we
show that :
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∣∣∣∣∣∣
Hwgwg Hwgws Hwgd

Hwgws Hwsws Hwsd

Hdwg Hdws Hdd

∣∣∣∣∣∣ =

∣∣∣∣∣∣
fwgwg − Cwgwg fwgws −Cwgd

fwswg fwsws − p2(t)δII 0
−Cdwg 0 −Cdd

∣∣∣∣∣∣
= fwgwgp2(t)δIICdd + (C2

dwg
− CddCwgwg)(p2(t)δII − fwswg) < 0

The hamiltonian respects the rule of the sign of the principal minor : D1 < 0, D2 > 0
and D3 < 0. Therefore it is concave.

As it the su�cient conditions are de�ned with a lagrangian multiplier associated
to each constraint, equation 54 di�er from the dynamics of the co-state variable in
the necessary condition.

ṗ1 − ρp1(t) = Cd − q2(t) + q3(t) (70)

By knowing that these variable are associated with two opposite constraints, we can
investigate whether these trajectories satisfy the su�cient conditions.

Lemma 8 Over any interval of time ∀ t ∈]t0, t1[
(i) such as d(t) = 0, we cannot have an optimum. (ii) such as d(t) = d, we cannot

have an optimum.

Proof 9 In a �rst step, notice that ∀ d = {0; d}, we have ḋ = 0 and therefore

R = wg(t) + ws(t).
The, by computing the time derivative of If the constraint g2(d(t)) is binding then

q2(t) = 0 and obviously q3(t) > 0. Then, we can rewrite some conditions as fol-

lows : fwg(R) − Cwg(wg, d(t)) + p1(t) = 0 with d(t) = {0; d}, we get that ṗ1 =
ẇgCwgwg(wg, 0) ≥ 0.
By using 54, we know that ṗ1 = Cwgwg(wg, 0) + 1

ρCd(wg, 0) − fwg(R) − 1
ρq2(t) with

d(t) = 0. By assumption 5, we deduce that this expression leads to a decreasing p1(t).
To this end, we get two di�erent expression for the dynamics of the co-state variable.

In a same way, we know that ṗ1 = Cwgwg(wg, d) + 1
ρCd(wg, d)− fwg(R) + 1

ρq3(t) with
d(t) = d. If we assume that ṗ1 = 0 then fwg(R)−Cwgwg(wg, d)− 1

ρCd(wg, d) = 1
ρq3(t).

However, lim
wg→0

fwg(R)−Cwgwg(wg, d)− 1
ρ
Cd(wg, d) < 0 that contradicts the fact that

q3(t) > 0.

Proposition 4 The interior solution satis�es the su�cient conditions and then, is

the optimum.

3.2 The interior solution

For the moment, we focus on the steady state. Given previous lemmas, we know
that the steady state corresponds to the interior solution. First, rewrite the optimal
condition.
From condition 44, we obtain :

p1(t) = ∂wgC(wg(t); dt(t))− ∂wgf(wg(t) + ws(t)) (71)
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Like the simple model, the shadow price of the resource is equal to the marginal
production cost less the marginal productivity of the resource. Rearranging equation
48 yields :

ṗ1 − ∂dtC(wg; dt) = ρp1(t) (72)

Until now, there is no change.

From condition 46, we obtain :

p2(t) = Θ′(I(t)) (73)

The optimal decision of investment means that the shadow price of capital is equal
to the marginal adjustment cost. Firms invest to the point where the marginal value
of capital equals its replacement cost. We observe as usual that the higher is p2(t),
the larger is the investment.

I(t) = Θ′−1(p2(t)) ⇒ dI(t)
dp2(t)

=
1

Θ′′(I(t))
> 0

Moreover, notice that Θ′(0) = 0 ⇒ Θ′−1(0) = 0. Therefore, we can deduce that :

I(t) > 0 if p2(t) > 0
I(t) < 0 if p2(t) < 0

Rearranging equation 49 yields :

ṗ2(t) + ∂wgC(wg(t); dt(t)) = (ρ+ ∂wsδ(ws))Θ
′(I(t)) (74)

The left-hand side is the sum of the forgone increase in value that would have been
realized by investing a marginal unit at the next period and the marginal cost of
extraction. The right-hand side is marginal cost of investment in term in monetary
value realized after one period.

Taking the time derivative of equation 44 and using this result, 44 itself and 48
and Taking the time derivative of equation 46 and using this result, 46 itself and
49, we can reduce the dimensionality of the model and we obtain a system of four
di�erential equations.

ẇg(fwgwg − Cwgwg) + (I(t)− δ(ws(t))) fwgws − (wg + ws −R)Cdd + Cd + ρ(Cwg − fwg)
İΘII = [ρ+ δws ]ΘI − Cwg

ḋ = wg + ws −R
ẇs = I(t)− δ(ws(t))

(75)

The next step consists of characterizing the steady state. It is obtained by setting
the previous time derivatives to zero. By computing the system 75, we obtain reduce
it to a system composed by two equations.{

∂wgf(R)− 1
ρ∂d(t)C(wg; d(t)) = ∂wgC(wg; d(t))

Θ[δ(R− wg)][ρ+ ∂wsδ(R− wg)] = ∂wgC(wg; d(t))
(76)

17



We now investigate the equilibrium in the model. This task is helped by deter-
mining the signs of the slopes of both equations in the previous system. The slope
is derived by taking di�erentials of the �rst equation with respect to wg and d and
solving for dd/dwg to obtain :

dd

dwg
= −

∂2
wgwg

C(wg; d(t)) + 1
ρ∂

2
d(t)wg

C(wg; d(t))

∂2
wgd

C(wg; d(t)) + 1
ρ∂

2
ddC(wg; d(t))

(77)

The sign of 77 is straightforward. By assumption the cost function is strictly convex
in (wg; d) therefore we know that its second derivatives are strictly positive. Therefore
the slope is negative.
The slope of the second equation is derived by taking di�erentials with respect to
wg and d and solving for dd/dwg. This gives the expression :

dd

dwg
= −

δwsΘII(ρ+ δws) + δwswsΘI + Cwgwg

Cwgd
(78)

The sign of 78 is straightforward. It is negative.

Given the signs of 77 and 78, it is necessary to verify the existence of a unique
steady state.

Lemma 9 There exists an optimum in the feasible region de�ned by the set D =
[0, R]× [0, d].

Proof 10 Rename equation in the system such as :{
f1(wg(t), d(t)) = ∂wgf(R)− 1

ρ∂d(t)C(wg(t); d(t))− ∂wgC(wg(t); d(t)) = 0
f2(wg(t), d(t)) = Θ[δ(R− wg)][ρ+ ∂wsδ(R− wg)]− ∂wgC(wg; d(t)) = 0

Now, we verify that :

lim
(wg ,d)→(R,0)

f1(wg(t), d(t)) = ∂wgf(R)− 1
ρ
∂d(t)C(R; 0)− ∂wgC(R; 0) > 0 with 5

lim
(wg ,d)→(0,d)

f1(wg(t), d(t)) = ∂wgf(R)− 1
ρ
∂d(t)C(0; d)− ∂wgC(0; d) < 0 with 6

lim
(wg ,d)→(R,0)

f2(wg(t), d(t)) = −∂wgC(R; 0) < 0

lim
(wg ,d)→(0,d)

f2(wg(t), d(t)) = Θ[δ(R)][ρ+ ∂wsδ(R)]− ∂wgC(0; d) > 0 with

Lemma 10 The optimum is unique.

Proof 11 Letting Jmn denote an element in row m and column n of the matrix, the

system of equations 75 implies the following elements : J11 = −Cwgwg− 1
ρCwgd, J12 =

−Cwgd− 1
ρCdd, J21 = Z−Cwgwg , J22 = −Cwgd with Z = −δwsΘII(ρ+δws)−δwswsΘI .

Note that all the elements are negative therefore the sign of the determinant is not

clear. However we can rewrite the matrix as a sum of three matrix without changing
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the determinant.

Notice that(
0 + J11 0 + J12

Z + Ĵ21 0 + J22

)
=
(

0 0
Z 0

)
+
(
J11 J12

Ĵ21 J22

)
+
(

0 0
Z J22

)
+
(
J11 J12

Z 0

)
with Ĵ21 = −Cwgwg .

If we calculate the determinant, we have : J11J22− J12Ĵ21− J12Z. Namely J11J22−
J12Ĵ21 = 1

ρ

(
(Cwgd)

2 − CwgwgCdd
)
< 0 and we know that Z < 0 and J12 < 0.

Therefore, we can deduce that the determinant of the jacobian matrix is negative. �

Both following �gures represent the steady state with investment.

Figure 2: Illustration of of unique solution Figure 3: Comparison of both regimes

Proposition 5 In the model with investment, the depth of the aquifer is higher than

in the model without investment possibility. Moreover, the amount of withdrawn

resource is smaller in the model with investment than in the simple model.

Proof 12 ∃d ∈]0, d[, limwg→R f1(wg(t), d(t)) = 0f ′(R)−1
ρ∂d(t)C(R; d(t))−∂wgC(R; d(t)) =

0 d(t) = d∗(t) with d∗(t) corresponding to the depth of the aquifer that characterizes

the steady state in the simple model 31.

Given the proof of the existence of the equilibrium, we know that solution on the

boundaries is impossible and with the de�nition of the slope 77, if wg(t) decreases

then the depth d(t) increases.

Then, the optimal depth in the model with investment is higher than in the �rst

model.

This proposition outlines an interesting results. There is a negative e�ect on the
level of the water table. By investing we prevent the total amount of the recharge
to reach the aquifer. This fact is quite straightforward because as soon as a farmer
invests in capital to collect rainwater, he cuts a part of the natural recharge that will
reach the aquifer. However, the level of extraction is also reduced and correspond to
the amount that replenishes the aquifer. Because of the substitution of both inputs,
we always produce at the recharge but it seems that in the share of the recharge
between both reservoirs, some amount are lost.
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Conclusion and policy implications
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Appendix

ws(t) wg(t) d(t) d− d(t)
0 0 0 0
0 + 0 0
+ 0 0 0
+ + 0 0

0 0 0 +
0 0 + 0
0 0 + +

0 + + 0
0 + 0 +
0 + + +

+ 0 + 0
+ 0 0 +
+ 0 + +

+ + + 0
+ + 0 +
+ + + +
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