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Abstract

This paper presents a semiparametric approach to model health state values with
important advantadges over the traditional parametric one. Our method makes no
assumption on the distribution of health state values, accomodates covariates in a
�exible way, eschews parametric assumptions on the relationship between the outcome
and the regressors and it allows for an undetermined amount of heterogeneity in the
estimates. Additionally, it produces estimates for the population of interest even if
the sample is not representative for that population with regard to many discrete and
continuous individual characteristics that a¤ect health state values. The estimates
obtained using the semiparametric method are higher in absolute value than the
regression estimates, particularly so when adjusting for the distribution of individual
characteristics in the Spanish population and when analyzing the valuation e¤ect of
small departures from full health. These results suggest that the standard method
underestimates the value that the Spanish population assigns to a given departure
from full health and, in particular, to small departures.
JEL Classi�cation: I1.
Keywords: Preference-based Health Measure; SF-6D; Semiparametric Methods.



1 Introduction

Preference-based measures of health status are increasingly being used to evaluate the

outcomes of health care interventions and to inform resources allocation decisions. A

number of health state descriptive systems have been designed for calculating a single

index value for every state de�ned within the system. Since most descriptive systems

de�ne more health states than it is feasible to elicit direct valuations for in an empirical

study, choices have to be made about how best to estimate values for all states from

direct observations on a subset of those states.

The standard estimation model uses a set of dummy indicator variables describ-

ing health states in terms of their level of severity in di¤erent dimensions of health

to explain the individual valuations obtained. Under the assumption of normally

distributed errors, a regression of health state values on the set of dummy variables

identi�es the valuation e¤ect of departures from full health. The estimates are then

used to predict the value associated to the health states not directly valued.

However, the standard model presents some limitations that are likely to result

in biased estimates at the sample and population levels. First, health state valuation

data are skewed, truncated, non-continuous and hierachical (Brazier et al., 2002)

and, thus, the normality assumption is not likely to hold. Second, the standard

model does not provide any guidance on how to control for individual characteristics

that a¤ect health state values. The traditional way of accomodating covariates to the

standard model is to introduce them linearly and estimating an expanded regression

equation. This approach, which implicitely assumes that covariates only a¤ect the

estimated intercept, is rejected by the evidence in Dolan and Roberts (2002) and

Kharroubi et al. (2007). They �nd that respondent�s characteristics impact on the

value they give to health states and that this e¤ect varies with the severity of the

health state at examination. Furthermore, the alternative of introducing covariates

additively contravenes both the goal of estimating one preference-based tari¤ for the

whole community (Dolan, 1997) and the theoretical requirement of the intercept being

equal to unity.

The debate on the valuation e¤ect of the covariates is related to that on whose

values should count when evaluating health state intervention outcomes and informing

resources allocations decisions. The common recommendation of using the preferences

of the whole population (NICE, 2003; Gold et al., 1996) calls for obtaining population

valid estimates of the coe¢ cients of interest, that is, to adjust for the distribution of



covariates in the population.

The standard practice of de�ning samples that are representative for the popu-

lation with regard to the sex and age interval distribution of individuals does not

guarantee that there are no sample selection biases in the estimates of interest. Non-

response issues and the elimination of respondents providing inconsistent answers

results in sometimes relevant di¤erences between the initial sample design and the

size of the estimation sample. This in turn might result in systematic di¤erences

between the theoretical and empirical distribution of sex and age intervals in the

sample. Moreover, there might be other individual characteristics that a¤ect health

state values whose sample distribution is not neccesarily that in the population even

if age intervals and sex are equally distributed in both instances. For example, Dolan

and Roberts (2002) �nd that marital status and the usual activities dimension of

own health a¤ect health state values. Additionally, Kharroubi et al. (2007) �nd that

the individual�s employment status, educational level and own physical and social

functioning condition health state valutions.

Additionally, the standard model does not provide the user with the appropiate

statistical tools for testing and correcting for the population validity of the estimates.

The traditional way of analyzing the representativeness of the estimates is to look

for di¤erences in the univariate descriptive statistics of the covariates between the

estimation sample and the population. This approach, which implicitely recognizes

the relevance of individual characteristics aside the respondent�s sex and age interval,

is not a formal test and, thus, it raises doubts as to in how many covariates do we

have to �nd a signi�cant di¤erence of a given magnitude between the sample and

population means for the estimates not to be valid at the population level. Moreover,

�nding no signi�cant di¤erence in the sample and population mean of a continuous

variable is not necessarily very informative about the presence of di¤erences in other

moments of the distribution. Furthermore, multivariate distributions can di¤er and

condition the population validity of the estimates even if univariate statistics are

identical in the estimation sample and the population of interest.

The traditional way of recovering the population validity of the estimates once

relevant di¤erences are found between the sample and population distribution of the

covariates is to include corrective weights. The weights are intended to adjust for the

population distribution of individual characteristics where relevant discrepancies are

detected. However, this procedure su¤ers from the course of dimensionality problem,

that is, it becomes less feasible as the number of variables used to construct the
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weights increases.

This paper presents a new approach for estimating preference-based measures of

health that makes no assumption on the distribution of health state values, allows for

an undetermined amount of heterogeneity in the estimates of interest, accomodates

covariates in a �exible way, satis�es the theoretical requirement of the intercept being

equal to unity, formally tests for di¤erences in the distribution of individual character-

istics between the estimation sample and the population of interest, estimates tari¤s

using the distribution of individual characteristics in the population of interest and,

as opposed to the nonparametric Bayesian model in Kharroubi et al. (2005), it pro-

vides the user with a simple table of estimated coe¢ cients that de�nes the estimated

preference function, resulting in e¢ ciency and transparency gains. Despite all these

theoretical advantadges, the technical complexity of the semiparametric method that

we present is only slightly higher than that of the standard regression estimator.

The paper has four more sections. Section 2 presents the semiparametric model

and compares its properties to those of the standard parametric model. Section

3 describes the data used in the estimation. Section 4 presents and discuss the

estimation results and Section 5 concludes.

2 Modelling

The standard model of health state valuations is

Yij = �+ �0Zj + "ij (1)

where Yij is the utility that individual i assigns to health state j, Zj is a vector of

dummy indicator variables Zkw that equal one if health state j reaches level of severity

w in dimension k and zero otherwise, for w = 2; 3; ::;Wk and k = 1; 2; :; K, � is the

intercept and "ij is a zero mean error term.1 Model (1) is the �main e¤ects�model, as

opposed to other speci�cations that also control for level e¤ects and/or interactions

between the elements of Zj. The model is estimated using the Ordinary Least Squares

(OLS) or the Random E¤ects (RE) estimators, that is, assuming that " is normally

distributed.2

1For the SF-6D descriptive system K = 6 and Wk ranges from 4 to 6. Equivalently, K = 5 and
Wk =W = 3 for the EQ-5D.

2Most papers use the RE estimator since it takes account that the same individual values several
health states, increasing the e¢ ciency of the estimates relative to the OLS estimator.
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The main advantadge of the standard model is that it is easy to implement.

However, it presents some limitations that are likely to overcome its bene�ts. First,

the normality assumption is not likely to hold given the skewed, truncated, non-

continuous and hierachical nature of the data (Brazier et al., 2002), thus, resulting

in biased estimates.3 Second, parametric models like (1) are severely limited in the

way they control for individual characteristics. The standard approach of introducing

individual characteristics additively and estimating an expanded version of equation

(1) contravenes both the goal of estimating one preference-based tari¤ for the whole

community (Dolan, 1997) and the requirement of the intercept being equal to unity.4

The result of the estimated intercept deviating from unity follows from the unrealis-

tic assumption that the valuation impact of a deviation from full health in a given

dimension is the same for respondents with di¤erent background characteristics and

is also independent of the level of severity in other dimensions.5

Additionally, the standard model estimates are also likely to be sensitive to di¤er-

ences in the covariate distributions for respondents valuing di¤erent levels of severity

in di¤erent dimensions. That is the case because the standard model is a regression

model and regression estimators rely heavily on extrapolation when di¤erences in the

covariate distributions for compared individuals are large.

The estimators that we propose make no assumption on the distribution of health

state values, accomodate covariates in a �exible way, eschew parametric assumptions

on the relationship between the outcome and the regressors, restrict the intercept to

unity and allow for the e¤ect of Zkw to be heterogeneous in individual characteris-

tics and in the severity of the departure from full health in the other dimensions.

Additionally, and as opposed to the standard model, the proposed estimators pro-

duce estimates for the population of interest even if the estimation sample is not

3Dolan et al. (1996) �nd evidence that the distribution of health state valuations obtained
using the time trade-o¤ method was non-normal for each health state. Johnson et al. (1998)
�nd departures from normality when estimating US-based population weights using the EQ-5D
questionnaire. Diagnostic tests in Brazier et al. (2002) reveal non-normal residuals in the estimation
of a preference-based measure of health for the UK general population using the SF-36. Many other
studies, like Tsuchiya et al. (2002) and Lamers et al. (2006), simply provide no formal test of the
underlying distributional assumption.

4There are strong theoretical reasons for restricting the intercept to unity since it captures the
utility associated to full health, which equals one on the conventional full health-death scale used to
estimate QALYs. See Brazier et al. (2002) for a discussion on this topic.

5The parametric way of relaxing this assumption is to further expand equation (1) by introducing
interactions between the elements of Zj and the variables that measure individual characteristics.
However, this approach further contravenes the estimation of an unique population tari¤ and com-
plicates both the interpretation of the estimates and the correct speci�cation of the regression model.
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representative for that population with regard to many discrete and continuous in-

dividual characteristics that a¤ect health state values. The traditional approach of

using corrective weights for the standard model estimates to be representative for

the population of interest su¤ers from the so-called course of dimensionality prob-

lem. That is, corrective weights can only be de�ned over a reduced set of discrete

covariates.6 Moreover, the corrective weights approach does not provide a formal test

for whether di¤erences in the distributions of covariates between the sample and the

population of interest are signi�cant or not. The estimators that we propose overcome

these limitations.

The identi�cation strategy is presented focusing on �kw, the coe¢ cient associated

to Zkw that measures the average health state valuation impact of moving from level of

severity 1 to level of severity w in dimension k. Let Xi be a vector of characteristics of

individual i that potentially a¤ect his valuations. The estimation sample is restricted

to respondents valuing levels of severity 1 and w in dimension k and the individual

and health state subscripts i and j are dropped out to simplify the notation. The

e¤ect of interest for the sample with individual characteristics x that value health

states with level of severity w0 in dimension k0 for k0 6= k and w0 = 2; 3; ::;Wk0 is7

�kw (x; zk0w0) = E [Y=Zkw = 1; X = x; Zk0w0 = zk0w0 ]�E [Y=Zkw = 0; X = x; Zk0w0 = zk0w0 ]

where zk0w0 = f0; 1g. Equivalently, the e¤ect for an individual randomly drawn from
the estimation sample is

�kw = E [�kw (h)] = E [Y=Zkw = 1]� E [Y=Zkw = 0] (2)

where H comprises X and the set of dummy variables Zk0w0 for k0 6= k and w0 =

2; 3; ::;Wk0 and expectations are de�ned over the distribution of H in the estimation

sample.

The estimators that we propose for �kw share features with both treatment e¤ects

and missing data estimators. We present the estimators in the context of the treat-

ment e¤ects literature and highlight the connections with the missing data estimators

when appropiate. The treatment e¤ects literature provides answers to questions con-

cerning the e¢ cacy of a particular programme or policy initiative. The programme

6In most cases, the weights are constructed using dummy variables for the sex of the respondent
and the age interval he/she belongs to. That is the case, among others, in Tsuchiya et al. (2002)
and Kharroubi et al. (2007).

7Existence of expectations is assumed throuhout.
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at investigation is the treatment, the collective that receives the treatment is the

treatment group and those not receiving the treatment are the control or comparison

group. In this setting �kw is the average valuation e¤ect of a binary treatment that

consists in valuing health states where dimension k reaches level of severity w instead

of level 1. The causal interpretation of �kw follows from the assumption that unob-

served individual characteristics do not a¤ect health state valuations or their overall

average impact is zero.8 This assumption is also required for the OLS estimate of

�kw to have a causal meaning.

Among the available treatment e¤ects estimators we choose the so-called Inverse

Probability Weighting (IPW ) estimators for three reasons.9 First, they are easy to

implement and provide consistent and in some cases asymptotically e¢ cient estimates

of the parameter of interest under standard fairly regularity conditions. Second, they

exhibit the best overall �nite sample perfomance among the broad class of treatment

e¤ect estimators analyzed in Busso et al. (2008). This is particularly relevant for the

problem at hand given that the sample used to estimate �kw is modest in size in some

empirical applications. Finally, weighting estimators can be used to assess the e¤ect

of changes in the distribution of X on the outcome of interest (DiNardo et al., 1996)

and, thus, they allow to estimate preference functions for the population of interest

from non-representative samples.

Some additional notation is needed at this point. Let pkw (h) = P (Zkw = 1=H = h)

be the conditional probability of receiving treatment given H. This variable is named

the propensity score in the treatment e¤ects literature. The research value of the

propensity score rests on its power to solve the dimensionality problem. Adjusting

for between-groups di¤erences on a high dimensional vector of covariates can be either

di¢ cult or impossible. Rosenbaum and Rubin (1983) show that the propensity score

captures all of the variance on the covariates relevant for adjusting between-group

comparisons, that is, treated and control units with the same value of the propensity

score have the same distribution of the elements in H.10

Additionally, the following overlap assumption on the joint distribution of treat-

ments and covariates is necessary for the estimation problem to be well de�ned:

8The assumption is known as selection on observables (Barnow, Cain, and Goldberger, 1981),
strong ignorable treatment assignement (Rosenbaum and Rubin, 1983) or conditional independence
assumption (Lechner, 1999) and is also implicit in the standard model.

9Imbens (2004) provides an overview of the estimators used in the treatment e¤ects literature
under the selection on observables assumption.
10Properly speaking, Rosenbaum and Rubin (1983) show that if treatment is randomized condi-

tionally on the observed covariates then it is randomized conditional on the propensity score.
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0 < P (Zkw = 1=H) < 1. Formally, it requires that for a given value of H there is

some fraction of the estimation sample in the treatment and control groups to be com-

pared. That is, a necessary condition for the e¤ect of Zkw to be identi�ed is that no

other regressor predicts treatment status perfectly. This assumption has implications

on the number and selection of health states valued in the sample in order to identify

�kw. In particular, it states that there is no level of severity w
0 in dimension k0, for

w0 = 1; 2; 3; ::;Wk0 and k0 6= k, valued only by respondents of a given treatment status.

Otherwise, the e¤ect of interest cannot be separatelly identi�ed from that for Zk0w0

unless we rely on extrapolation. This is precisely what the standard regression model

does. As previously discussed, extrapolation results in biased estimates if di¤erences

between the covariate distributions of respondents of di¤erent treatment status are

relevant and the parametric relationship between the outcome and the regressors is

not properly speci�ed.11

As an illustrative example, we analyze whether the common support condition

holds in the estimation of the EQ-5D tari¤s for Holland, Japan, the United Kingdom

and Spain in Lamers et al. (2006), Tsuchiya et al. (2002) , Dolan (1997) and Badia

et al. (2001), respectively. In particular, we check whether there is overlap in the

distribution of Zk0w0 for k
0 6= k and w0 = 1; 2; 3; ::;Wk0 for respondents valuing levels

of severity w and 1 in dimension k, for w = 2; 3; ::;Wk and k = 1; 2; :; K. We �nd that

the validity of the Dutch and Japanese estimates rests on whether the corresponding

regression models were correctly speci�ed or not since the common support condition

is satis�ed in just one out of the ten estimated coe¢ cients.12 Conversely, the overlap

requirement is met in six of the ten estimates in Dolan (1997) and Badia et al.

(2001). The di¤erence with the former two studies is in the number of health states

for which direct valuations are elicited. While Lamers et al. (2006) and Tsuchiya

et al. (2002) use the values obtained for 17 health states to estimate 10 coe¢ cients,

Dolan (1997) and Badia et al. (2001) uses 42 health states for the same number of

coe¢ cients. Thus, the estimates in the latter two studies are more likely to be robust

to the misspeci�cation of the regression model than those in Lamers et al. (2006)

and Tsuchiya et al. (2002).

11Some studies have reported evidence of misspeci�cation when using the standard model. A
non-exhaustive list includes Dolan (1997) and Johnson et al. (1998). Brazier et al. (2002) express
their surprise with the result of no speci�cation problems according to the Ramsey RESET test
given the skewness of their RE estimation residuals. Many other studies simply provide no formal
test of misspeci�cation of the standard model.
12No mispeci�cation test is reported in these studies.
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Moving back to the estimation problem, the expectations in (2) are written as

E [Y=Zkw = t] =

Z
Y f (Y=H) g (H=Zkw = t) dh; for t = f0; 1g (3)

This expression makes it clear that each expectation is calculated using the distri-

bution of H in the collective of respondents of a given treatment status. However, for

�kw to be identi�ed we need the same distribution of H in the two expectations. In

particular, we use the distribution of H in the estimation sample (respondents valuing

levels of severity 1 or w in dimension k). Formally, let g (H) and g (H=Zkw = t) be

the joint density of H in the estimation sample and in the collective of respondents

with treatment status t, respectively, and observe that by de�nition

g (H) =
g (H=Zkw = t)P (Zkw = t)

P (Zkw = t=H)
; for t = f0; 1g

That is, the distribution of H in the collective of respondents with treatment

status t can be changed for the distribution in the estimation sample g (H) by simply

introducing the appropiate weighting function �t in (3)

E [Y=Zkw = t] =

Z
P (Zkw = t)

P (Zkw = t=H)| {z }
�t

Y f (Y=H) g (H=Zkw = t) dh

=

Z
Y f (Y=H) g (H) dh; for t = f0; 1g

The e¤ect of interest can now be written as

�kw = E

�
ZkwY

pkw

�
� E

�
(1� Zkw)Y

1� pkw

�
(4)

This equation suggests immediately the following estimator of �kw which we name

as the IPW1 estimator

b�kw; IPW1 = n�1
nP
i=1

ZkwiYijbpkwi � n�1
nP
i=1

(1� Zkwi)Yij
1� bpkwi (5)

This estimator identi�es the e¤ect of interest if the estimation sample is repre-

sentative for the population, that is, if there are no selection biases in the de�nition

of the estimation sample. In that case, the estimator can be implemented by sim-

ply obtaining an estimate of the propensity score and pluggin the �tted values for

the estimation sample into (5). However, since we cannot be sure a priori than the
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sample distribution of the elements of X is that in the population, we improve on

the latter estimator by accounting for the probability that an individual randomly

drawn from the population is in the estimation sample.13 We do so by rewritting

expression (3) so that the two expectations are averaged over the distribution of X in

the population. Obviously, the feasibility of this approach rests on whether we have

an external representative sample that contains information on X.14 Conditioned on

the availability of such a sample, the e¤ect of interest is written as

�kw = E

�
P sDkwY

pkwps

�
� E

�
P s (1�Dkw)Y

(1� pkw) ps

�
(6)

where Ds is a binary indicator variable that equals one if the individual is in the

estimation sample and zero if he/she is in the external representative sample, ps (x) =

P (Ds = 1=X = x) is the conditional (on X) probability of being in the estimation

sample and P s = P (Ds = 1) is the proportion of respondents in the estimation

sample. The set of indicator variables Zk0w0 for k0 6= k and w0 = 1; 2; 3; ::;Wk0 is not

included in ps (x) since representativeness is analyzed with regard to the distribution

of individual characteristics.

The sample analog of expression (6) is the IPW2 estimator of �kw that is calcu-

lated as

b�kw; IPW2 = n�1
nP
i=1

ZkwiYijbpkwibpsi � n�1
nP
i=1

(1� Zkwi)Yij
(1� bpkwi) bpsi (7)

This equation suggests a simple two-step method to estimate �kw. First, estimate

discrete choice models for the two propensity scores and compute the �tted values

for the estimation sample.15 Second, plug the �tted values into the sample analog of

(7). Under this scheme, a simple weighted average of the outcome variable recovers

the e¤ect of interest.16 The IPW1 estimator weights-down (up) the distribution of

13On the one hand, deviations from the original sample design due to, for example, nonresponse
issues or to the exclusion of inconsistent respondents might result in non-representative samples. On
the other hand, it is di¢ cult or even impossible to de�ne representative samples for the population
of interest with regard to the whole set of covariates that have been found to be correlated with
health state valuations (Dolan and Roberts, 2002; Kharroubi et al., 2007).
14The availability of such a sample is not likely to be a problem in most developed countries.

For example, the Census and the European Community Households Panel provide us with the
distribution of many sociodemographic, employment and health related individual and household
characteristics in the Spanish population. In the empirical section of the paper we use data from
the European Community Household Panel for Spain.
15The common support condition is tested and imposed in this �rst step.
16The weighting scheme for
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health state values for respondents of a given treatment status for those values of the

covariates that are (under) over-represented among respondents with that treatment

status. Additionaly, the IPW2 estimator weights-down (up) the distribution of health

state values for sample respondents for those values of the covariates that are (over)

under-represented among individuals in the external representative sample.

These two estimators can also be interpreted in the related framework of impu-

tation for missing data.17 To appreciate this, we follow Rubin (1974) and de�ne

�kw in terms of potential outcomes. Let Yt be the valuation that individual i would

have given had he received treatment status t. We only observe the realized outcome

Y = DsDkwY1 +Ds (1�Dkw)Y0 but want to know about the e¤ect of the treatment

for an individual randomly drawn from the population of interest (�kw). In this set-

ting, �kw is the di¤erence between the population averages of Y1 and Y0, which we

label �1 and �0. We only observe Y1 for treated individuals in the estimation sample

and the probability of a �complete case�i is p = ps (x)�pkw (h). As Lunceford and Da-
vidian (2004) point out, weighting by the inverse of the product of propensity scores

allows observation i to count for him/herself and (p�1 � 1) other �missing�subjects
with like covariates h in estimating �1.

The propensity score ps (x) adjusts for the distribution of individual character-

istics in the population. It is a generalization of the traditional corrective sample

weights used to recover the representativeness of the standard model estimates once

relevant di¤erences are observed between the sample and population distributions of

the elements inX.18 Both methods are equivalent ifX includes only dummy indicator

variables. In that case, the corrective weights used in the standard framework provide

a nonparametric estimate of the propensity score ps (x). The propensity score allows

us to overcome the dimensionality problem in the construction of sample weights

and, thus, to control for potential sample selection biases in as many discrete and

continuously measured individual characteristics as necessary.

As discussed in Imbens (2004), the estimator in (7) is not an attractive estimator

for �kw since the weights for observations of a given treatment status t do not neces-

sarily add up to unity. Indeed, these weights add up to 1 conditioned on treatment

17Each of the terms in (7) approximates the average outcome for units of a given treatment
status using a weighted sample mean estimator of Horvitz-Thompson type. Horvitz and Thompson
(1952) introduced this type of estimator to analyze samples drawn without replacement with unequal
selection probabilities from �nite universes.
18Tsuchiya et al. (2002) and Brazier (2006) introduce corrective weights to re�ect the non-

representative age and sex distribution of their respondents in the standard model and in a non-
parametric Bayesian method, respectively.
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status t in expectation terms, but because the variance of the sum is positive, the

corresponding sample analog is likely to deviate from one. Thus, we normalize the

weights to unity and obtain the following IPW2 estimator:

b�kw; IPW2 =

�
nP
i=1

Zkwibpkwibpsi
��1 nP

i=1

ZkwiYijbpkwibpsi
�
�

nP
i=1

(1� Zkwi)

(1� bpkwi) bpsi
��1 nP

i=1

(1� Zkwi)Yij
(1� bpkwi) bpsi (8)

The IPW1 and IPW2 estimators can be implemented by producing non-parametric

estimates of the propensity scores and plugging the �tted values into (8). However,

the number of observations required to attain an acceptable precision for this type

of non-parametric estimator increases rapidly with the dimension of X. Moreover, a

non-parametric estimate of a conditioned on particular values of X version of these

estimators may be di¢ cult to interpret if the dimension of X is larger than two. Fur-

thermore, the net gains of moving from the standard model to an alternative estimator

decrease as the implementation of the proposed estimator becomes more challenging.

Thus, we focus on semiparametric approximations to the IPW1 and IPW2 estima-

tors where the propensity scores are parametrically estimated using standard discrete

choice models like the logit and probit models.

The IPW1 and IPW2 estimators are members of a class of semiparametric consis-

tent estimators developed in Robins et al. (1994) for general missing data problems.

Robins et al. (1994) show that the estimator within the class having the small-

est large-sample variance combines regression on the covariates and propensity score

weighting. Contrary to the parametric standard model, the regression model in the

semiparametric e¢ cient estimator is incorporated only as a way of gaining e¢ ciency

over the IPW1 and IPW2 estimators, that will still be consistent. The asymp-

totically e¢ cient estimator is doubly robust in the sense that it provides consistent

estimates of �kw if either the propensity score or the regression model are correctly

speci�ed. Anyway, the double robust estimator cannot be implemented here because

we cannot regress health state values on H in each subsample with treatment status

t given that respondents do not value health states de�ned by Zk0w0 for any k0 6= k

and any w0 = 2; 3; ::;Wk0. Indeed, we can just regress health state values on X and

some elements of Z for respondents with treatment status t, where that subset of

elements of Z is likely to vary with treatment status t and also with the estimation

subsamples used to identify each element of �. Anyway, as shown in Busso et al.
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(2008), the small sample properties of the double robust estimator are close to those

for propensity score weighting estimators like IPW1 and IPW2, with the former

estimator being slightly more variable and more biased than those implemented in

this study.

The consistency and large sample properties of the IPW1 and IPW2 estimators

are derived in the Appendix using the theory ofM -estimation and the requirement of

the intercept being equal to unity is satis�ed using the transformed outcome variable

Y � = Y � 1 instead of the original one.

3 Data

A representative sample by gender and age groups of the general population has been

used in this study. The sample was divided into 17 subsamples (n = 60) each of them

representative of the general population in terms of gender and age groups. In our

study we have applied an inter-sample design, that is, the set of 78 health states has

been split up in subsets of lower size that have been distributed among subsamples

for their valuation. Each of the 17 groups of respondents valued a di¤erent subset

of �ve health states so that representativeness by age and gender is held for all the

states evaluated. Moreover, all the subsets of �ve states include a range of severity

from mild to more severe health conditions.

The questionnaire.

Each interview began with an introduction in which the SF-6D classi�cation sys-

tem was explained to the individuals through a �tutorial�. Once the respondent had

been understood the meaning of the dimensions and levels of the instrument, he/her

was presented the following tasks:

a) Visual analogue scale (VAS) evaluations of 5 hypothetical health states

de�ned by the SF-6D. The states were labelled as V, W, X, Y, Z and presented in

the form of cards. In these cards, besides the statement describing the level on each

of the dimensions, the number of the level (from 1 to 4, 5 or 6, depending on the

dimension) appeared on a coloured gradient that went from green (no problem) to

red (a serious problem). The extremes of the thermometer were �the worst possible

health state�and �the best conceivable health state�. Respondest had to valued in the

scale the �ve states and the state �dead�.

b) Probability lottery equivalence (PLE) evaluation of the �ve hypothetical

health states. Respondents were asked for the value of p that made them indi¤erent
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between the following prospects:

(FH; p;Death)~(FH; 0:5; h)

Values of p > 0.5 are expected in most cases, which implies that the respondent

assumes a certain risk of death (1-p)< 0.5 in exchange for avoiding a 50% risk of living

in the intermediate health state for the rest of his/her life. Nevertheless, some health

sates may be considered worse than death, so p would be less than 0.5. Initially, p

was �xed in 0.5 to know if the respondent considers that the health state is better or

worse than death because. In the �st case, the individual should prefer the lottery

on the right side, whereas the lottery on the left should be chosen if the state is

considered worse than death. Although the framing of the method is the same in

both cases, it is not the same the way in which the value of p is changing in order to

reach the indi¤erence point.

In the �nal part of the interview information about the individual�s health state

and his/her socioeconomic characteristics (sex, age, studies, income level, etc.) was

collected. Three instruments were used to ask the respondents how healthy they felt:

the EQ-5D self-report questionnaire, the SF-36 (v.2) questionnaire and a visual scale

similar to that presented previously for the valuation of the hypothetical states.

Within each of the 17 subsets of �ve health states, some of them can be logi-

cally ranked, so that a health state can be viewed as �logically�worse (or better)

than another health state. That is the case when a health state has equal or higher

levels than another state in each of its six dimensions. Should a respondent assign

higher VAS evaluations or PLE evaluations for states that were logically worse than

other which received lower valuations, he/she is considered inconsistent and there-

fore excluded from the analysis. Additionally, individuals who refused to assume any

amount of death risk in PLE questions, at least in three out of �ve elicitations, were

also excluded.

4 Estimation results

We �rst analyze the e¤ect of the respondents�characteristics on health state values

and then we compare the estimates of � obtained using the parametric and semipara-

metric estimators in the preceeding section.
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4.1 The valuation e¤ect of individual characteristics

In Table 2 we present OLS and RE estimates of the e¤ect of individual characteristics

on health state values. The estimates of � are discussed in the next subsection.

The reported estimates indicate that there is a relevant correlation between health

state values and the respondents�background characteristics even after adjusting for

di¤erences in the severity of the health states being valued. In particular, we �nd

that health state values are signi�cantly a¤ected by the age and marital status of the

respondent and by other household level characteristics like household income and the

number of children at home.19 According to RE estimates, health state valuations

are primarily a¤ected by the age and marital status of the respondent and by the

level of household income.

The estimated non-linear e¤ect of age implies that valuations increase slowly from

the age of 18 to about the age of 47, fall slowly up to about 70 and then fall sharply

in later years. This means that a 20 years old individual gives about the same value

than an otherwise equivalent 70 years old individual. This non-linear association

between the age of the respondent and health state values was also found in Dolan

and Roberts (2002) and Kharroubi et al. (2007) for the United Kingdom Time Trade-

O¤ and Standard Gamble valuations of the EQ-5D and SF-6D, respectively.20

The estimates in Table 2 indicate that there is a positive, monotone and quanti-

tatively relevant correlation between household income and health state values. The

valuations of respondents whose household income ranges between 2.000 and 3.000

euros per month are, on average, 0,040 higher than those of respondents whose house-

hold income is below 1.500 euros per month. That di¤erence amounts to 0,053 if the

latter group of respondents is compared to those whose household income is above

3.000 euros per month.

The positive association between household income and health state values can

be interpreted in the light of the results in Lubetkin et al. (2005). They �nd a

positive, signi�cant and relevant association between personal income and health-

related quality of life in a large sample of the United States general population using

the EQ-5D. That is, ceteris paribus and on average terms, high-income people enjoy

better health than low-income people and, thus, they are more likely to assign a

19The signi�cant OLS estimates obtained for the sex and educational level of the respondent are
not con�rmed in the RE estimation.
20The age that maximizes health state valuations is about 45 years in Dolan and Roberts (2002)

and between 60 and 65 years in Kharroubi et al. (2007).
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low chance to the event of a bad health outcome when it is presented to them.

Moreover, even if respondents judge the plausability of health states independently of

their disposable income, the negative consecuences of the realization of a bad health

outcome are likely to be quite di¤erent for low- and high-income individuals. The

positive found for household income in Table 2 is compatible with the hypothesis

that respondents value health states according to the expected utility losses in case

of realization of that health state.

The estimates in Dolan and Roberts (2002) con�rm the relevance of the respon-

dent�s marital status for health state valuations. However, the estimated coe¢ cient in

that study is of lower magnitude and opposite direction than that in Table 2. While

we �nd that the valuations of married or cohabiting people are, on average, 0,067

higher than the valuations of single people, Dolan and Roberts (2002) �nd that the

average valuation of the latter collective is 0,006 higher than that of the former one.

Regarding the e¤ect of children, Kharroubi et al. (2007) �nd no signi�cant asso-

ciation between the presence of children under 16 years in the household and health

state values. We reach the same conclusion when controlling for whether there is a

child aged under 12 years in the household or not.21 However, when we allow for the

e¤ect of children to vary with the number of children in the household we �nd that

having three or more children exerts a negative, quantitatively relevant and signi�cant

e¤ect on health state values.22

Although existing studies disagree on the magnitude and sign of the e¤ect of some

covariates, they provide robust evidence on the importance of accounting for individ-

ual and household characteristics when estimating preference-based value functions.23

4.2 Semiparametric estimates

The semiparametric estimates of � are presented in Table 3. For comparability pur-

poses, the OLS and RE estimates in Table 2 are reproduced in columns 1 and 2,

respectively. Columns 3 and 4 present IPW1 and IPW2 estimates obtained using

the set of covariates in Table 2. Additionally, in columns 5 and 6 we present IPW1

and IPW2 estimates calculated using a restricted version of matrix X that only

21These estimates are available upon request to the authors.
22The proportion of respondents with three or more children aged under 12 years is 5,87 percent.
23It is beyond the scope of this paper to explain the discrepancies in the results of existing studies.

They might totally or partially re�ect cross-country di¤erences in the e¤ect of interest or in the
distribution of covariates, di¤erences in the estimated speci�cations or in the estimation methods
used.
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includes two discrete variables: the respondent�s sex and age interval.24

Let us �rst comment on the parametric estimates. There are no inconsistencies in

the estimated coe¢ cients and both the OLS and RE estimates indicate that being

limited in the kind of work or other activities as a result of physical health (RL2) has

no signi�cant e¤ect on health state valuations.25 Moreover, there is no clear direction

of change in the estimated � when taking into account that the same individual values

several health states, that is, when moving from the OLS to the RE estimates. The

average di¤erence between the OLS and RE estimates of �kw, for w = 2; 3; ::;Wk and

k = 1; 2; :; K, is almost zero.

On the contrary, we �nd substantial di¤erences between the parametric and the

semiparametric estimates of �. First, the semiparametric estimates suggest that a

departure from full health translates into a signi�cantly lower valuation independently

of the severity of the departure and the dimension of health considered. In other

words, the semiparametric estimate of �kw is signi�cantly di¤erent from zero for

any k and any w. Second, the semiparametric model produces estimates of �kw of

higher magnitude than those obtained using the standard model. That is the case

in 21out of the 25 estimated coe¢ cients which are signi�cantly di¤erent from zero in

both models. Moreover, the magnitude of the discrepancy between the standard and

the semiparametric estimates is negatively related to the severity of the departure

from full health. For example, the IPW2 estimates for the coe¢ cients associated to

levels 2, 3, 4 and 5 of the Vitality dimension are 188, 120, 84 and 56 percent higher,

respectively, than the corresponding RE estimates.

As discussed in the preceeding section, there are important di¤erences between

the standard and the semiparametric models that can explain the discrepancies in

the estimates of �. First, the samples used to estimate �kw are di¤erent in both

models. While any individual in the sample contributes to the estimation of �kw in

the standard model, the estimation sample in the semiparametric model is restricted

to respondents valuing levels of severity 1 or w in dimension k. However, the prac-

tical relevance of this di¤erence depends on whether the standard model estimates

rests on extrapolation and on the di¤erences in the covariate distributions between

respondents. Since the overlap assumption holds in this application, we expect this

24The distribution of individuals characteristics in the Spanish population is approximated using
those in the Spanish sample of the European Community Household Panel for the year 2001, the
last year for which we have data.
25An inconsistency occurs if the coe¢ cient estimated for Zkw is not higher than that estimated

for Zkw0 , for w0 > w. Había excepciones.
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argument to have little to do with the discrepancies between the parametric and

semiparametric estimates in Table 3.

Another reason why the semiparametric estimates might di¤er from the stan-

dard regression estimates is that the two estimation strategies use di¤erent weighting

schemes. As discussed in Angrist and Krueger (1998), while the semiparametric esti-

mator combines covariate-value-speci�c estimates of the e¤ect of interest, regression

estimators produce a variance-weighted average of these e¤ects.26 That is, while re-

gression estimators like the OLS and the RE estimators weight each covariate-speci�c

estimate by P (H = h=Zkw = 1) (1� P (H = h=Zkw = 1)), the weights underlying the

semiparametric estimator are proportional to the propensity score. So respondents

with a higher probability of being �treated�get the most weight in the semiparametric

estimates. In contrast, regression estimators weight each covariate-speci�c estimate

by the conditional variance of treatment assignment, which in this case is maximized

when P (Zkw = 1=H) = 0:5. Obviously, the di¤erence in weighting schemes is of no

importance if the estimated coe¢ cient does not vary with the elements of H. Thus,

the observed discrepancy between the standard and semiparametric estimates can be

thought as evidence that the health state valuation impact of a given departure from

full health is heterogeneous in the respondent�s background characteristics and in the

particular level of severity in other dimensions of health.

Next, the di¤erences between the IPW1 and IPW2 estimates in columns 3 and

4 suggest that the distribution of the elements in X is imbalanced between the popu-

lation and the estimation sample.27 ;28 These di¤erences are much lower in magnitude

than those found when comparing from the standard to the semiparametric estimates.

On average, the estimate of �kw increases by 3 percent in absolute value when us-

ing the distribution of covariates in the Spanish population instead of that in the

corresponding estimation sample.

The results of estimating the propensity score ps (x) can be used to identify the co-

variates whose sample distribution di¤ers from that in the population.29 A signi�cant

26Angrsit and Krueger (1994) provide a general discussion on the weighting schemes underlying
matching and regression estimators.
27This �nding is common to the multiple speci�cations of the propensity score used to improve

its balancing power.
28Finding no relevant discrepancies between IPW1 and IPW2 estimates indicates that either the

e¤ect of interest does not vary with individual characteristics or that is heterogeneity in the e¤ect
of interest but the distribution of the elements in X is the same in the sample and population of
interest. However, the former scenario is rejected in the preceeding paragraph.
29Crump et al. (2008) show that limited overlap in the covariate distributions between treatment

groups can led to imprecise estimates and can make estimates sensitive to the choice of speci�cations
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coe¢ cient in the logit estimates denotes that the distribution of the corresponding

covariate is not balanced between the population and the estimation sample. As an

illustrative example, Table 4 resumes the logit estimation of ps (x) for the estimation

of the coe¢ cient associated to variable PF2. We �nd that the sample distribution of

any covariate but the respondents�sex is signi�cantly di¤erent from the corresponding

distribution in the Spanish sample of the European Community Household Panel for

the year 2001. This is a common �nding to the estimation of ps (x) for almost any of

the IPW2 estimates in Table 3.30

The result that adjusting for the population distribution of the covariates results

in relevant variations in the magnitude of the estimates contrasts with �ndings in

Kharroubi et al. (2007) and Dolan and Roberts (2002). Both studies �nd that the

standard model estimates are almost invariant to the inclusion of corrective weights

that adjust to the age interval and sex distribution in the population. Interestingly,

we reach the same conclusion when we restrict the covariates in X to a set of dummy

indicator variables for the sex of the respondent and the age interval he/she belongs

to.31 As shown in columns 5 and 6 of Table 3, the resulting IPW1 and IPW2

estimates of �kw are almost identical for any k and any w.

Interestingly, these estimates are close in magnitude to the IPW1 estimates in

column 3 obtained adjusting for the distribution of the expanded list of covariates in

the collective of �treated�respondents. On the contrary, we �nd relevant di¤erences

between the estimates in columns 5 and 6 and the IPW2 estimates in column 4 where

we adjust for the population distribution of the expanded list of covariates. These

results suggest that conditioning on a reduced set of covariates su¢ ces to remove

much of the bias due to compositional di¤erences between the collectives of di¤erent

treatment status compared in the estimation of �kw.
32 However, they also suggest

that the traditional approach of using corrective weights constructed using a reduced

set of discrete variables does not exploit much of the variance in the distribution of

for the �rst step propensity score model. We address this issue by checking the sensitivity of the
estimates to discarding all units with estimated propensity score outside the range [0 + k; 1� k],
for k = f0:05; 0:1g. The estimates of � remain almost unchanged. These results are available upon
request to the authors.
30These estimates and also those for the �rst step estimate of the propensity score pkw (x) are

available upon request to the authors.
31We also obtain standard model estimates using corrective weights constructed using dummy

indicator variables of the age and sex of the respondent. As in Kharroubi et al. (2007) and Dolan
and Roberts (2002), these estimates are almost identical to the unweighted estimates in Table 2.
These estimates are available upon request to the authors.
32Cochran

17



individual characteristics and, thus, it does not guarantees the population validity

of the estimates. The continuous generalization of that procedure that we propose

seems far more e¤ective in removing sample selection biases and adjusting for the

distribution of X in the population.33

Following Brazier and Roberts (2004), in Table 5 we present parsimonious con-

sistent models estimated by aggregating levels of a given dimension if inconsistencies

ocurred in the IPW2 estimates in column 4 of Table 3, that is, if the semiparamet-

rically estimated coe¢ cient for Zkw is not higher than that estimated for Zkw0, for

w0 > w. In particular, we obtained three inconsistencies. The estimate for PAIN2

is larger in absolute value than that for PAIN3, the coe¢ cient for MH4 is smaller

in absolute value than that associated to MH3 and, �nally, the estimate for V IT4

is slightly larger in absolute value than that for V IT5. As opposed to the standard

models, the semiparametric model does not require the full vector � to be reestimated

when an inconsistency is detected. Previously discussed features of the semiparamet-

ric model and its di¤erences with the standard model remain true when analyzing

the consistent models.

The parsimonious models are used to estimate values for each of the 18.000 health

states that can be de�ned using the SF-6D classi�cation system. The resulting OLS,

RE, IPW1 and IPW2 estimated tari¤s are summarized in Table 6. First, we �nd

that the OLS and RE estimates produce almost identical values. Conversely, and as

expected given the preceeding discussion, there are substantial di¤erences between the

standard and the semiparametric predicted values. These discrepancies are observed

in any of the distributional moments reported in Table 6 and they tend to be higher the

lower is the value assigned to a particular health state, that is, the higher is its severity

according to the respondents�preferences. For example, the di¤erence between the zth

percentiles of the RE and IPW1 distributions of values lowers from -0,160 for z = 10

to -0,135 for z = 90. In relative terms, the 10th and 90th percentiles of the IPW1

distribution are 101,5 and only 18,9 percent higher than the corresponding moments

in the RE distribution. These di¤erences are larger when the RE distribution is

compared to the IPW2 one. The di¤erence between the zth percentiles of the RE

and IPW2 distributions of values are -0,320 (202,5 percent higher than the RE value)

and -0,222 (31 percent higher than the RE value) for z = 10 and 90, respectively.

33This explanation solves the puzzle pointed out in Kharroubi et al. (2007). They �nd that the
age of the respondent is a major determinant of health state values but also that adjusting to the
age and sex distribution of the UK population has a little impact on the estimates.
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As observed, the positive correlation between, on the one hand, the magnitude of

the di¤erence between the standard and the semiparametric values and, on the other

hand, the severity of the health state is even higher when this correlation is analyzed

using the IPW2 estimates instead of the IPW1 estimates.

A similar picture emerges when looking at the proportion of predicted negative

values. The numbers for the OLS and RE values are 2,6 and 2,5, respectively, very

far from those for the IPW1 and, in particular, for the IPW2 estimates, where 10,2

and 25,8 percent of the values are negative, respectively.34 As before, we �nd that the

valuation impact of moving from OLS estimates to a semiparametric estimator with

a di¤erent weighting scheme like IPW1 is substantially higher than that of account-

ing for individual heterogeneity in the variance with the RE estimator. Additionally,

while standard corrective methods suggest that adjusting to the age and sex distri-

bution in the population has almost no e¤ect on the predicted values, the di¤erence

in the proportion of negative numbers in the IPW1 and IPW2 values makes it clear

that standard methods fail to correct for sample selection biases.

Finally, the lower bottom of Table 6 analyzes the within sample predictive ability

of the models. According to the mean absolute error, the standard model estimates

�t better to the values directly provided by respondents than the semiparametric

estimators do. Indeed, the mean absolute error for the IPW1 and IPW2 models

are 37 and 72 percent higher than that for the OLS estimates, respectively. When

looking at the percentage of predictions that are within �k units of the actual value,
we �nd that the standard and IPW1 models perform similarly when dealing with

high precision predictions (k = 0:01). On the contrary, the standard models clearly

outperform the IPW1 model for less demanding precision predictions. The IPW2

model estimates perform worse than the standard ones in any circumstances.

Finding that the standard model �ts closer to the original data than the semi-

parametric one is not a surprising result. As previously discussed, the semiparametric

estimators modify the sample distribution of individuals characteristics and responses

in order to estimate �. In particular, the IPW1 estimator weights-down (weights-up)

the distribution of health state values for respondents of a given treatment status for

those values of the covariates which are over-represented (under-represented) among

34The proportion of negative values when using the EQ-5D estimates for the UK general population
in Dolan (1997) to predict the utilities of the 243 health states that can be de�ned in the EQ-5D
classi�cation system is 34.16 percent. The corresponding proportions for the studies that use the
EQ-5D system in Spanish (Badia et al., 2001), Dutch (Lamers et al., 2006) and Japanese (Tsuchiya
et al., 2002) samples are 37.45, 15.23 and 2.88 percent.
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respondents with that treatment status. Obviously, this results in deviations from the

original sample distribution of the outcome and independent variables. Furthermore,

the IPW2 estimator reweights the weighted distribution of covariates to adjust to

the population distribution. This accounts for the particularly large mean absolute

error calculated for this estimator.

That is, the superiority of the semiparametric model cannot be judge on the basis

of within sample criterias. Indeed, its superiority follows from the following theo-

retical and empirical statements. First, it provides a �exible way of accomodating

covariates and correcting for sample selection biases in multiple continuously mea-

sured individual characteristics that matter for health state values. On the contrary,

the standard way of correcting for the distribution of the covariates in the population

using corrective weights is limited in the number of covariates to include and the

empirical estimates in this paper show that it fails to control for sample selection bi-

ases. Second, the semiparametric estimators make no assumption on the underlying

distribution of health state values and, contrary to other proposed alternatives to the

standard model like the nonparametric Bayesian approach in Kharroubi et al. (2005),

it is easy to implement and interpret and it provides the user with a simple table of

estimated coe¢ cients that de�nes the estimated preference function, resulting in ef-

�ciency and transparency gains.35 Additionally, bootstrapping methods provide an

useful alternative for inference in this setting if the reader is not familiar with the

computation of asymptotic standard errors. Third, the semiparametric estimators

allow for an undetermined amount of heterogeneity in the e¤ect of interest. This is

particularly relevant since we �nd evidence that the valuation impact of a deviation

from full health is likely to vary with the respondent�s background characteristics and

the levels of severity in the other dimensions of health.

5 Conclusions

This paper presents a new approach to model health state values with important

advantadges over the traditional one. In particular, we emphasize the following ad-

vantadges. First, our method makes no assumption on the distribution of health

state values. This is a relevant issue given the skewed, truncated, non-continuous and

hierachical nature of health state valuation data. The normality assumption underly-

35The method in Kharroubi et al. (2005) estimates a value of �kw for every one of the 18.000
health states that can be de�ned in the SF-6D system.
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ing the standard regression estimates is rejected in most empirical applications that

formally test it including ours.

Second, as opposed to the standard regression model, our method accomodates

covariates in a �exible way, eschews parametric assumptions on the relationship be-

tween the outcome and the regressors and it allows for the valuation impact of a

departure form full health in a given dimension to be heterogeneous in individual

characteristics and in the severity of the departure from full health in the other di-

mensions of health. The latter argument is particularly relevant since estimates in

this paper con�rm that there is a signi�cant amount of heterogeneity in the valuation

e¤ect of a departure from full health.

Third, while the standard model estimates are very sensitive to di¤erences in the

covariate distributions for respondents valuing di¤erent levels of severity in di¤erent

dimensions, our method highlights the importance of properly selecting the health

states that are valued in the sample for identi�cation not to rely on extrapolation.

Fourth, our method produces estimates for the population of interest even if the

estimation sample is not representative for that population with regard to many dis-

crete and continuous individual characteristics that a¤ect health state values. The

traditional approach of using corrective weights to adjust for the distribution of in-

dividual characteristics in the population su¤ers from the course of dimensionality

problem. That is, it becomes more and more cumbersome as the number of discrete

variables used to construct corrective weights increases and it cannot accomodate

continuous variables. The estimates in this paper show that relevant di¤erences in

the distribution of individual characteristics between the sample and the population

of interest persist once we adjust the sample for the proportion of individuals of a

given sex and age interval in the population. This result explains the paradox com-

monly found in preceeding studies that the age of the respondent a¤ects health state

valuations but the estimates remain almost unchanged when using corrective weights

de�ned over sex and age intervals only.

Fifth, despite all these advantadges the technical complexity of the proposed es-

timator is only slightly higher than that of the standard regression estimator. In

particular, our method requires the estimation of at most two discrete choice probit

or logit models that are incorporated in any statistical software. Moreover, bootstrap-

ping methods provides an useful aternative for users not con�dent with the calculation

of asymptotic standard errors.

Sixth, our method is easier to implement and interpret than the nonparametric
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Bayesian alternative to the standard regression model that has been recently proposed

in Kharroubi et al. (2005). In particular, and contrary to the estimation method in

that article, our method provides the user with a simple table of estimated coe¢ cients

that de�nes the estimated preference function, resulting in e¢ ciency and transparency

gains.

Regarding the results of the empirical implementation, we �nd relevant discrep-

ancies between the estimates obtained using our method and those obtained using

the standard regression model. In particular, the semiparametric estimates use to be

higher in absolute value than the regression estimates, particularly so when adjusting

for the distribution of individual characteristics in the Spanish population and when

analyzing the valuation e¤ect of small departures from full health. These results sug-

gest that the standard method underestimates the value that the Spanish population

assigns to a given departure from full health and, in particular, to small departures.

In fact, when these estimates are used to predict values for the 18.000 health states

that can be de�ned using the SF-6D classi�cation system, we �nd that the percentage

of negative predictions is 25.7 percent, that is, 23 percentage points higher than that

obtained when using the standard model estimates to predict values.
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A Appendix. Asymptotic properties

We derive the asymptotic properties of b�kw;IPW2 and present those of b�kw;IPW1 as a

particular case. The subscript IPW2 is dropped out to reduce the notation. The

properties of b�kw are derived by viewing it as an M-estimator, that is, as the solution
to a set of estimating equations.36 In particular, b�kw is one element of the vector b�
that solves the vector equation
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for t = f0; 1g and N is the total number of individu-

als in the estimation sample. The solutions to equations  1 (Wi; �) and  2 (Wi; �)

are the maximum likelihood estimates of � and 
, the coe¢ cients of the binary re-

sponse models used to estimate the propensity scores ps and pkw, respectively. We

estimate the propensity scores using the logistic regression model, where p (Q;') =�
1 + exp

�
�QT'

�	�1
. The solution to equation  3 (Wi; �) is the coe¢ cient of interest.

By standard results on M-estimation, under the true parameter value �

p
n
�b� � �

�
�! N

�
0; A (�)�1B (�)

�
A (�)�1

	T�
where

A (�) = E

�
�

�
 (W; �)

�
36Stefanski and Boos (2002) provide an excelent review of the theory of M-estimation. Addition-

ally, Lunceford and Davidian (2004) derive the asymptotic properties of the IPW1 estimator.
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with
�
 (W; �) = @ (W; �) =@�T and

B (�) = E
h
 (W; �) (W; �)T

i
To estimate the asymptotic variance use

bA =
1

n

nP
i=1

�
@ 
�
Wi;b��
@�TbB =

1

n

nP
i=1

 
�
Wi;b�� �Wi;b��T

where the derivative of  can be calculated as

@ (W; �)

@�T
=

0BB@
@ 1(W;�)

@�T
@ 1(W;�)
@
T

@ 1(W;�)

@�Tkw
@ 2(W;�)

@�T
@ 2(W;�)
@
T

@ 2(W;�)

@�Tkw
@ 3(W;�)

@�T
@ 3(W;�)
@
T

@ 3(W;�)

@�Tkw

1CCA
where

A11i =
@ 1 (W; �)

@�T
= � 1

psi (1� psi)
P�P

T
�

A12i =
@ 1 (W; �)

@
T
= A13i =

@ 1 (W; �)

@�Tkw
= 0

A21i =
@ 2 (W; �)

@�T
= A23i =

@ 2 (W; �)

@�Tkw
= 0

A22i =
@ 2 (W; �)

@
T
= � 1

pkwi (1� pkwi)
P
P

T



A31i =
@ 3 (W; �)

@�T
= �

�
DsiDkwiY

�
i

pkwipsi2
� DsiDkwiY

�
i

(1� pkwi) psi2

�
P�

A32i =
@ 3 (W; �)

@
T
= �

�
DsiDkwiY

�
i

p2kwipsi
+

DsiDkwiY
�
i

(1� pkwi)
2 psi

�
P


A33i =
@ 3 (W; �)

@�Tkw
= �1

where P� = @=@� fpsig, P
 = @=@
 fpkwig and Y �
i = DkwiA (1)Yi+(1�Dkwi)A (0)Yi.

Equivalently, the elements of B are calculated as
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B11i =  1 (Wi; �) 1 (Wi; �)
T =

1

psi (1� psi)
P�P

T
�

B12i =  1 (Wi; �) 2 (Wi; �)
T = 0

B13i =  1 (Wi; �) 3 (Wi; �)
T =

�
DsiDkwiY

�
i

pkwipsi2
� DsiDkwiY

�
i

(1� pkwi) psi2

�
P�

B21i =  2 (Wi; �) 1 (Wi; �)
T = 0

B22i =  2 (Wi; �) 2 (Wi; �)
T =

1

pkwi (1� pkwi)
P
P

T



B23i =  2 (Wi; �) 3 (Wi; �)
T =

�
DsiDkwiY

�
i

p2kwipsi
+
Dsi (1�Dkwi)Y

�
i

(1� pkwi)
2 psi

�
P


B31i =  3 (Wi; �) 1 (Wi; �)
T = BT

13i

B32i =  3 (Wi; �) 2 (Wi; �)
T = BT

23i

B33i =  3 (Wi; �) 3 (Wi; �)
T =

�
DsiDkwiY

�
i

pkwipsi
� Dsi (1�Dkwi)Y

�
i

(1� pkwi) psi
� �kw

�2
Finally, it can be shown that the large-sample variance of �kw is

V (�kw) = A�133
�
B33 �BT

23B
�1
22 B23 �BT

13B
�1
11 B13

� �
A�133

�T
The expression of the large-sample variance of �kw in the case where 
 and �

are known is A�133 B33
�
A�133

�T
. The additional two terms in the parenthesis are the

adjustment in the large-sample variance of the e¤ect of interest coming from the �rst

step estimation of the two propensity scores. Interestingly, it results that estimation of

the propensity scores leads to smaller large-sample variance for these IPW estimators

than using the true values. That is, as Lunceford and Davidian (2004) point out, even

if the functional form of the propensity score is known exactly, it is bene�tial from

an e¢ ciency pointview to estimate it. Hirano, Imbens and Ridder (2003) explain

this result in the context of the Generalized Method of Moments and the Empirical

Likelihood estimators.

The expression for the variance of the IPW1 estimator includes only the �rst two

terms in the parenthesis in the latter expression, whereB23 andB33 are now calculated

as the sample average of the following expressions evaluated at the estimated value

of the elements of �
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B23i =

�
DkwiY

�
i

p2kwi
+
(1�Dkwi)Y

�
i

(1� pkwi)
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�
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B33i =

�
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�
i

pkwi
� (1�Dkwi)Y

�
i

(1� pkwi)
� �kw;IPW1

�2
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B Appendix. Variable de�nitions and sources

The statistics for the Spanish population are constructed using data from the Euro-

pean Community Household Panel (ECHP) for the year 2001, and they are provided

by Eurostat. In the empirical analysis we control for the sex and age (in years) of

the respondent, whether he/she is married or cohabiting (MarStat1) or separated,

divorced or widow (MarStat2) and whether the respondent has attained a secondary

level of education (Mid-Educ) or an university degree (High-Educ). We also clas-

sify respondents according to whether their monthly total household income is below

1500 euros, between 1500 and 2000 euros (Income2), between 2000 and 3000 euros

(Income3) or above 3000 euros (Income4). Regarding their smoking behaviour, we

distinguish between non-smokers and respondents who actually smoke less than 10

cigarettes per day (Smoke2), between 10 and 20 cigarettes (Smoke3) and more than

20 cigarettes per day (Smoke4). Additionally, we construct two dummy variables

that indicate if the respondent thinks that his/her health is fair (Own2) or bad/very

bad (Own3). The other two answers to the question of how is your health in general

are good and very good. Finally, we control for the number of children in the house-

hold. Importantly, while the variable constructed using ECHP data refers to children

under the age of 16 years, the corresponding variable from the collected data refers

to children under the age of 12.
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Table 1. Characteristics of sample respondents and Spanish Population

Sample Populationa

Female 50.0 52.05

Age 43.60 46.97

(16.64) (19.04)

MarStat1 59.84 63.59

MarStat2 6.53 11.25

Mid-Educ 34.54 17.56

High-Educ 31.02 20.55

Children (presence) 48.80 25.64

Children (number) 1.82 1.41

(0.66) (0.63)

Income2 28.31 17.39

Income3 29.82 21.76

Income4 18.98 11.47

Smoke2 16.57 9.19

Smoke3 8.63 13.52

Smoke4 1.71 4.74

Own2 10.44 22.25

Own3 1.20 10.72

N 4980 11515

Notes: The table reports percentages for discrete variables and means and standard errors (in

brackets) for continuous variables. a The statistics are calculated using data from the European

Community Household Panel for the year 2001.
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Table 2. OLS and RE estimates.

OLS RE

c 1.000 1.000

PF2 -0.016 -0.025��

PF3 -0.031��� -0.054���

PF4 -0.088��� -0.118���

PF5 -0.103��� -0.106���

PF6 -0.332��� -0.333���

RL2 -0.014 0.005

RL3 -0.041��� -0.046���

RL4 -0.078��� -0.091���

SF2 -0.036��� -0.070���

SF3 -0.063��� -0.079���

SF4 -0.203��� -0.194���

SF5 -0.210��� -0.240���

PAIN2 -0.016 -0.043���

PAIN3 -0.033��� -0.048���

PAIN4 -0.202��� -0.174���

PAIN5 -0.208��� -0.232���

PAIN6 -0.318��� -0.342���

MH2 -0.064��� -0.025���

MH3 -0.080��� -0.050���

MH4 -0.096��� -0.073���

MH5 -0.226��� -0.197���

VIT2 -0.055��� -0.042���

VIT3 -0.120��� -0.094���

VIT4 -0.154��� -0.155���

VIT5 -0.197��� -0.180���

Notes: *, ** and *** denote signi�cance at the 10%, 5% and 1% level, respectively.
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Table 2 (cont). OLS and RE estimates.

OLS RE

Sex 0.015�� 0.015

Age -0.003��� -0.003��

Age sq. 0.003��� 0.003��

MarStat1 0.059��� 0.063���

MarStat2 -0.014 -0.018

Mid-Educ 0.003 -0.002

High-Educ -0.020�� -0.022

Children a -0.010�� -0.010�

Income2 0.021�� 0.025�

Income3 0.036��� 0.039��

Income4 0.055��� 0.051���

Smoke2 -0.001 -0.011

Smoke3 0.026�� 0.030

Smoke4 -0.047� -0.054

Own2 0.007 0.011

Own3 0.038 0.041

Adj. R2 0.856

N 4980 4980

Notes: *, ** and *** denote signi�cance at the 10%, 5% and 1% level, respectively. a Number of

children in the household.
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Table 3. Parametric and Semiparametric estimates.

OLS RE IPW1 IPW2 IPW1r a IPW2r a

c 1.000 1.000 1.000 1.000 1.000 1.000

PF2 -0.016 -0.025�� -0.069��� -0.045� -0.068��� -0.068���

PF3 -0.031��� -0.054��� -0.091��� -0.085��� -0.108��� -0.108���

PF4 -0.088��� -0.118��� -0.134��� -0.142��� -0.141��� -0.141���

PF5 -0.103��� -0.106��� -0.171��� -0.156��� -0.199��� -0.199���

PF6 -0.332��� -0.333��� -0.300��� -0.336��� -0.290��� -0.291���

RL2 -0.014 0.005 -0.062��� -0.078��� -0.063��� -0.063���

RL3 -0.041��� -0.046��� -0.102��� -0.133��� -0.097��� -0.097���

RL4 -0.078��� -0.091��� -0.156��� -0.182��� -0.122��� -0.122���

SF2 -0.036��� -0.070��� -0.055��� -0.066��� -0.058��� -0.058���

SF3 -0.063��� -0.079��� -0.079��� -0.071�� -0.084��� -0.084���

SF4 -0.203��� -0.194��� -0.222��� -0.249��� -0.242��� -0.242���

SF5 -0.210��� -0.240��� -0.236��� -0.249��� -0.237��� -0.237���

PAIN2 -0.016 -0.043��� -0.109��� -0.137��� -0.112��� -0.113���

PAIN3 -0.033��� -0.048��� -0.074��� -0.039� -0.084��� -0.083���

PAIN4 -0.202��� -0.174��� -0.206��� -0.241��� -0.201��� -0.201���

PAIN5 -0.208��� -0.232��� -0.284��� -0.327��� -0.280��� -0.280���

PAIN6 -0.318��� -0.342��� -0.361��� -0.403��� -0.361��� -0.361���

MH2 -0.064��� -0.025��� -0.100��� -0.063�� -0.100��� -0.100���

MH3 -0.080��� -0.050��� -0.164��� -0.184��� -0.176��� -0.176���

MH4 -0.096��� -0.073��� -0.141��� -0.071�� -0.149��� -0.149���

MH5 -0.226��� -0.197��� -0.315��� -0.350��� -0.317��� -0.317���

VIT2 -0.055��� -0.042��� -0.097��� -0.121��� -0.107��� -0.107���

VIT3 -0.120��� -0.094��� -0.188��� -0.207��� -0.199��� -0.200���

VIT4 -0.154��� -0.155��� -0.268��� -0.285��� -0.280��� -0.280���

VIT5 -0.197��� -0.180��� -0.239��� -0.281��� -0.240��� -0.240���

Notes: *, ** and *** denote signi�cance at the 10%, 5% and 1% level, respectively. a The elements

of X are restricted to the sex and age interval the respondent belongs to.
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Table 4. Estimation results for ps (x). First step of the estimation of PF2.

Variable Coe¢ cient

Constant -2.708���

Sex -0.038

Age 0.052���

Age sq. -0.013

Marstat1 -1.626���

Marstat2 -1.620���

Mid-Educ 0.870���

High-Educ 0.375���

Children a 1.074���

Income2 1.235���

Income3 0.952���

Income4 1.131���

Smoke1 0.461���

Smoke2 -0.884���

Smoke3 -1.629���

Own2 -0.804���

Own3 -1.950���

Psedo R2 0.236

N 13509

Notes: *, ** and *** denote signi�cance at the 10%, 5% and 1% level, respectively. a Number of

children in the household.
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Table 5. Parametric and Semiparametric consistent estimates.

OLS RE IPW2

c 1.000 1.000 1.000

PF2 -0.011 -0.027��� -0.045�

PF3 -0.032��� -0.058��� -0.085���

PF4 -0.079��� -0.110��� -0.142���

PF5 -0.106��� -0.111��� -0.156���

PF6 -0.338��� -0.336��� -0.336���

RL2 -0.014 0.013 -0.078���

RL3 -0.032��� -0.034��� -0.133���

RL4 -0.082��� -0.087��� -0.192���

SF2 -0.040��� -0.087��� -0.066���

SF3 -0.062��� -0.088��� -0.071��

SF45 -0.205��� -0.227��� -0.253���

PAIN23 -0.015� -0.027��� -0.076���

PAIN4 -0.206��� -0.169��� -0.241���

PAIN5 -0.194��� -0.224��� -0.327���

PAIN6 -0.335��� -0.361��� -0.403���

MH2 -0.064��� -0.023�� -0.063��

MH3 -0.082��� -0.049��� -0.184���

MH45 -0.158��� -0.136��� -0.204���

VIT2 -0.053��� -0.035��� -0.121���

VIT3 -0.114��� -0.081��� -0.207���

VIT45 -0.183��� -0.165��� -0.228���

Notes: *, ** and *** denote signi�cance at the 10%, 5% and 1% level, respectively.
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Table 6. Estimated tari¤s.

OLS RE IPW1 IPW2

Predictive description

Mean 0.445 0.444 0.293 0.168

St. Dev. 0.215 0.214 0.223 0.252

Percentiles

10 0.158 0.158 -0.002 -0.162

25 0.302 0.302 0.140 -0.006

50 0.456 0.461 0.297 0.171

75 0.601 0.604 0.449 0.345

90 0.716 0.717 0.582 0.495

Negative values (%) 2.63 2.53 10.19 25.76

Predictive ability

MAE 0.174 0.176 0.238 0.299

j pred. error j < k

k = 0:01 4.48 3.86 3.76 1.83

k = 0:05 20.56 20.16 13.86 10.60

k = 0:10 39.82 38.10 26.91 18.39
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