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Abstract

A practice that has become widespread and widely endorsed is that of evalu-
ating forecasts of financial variability obtained from discrete time models by
comparing them with high-frequency ex post estimates (e.g. realised volatil-
ity) based on continuous time theory. In explanatory financial variability
modelling this raises several methodological and practical issues, which sug-
gests an alternative approach is needed. The contribution of this study is
twofold. First, the finite sample properties of operational and practical proce-
dures for the forecast evaluation of explanatory discrete time models of finan-
cial variability are studied. Second, based on the simulation results a simple
but general framework is proposed and illustrated. The illustration provides
an example of where an explanatory model outperforms realised volatility ex
post.
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1 Introduction

The distinction between explanatory models on the one hand and non-explanatory
models on the other is a matter of degree. An example of a model-class that is closer
to the non-explanatory end of the continuum is “pure” time series models. That is,
models that only contain an autoregressive moving average (ARMA) specification
in the mean and/or an autoregressive conditional heteroscedasticity (ARCH) spec-
ification in the variance. Models in this class have proven to be of great value in
financial ex ante forecasting, but their usefulness for conditional forecasting, impact
analysis, counterfactual analysis, and scenario analysis more generally is severely
limited in at least two ways. First, even though properties like ARMA and ARCH
can be given economic interpretations, they remain silent about the specific eco-
nomic phenomena that explains the property in question. For example, an ARCH
model does not give an economic answer to the question why large (in absolute
value) financial returns tend to cluster together. Indeed, for some policy-making
purposes evidence of ARCH is useless without an adequate economic explanation
of why. Second, the explanatory capacity of pure time series models is limited. For
example, explanatory models can explain a substantial part of the remainder, that
is, the error term of the pure time series model, if the right explanatory information
is available.

Explanatory models of financial variability can thus provide essential insight
beyond that of pure time series models in a wide range of situations.1 In risk man-
agement, explanatory models are useful in stress-testing, event analysis, conditional
forecasting and counterfactual analysis. In asset pricing explanatory models provide
a more detailed way of describing the price variation of the underlying asset, and
enables asset pricing conditional on the values of impact variables. In policy-making
explanatory models can be used to inform policy decisions: They shed light on the
impact of a change in the interest rate, of currency market interventions, of changes
in regulatory regime, of changes in liquidity, and so on. Forecast evaluation plays an
informative role in the assessment of explanatory models intended for any of these
purposes.

A practice that has become widespread and widely endorsed is that of evaluating
forecasts of financial variability obtained from discrete time models by comparing
them with non-explanatory high-frequency ex post estimates based on continuous
time theory, see amongst others Zhou (1996), Taylor and Xu (1997), Andersen and
Bollerslev (1998), Andersen et al. (1999), Meddahi (2002), Andersen et al. (2003),
Hansen and Lunde (2006), and Andersen et al. (2006). In particular, numerous
studies investigate and/or use realised volatility—the sum of intra-period squared re-
turns—or one of its related cousins either as comparison benchmark or as a measure
of “true” inter-period volatility, where inter-period volatility is commonly defined

1Indeed, several commentators have even argued that some of the recent financial troubles could
have been avoided had explanatory models been used to a greater extent instead of pure time series
models.
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as the conditional variance of financial inter-period return. The main motivation
for the use of estimates made up of high-frequency intra-period data is that they
are assumed to be more efficient estimates of volatility. In explanatory financial
modelling, however, this approach raises several methodological and practical issues
in addition to the limitations of non-explanatory models pointed out above. Below
a non-exhaustive and incomplete list of five methodological and practical issues are
given. For expository purposes the explanation of each issue is brief, but the first
three of them are elaborated upon in greater detail in the appendix for the interested
reader. The five issues are:

1. In empirical modelling both the mean residuals and the standardised residuals are
derived in the sense that their properties depend on the functional form, and on the
explanatory information in the mean and variance specifications. Since explanatory
information typically is less available at high frequencies, explanatory low-frequency
models can produce substantially better estimates of variability than high frequency
models due to differing information sets. So evaluation procedures that treat neither
type of models as more basic a priori are needed.

2. Since time is needed for an event to bring about another event, explanatory
variables are likely to account for a decreasing portion of variability as the time
increment goes to zero. Indeed, for philosophical reasons the portion will be equal
to zero before the time increment reaches zero. A large part of modern finance
theory is based on the idea that private information disseminates sequentially, and
that it therefore aggregates temporally. In particular, it has been shown that or-
der imbalance or order flow, a measure of temporally aggregated information, can
explain a substantial portion of return variation, see amongst others Blume et al.
(1989), Lee and Ready (1991), Hasbrouck (1991), Chordia et al. (2002), Evans and
Lyons (2002), Engle and Patton (2004), Escribano and Pascual (2006), and Moberg
(2008). However, as the time increment of a mathematical model goes to zero, the
possibility of capturing such temporal aggregation effects vanishes. Consequently,
no continuous time structure is capable of accounting for the whole range of possi-
ble temporal aggregation effects in an internally consistent manner. So even when
explanatory information is available at high frequencies, explanatory modelling at
lower frequencies can produce substantially different results compared with those
implied by continuous time structures, because of temporal aggregation issues (see
also Bertsimas et al. (2000) for a related argument).

3. Comparing the estimates from a discrete time explanatory model with high-
frequency estimates based on continuous time theory constitutes a probabilistic re-
striction, since discrete models are compatible and can be derived from more than
one continuous time structure.2 In particular, continuous time structures implies

2This issue is analogous to the restrictions imposed by microfoundationalism: A macro model
is always compatible with (in the sense that it can be derived from) more than one micro model.
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excessive stability restrictions. For example, if a certain discretisation of a contin-
uous time model is stable over time, then this does not imply that the underlying
continuous time model is stable. Indeed, if any of the infinite discretisations is un-
stable, then—strictly speaking—the assumed underlying continuous time model is
invalid. In practice one would not require that all discretisations of a continuous
time model are stable.3 Nevertheless, the excessive stability requirements only re-
iterates the need for procedures that enables us to evaluate discrete time models
against estimates based on continuous time theory, without treating either as more
fundamental.

4. It is well-known that measurement errors and a range of other market microstruc-
ture issues affect—possibly in substantial ways—the precision of high-frequency esti-
mates, see amongst others Meddahi (2002), Barndorff-Nielsen and Shephard (2002)
Aı̈t-Sahalia and Mykland (2003), Andersen et al. (2005), Aı̈t-Sahalia et al. (2005)
and Aı̈t-Sahalia (2007). Several adjustment procedures of the high-frequency esti-
mates have been suggested in order to account for the presence of microstructure
issues. However, it is not given a priori that the chosen error-adjusting method
yield estimates that are better than those obtained from low-frequency models, pos-
sibly with explanatory information in the mean and variance specification (or both).
So procedures that enable us to evaluate the estimates against each other without
assuming a priori that any of the methods are more correct are needed.

5. The right combination of information and functional form in the conditional mean
specification can result in homoscedastic (mean) errors. For example, an explicit
aim of the General-to-Specific (GETS) methodology is to specify the conditional
mean such that the mean errors become homoscedastic, since heteroscedasticity
frequently is an indication of inadequate specification and/or structural breaks, see
Gilbert (1990), Mizon (1995) or Campos et al. (2005) for overviews of the GETS
methodology. It is inappropriate to compare the constant volatility estimate implied
by homoscedasticity with a time-varying high-frequency estimate, so alternative
comparison procedures are needed.

These methodological and practical issues suggest it is inappropriate to evaluate
explanatory models’ forecasts of variability by comparing them with high-frequency
estimates of continuous time analogues. Instead, a natural and intuitively straight-
forward alternative that suggests itself is to compare variability forecasts in terms
of predictions of squared financial return.4 Squared return is an unsigned, direct
and observable measure of the total relative gain or loss in the price of a financial

3In practice one would typically resort to the ad hoc assumption that the discretisation of
interest is stable. Or, alternatively, in many cases a proportion equal to 1 − α, where α is the
chosen nominal level of the stability test(s) in question under the null of stability, will do.

4I make no claim to originality in proposing squared returns as a measure of financial variability.
Indeed, casual reading suggests it used to be one of the more common measures in academic finance
and economics until the end of the 1990s.
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asset, a magnitude which most economic and financial agents can relate to. By
contrast, only agents that are (substantially) active in derivative markets are likely
to have their profits and losses primarily dependent on volatility—a prediction of
variability—rather than on variability itself. Another advantage of defining financial
variability as squared return is that it then becomes an objectively given magnitude.
In comparison, continuous time notions such as the integrated variance, which is an
example of a continuous time analogue of volatility (realised volatility can be viewed
as an estimate of integrated variance), is neither observable nor entirely objective,
since its properties depend entirely on the assumptions of the assumed continuous
time model. An equally straightforward, direct and objective measure of financial
variability is absolute return. However, the advantage with squared return is that
it more readily enables the joint modelling and analysis of level-effects (for example
through error-correction terms), effects on return via the mean specification, and
effects on volatility via the variance specification.

The main reason squared return fell out of favour during the 1990s is that it is
considered an inefficient estimate of volatility, see for example Andersen and Boller-
slev (1998). This naturally leads to the question: Is it feasible in practice to conceive
of financial variability in terms of squared financial return? The purpose of this
study is precisely to address this question by studying the finite sample properties
of operational and practical evaluation procedures in a simulation study. Appro-
priate understanding in finite samples is crucial since explanatory data is typically
available at lower frequencies only, say, daily, weekly, monthly, quarterly and yearly.
Moreover, based on the simulation results I propose a general but simple framework
that can be used to evaluate explanatory models, non-explanatory models, contin-
uous time models and so on against each other without a priori assuming any of
them as more basic.

The rest of the paper consists of three sections and one appendix. Section 2 con-
tains the simulation study and the simple framework that is suggested with basis
in the simulation results. Section 3 illustrates the use of the framework applied to
ex post and ex ante out-of-sample forecast evaluation, using data that are partic-
ularly prone to the methodological and practical issues that arise when evaluating
explanatory models of financial variability against high frequency estimates based
on continuous time theory. Section 4 concludes and gives suggestions for further
research. Finally, the appendix provides a more detailed characterisation of some of
the methodological and practical issues that arise in the evaluation of explanatory
models of financial variability.
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2 Forecast evaluation of explanatory models of fi-

nancial variability

Denote financial return in period t for rt and consider the model

rt = µt(b, xt) + et (1)

et = σtzt, zt ∼ IID(0, 1) (2)

σ2
t = h(γ, yt). (3)

The first equation decomposes returns into a mean specification µt plus the mean er-
ror et, the second equation decomposes the mean error into the conditional standard
deviation σt multiplied by an IID zero-mean and unit-variance process {zt} (that
is, the standardised error or the “variance error”), and the third equation defines
the conditional variance or volatility specification σ2

t . The b and γ are parameter
vectors, whereas xt and yt are vectors of conditioning variables that may include
contemporaneous and lagged explanatory variables, and possibly lags of rt and zt.
Financial variability is simply defined as r2

t . Now, denote by It = {xt, yt} the infor-
mation at t, and denote by It = {It, It−1, . . .} the information up to and including
t. The conditional variability and the conditional variance or volatility are defined
as E(r2

t |It) = µ2
t + σ2

t and V ar(rt|It) = σ2
t , respectively. In other words, when the

mean specification µt equals zero, then the conditional variability E(r2
t |It) and the

conditional variance or volatility V ar(rt|It) coincide.
Econometric models like (1)-(3) are simplified and partial representations of a

highly complex and evolving social reality, and the probabilistic study of their re-
lation belongs to econometric reduction theory, see amongst others Hendry and
Richard (1982), Florens et al. (1990), Hendry (1995, chapter 9), Spanos (1999),
Davidson (2000) and Sucarrat (2009). An important implication of econometric re-
duction theory is that the properties of the errors et and zt are derived in the sense
that they depend on the conditioning vectors xt and yt, and on how the conditioning
information is used in the mean and variance specifications µt and σ2

t (see appendix
for a more detailed discussion). As a consequence, evaluating discrete models by
comparing their conditional forecasts E(r2

t |It) of variability r2
t with high-frequency

estimates of continuous time analogues of volatility σ2
t can be misleading, in particu-

lar when the explanatory information in the mean or variance specification (or both)
has notable explanatory power. The purpose of this section is to study, by means
of a simulation study, the properties of some procedures that enable us to evaluate
discrete time and continuous time models against each other without treating either
as more basic a priori. In particular, two questions are addressed: (1) What is the
most appropriate loss function?, and (2) What is the most appropriate out-of-sample
forecast test? A substantial number of studies have contributed to the understand-
ing of these questions within the paradigm of volatility being given and independent
of the modeller (as opposed to determined by the explanatory information included
and the functional form chosen by the investigator), see amongst others Andersen
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and Bollerslev (1998), Meddahi (2002), Andersen et al. (2005), Hansen and Lunde
(2005, 2006), and Patton (2007). So it is worth re-iterating that, here, by contrast,
the aim is to shed light on variability model evaluation within the paradigm of
volatility not being given, but a result of the information included in the mean and
variance specifications, and as a result of how the information is used (functional
form) by the investigator. Consequently, the magnitude to forecast is variability r2

t ,
and volatility σ2

t can be considered an appropriate forecast of variability when the
mean µt is equal to or approximately equal to zero.

Subsection 1 motivates and describes the simulation setup, subsection 2 moti-
vates and describes the comparison models, subsection 3 sheds light on what the
most appropriate loss function is, subsections 4 and 5 study the appropriateness of
some common out-of-sample forecast tests, and subsection 6 outlines a general but
simple framework for out-of-sample return variability comparison, which is to be
illustrated in section 4 with a real data set.

2.1 Simulation setup

In order to understand the generality (or lack thereof) of the results of any simulation
study, it is useful to distinguish between the actual DGP on the one hand and a
simulation DGP on the other. The former is the actual process that generates the
data, whereas the latter is at best a statistically valid representation of the actual
DGP. In other words, the results of any simulation study applies, strictly speaking,
only when the simulation DGP is a valid or approximately valid representation of
the actual DGP.

The simulation DGP is given by

rt = bxt + et, et = σtzt, xt ∼ IIN(0, 1), zt ∼ IIN(0, 1),

(4)

σ2
t = ω + αe2

t−1 + βσ2
t−1 + cyt, yt ∼ IID, yt ∈ {0, 1} with P (1) = p,

for t = 1, . . . , T , where xt, zt and yt are mutually independent for all t. Although
seemingly simple, the simulation DGP can actually be viewed as approximating a
wide range of explanatory models of financial asset prices, and many models of the
autoregressive conditional heteroscedasticity (ARCH) and stochastic volatility (SV)
classes. The term bxt is the explained portion of conditional first moment return
variation and may be interpreted as approximating a structure that contains (say)
contemporaneous and/or lagged money market variables (“interest rates”), stock
market variables, order flow variables, news variables, and so on. For the purpose of
a specific example, bxt may be seen as approximating (say) b0 + b1∆oft + b2∆irt +
b3∆pt + b4ECM(st−1, oft−1, irt−1, pt−1), where rt = ∆st, where oft, irt and pt de-
note cumulative order flow, the domestic inter-bank offer rate (a money market
interest rate) and an external financial asset price, respectively, and where ECM(·)
is an error-correction mechanism. A similar interpretation applies to the variance
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Table 1: Descriptive statistics of interdaily (close, weekends excluded, T = 594) and
weekly (close, Friday-to-Friday, T = 118) exchange rate returns in percent from 26
September 2005 to 4 January 2008

USD/EUR YEN/EUR GBP/EUR NOK/EUR
Daily: S.E. 0.446 0.564 0.313 0.356

Kurtosis 3.741 4.918 3.571 3.941
JB 14.825 118.750 18.965 25.487

[0.00] [0.00] [0.00] [0.00]
AR(1) 0.422 4.003 1.984 1.886

[0.52] [0.05] [0.16] [0.17]
ARCH(1) 0.406 56.119 0.938 3.557

[0.52] [0.00] [0.33] [0.06]

Weekly: S.E. 1.021 1.170 0.740 0.780
Kurtosis 2.666 7.047 3.081 4.033
JB 0.550 118.490 0.166 10.845

[0.76] [0.00] [0.92] [0.00]
AR(1) 2.045 5.799 0.052 0.029

[0.15] [0.02] [0.82] [0.86]
ARCH(1) 0.098 3.519 0.920 1.158

[0.75] [0.06] [0.34] [0.28]
S.E. is the standard error of returns, Kurtosis is the sample estimate of kurtosis, JB is
the Jarque and Bera (1980) test for non-normality, and AR(1) and ARCH(1) are Ljung
and Box (1979) tests for first order serial correlation in returns and squared returns,
respectively. Values in square parentheses are the p-values associated with the tests.

specification. For simplicity reasons the volatility persistence term in the variance
specification σ2

t is specified as a GARCH(1,1) structure αe2
t−1 + βσ2

t−1, where 0 <
α + β < 1 (the closer α + β is to 1, the greater volatility persistence, and α +
β ≥ 1 implies covariance non-stationarity). However, the GARCH(1,1) term can
be viewed as approximating a structure that nests a wide range of explanatory
models of volatility persistence, for example models that contain volume and/or
other liquidity variables. The last term cyt in the variance specification is a Bernoulli
jump process, that is, a “jumpy” or non-persistent component. The value c is a non-
negative scalar and {yt} is a two-valued IID process with probabilities P (1) = p and
P (0) = 1− p, respectively. The term cyt can therefore be viewed as approximating
explanatory models of non-persistent volatility that contains, say, contemporaneous
and/or lagged news and/or unexpected events, shocks, and so on.

Letting It stand for the contemporaneous and past conditioning variables {xt, yt,
xt−1, et−1, σt−1, yt−1, . . .}, then the conditional mean E(rt|It) of the simulation DGP
(4) is bxt, the conditional variance (volatility) V ar(rt|It) is σ2

t , the conditional vari-
ability E(r2

t |It) is (bxt)
2 + σ2

t , and the standardised residual zt is (rt − bxt)/σt. A
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measure of the total variation in rt is given by variability r2
t , and two definitions

of the explained portion of variability are conditional variability (bxt)
2 + σ2

t and
unconditional variability b2 + ω

1−α−β
+ cp

1−α−β
, respectively. Unconditional variability

is thus made up of three separate terms: An explanatory term b2 stemming from
the conditional mean, a term ω

1−α−β
that is due to volatility persistence and a term

cp
1−α−β

that is due to the jump component. In order to compare the impact of each of
the three terms a benchmark simulation DGP—a reference point—will be specified
such that, unconditionally, each of the three terms accounts for an equal portion of
total unconditional variability. In other words, in the benchmark simulation DGP
the restriction b2 = ω

1−α−β
= cp

1−α−β
is imposed on the choice of the parameter values.

Moreover, because financial returns are commonly found to be volatility persistent,
and since it is of interest to study the impact of high persistence, α and β are set
to 0.1 and 0.8, respectively. In order to further calibrate the benchmark simulation
set-up such that it becomes realistic, ω is set to 0.02. This implies that the term
( ω

1−α−β
)1/2 = 5−1/2 ≈ 0.45, which is virtually identical to the sample standard devi-

ation of interdaily USD/EUR returns in table 1. In other words, in the case where
b = 0, c = 0 and (ω, α, β) = (0.02, 0.8, 0.1), then the simulation DGP produces an
unconditional standard deviation of returns equal to the empirical estimate of the
daily standard deviation of USD/EUR returns in the period 30 September 2005 -
4 January 2008. The jump probability p in the benchmark simulation DGP is set
to 0.1, which means there is a jump once every tenth observation on average, and
consequently c = 2 and b = 5−1/2. Writing a = (b, ω, α, β, c, p) for notational conve-
nience we therefore have that the benchmark simulation DGP is given by (4) with
a = (5−1/2, 0.02, 0.1, 0.8, 2, 0.1).

Table 2 contains descriptive statistics of simulated returns for different values
of a, and compares with table 1 which contains descriptive statistics of the returns
of four selected daily and weekly exchange rates from 30 September 2005 to 4 Jan-
uary 2008. The four exchange rates are USD/EUR, YEN/EUR, GBP/EUR and
NOK/EUR. The first three are the most commonly traded currency pairs involving
the euro, and compares with the NOK/EUR which will be used in the empirical
illustration in the next section. The choice of NOK/EUR and sample period for
the empirical illustration is partly due to the fact that microstructure issues are
more likely to affect the NOK/EUR exchange rate since it is traded less, and partly
because explanatory data with high explanatory power (order flow) is readily avail-
able for the NOK/EUR exchange rate. Nevertheless, it should be noted that the
“stylised” properties of the NOK/EUR exchange rate returns reported in table 2 do
not suggest that the NOK/EUR behaves fundamentally differently from the other
more liquid currency pairs.

For the benchmark values a1 = (5−1/2, 0.02, 0.1, 0.8, 2, 0.1) the simulated stan-
dard error is 0.77. This is higher than the four daily standard errors and about the
same as the lower of the two weekly standard errors. Removing the jump term, the
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Table 2: Descriptive statistics of simulated returns for parameter values al (l =
1, . . . , 5) when the simulation DGP is given by (4)

a1 a2 a3 a4 a5

S.E. 0.769 0.629 0.631 0.443 0.446
Kurtosis 3.088 2.967 2.942 3.033 2.943
JB 2.521 1.940 1.832 2.340 1.782
R2 0.347 0.507 0.500 0.000 0.000
R2 variability 0.019 0.027 0.027 0.011 0.000

Simulations are in EViews 6 with 10 000 replications, each with T = 100 and a prior burn-
in sample of 100 observations in order to avoid initial value issues. The parameter values
of the simulations are a1 = (5−1/2, 0.02, 0.1, 0.8, 0.2, 0.1), that is, the benchmark values,
a2 = (5−1/2, 0.02, 0.1, 0.8, 0, 0), a3 = (5−1/2, 0.2, 0, 0, 0, 0), a4 = (0, 0.02, 0.1, 0.8, 0, 0)
and a5 = (0, 0.2, 0, 0, 0, 0). S.E. is the average standard error of the simulated returns,
Kurtosis is the average sample kurtosis, JB is the average Jarque and Bera (1980) test-
statistic for non-normality, R2 is the average R2 of the OLS regression rlt = b̂0 + b̂1xt + êlt,
and R2 variability is the average R2 of the OLS regression r2

lt = â0 + b̂1(r̂2
lt + σ̂2

lt) + ûlt,
where (r̂2

lt + σ̂2
lt) is conditional variability for al.

persistence term and the mean term—this gives a5—reduces the standard error of
simulated returns to 0.45. This is equal to the daily standard error of the USD/EUR
exchange rate, and slightly higher than the daily standard errors of GBP/EUR and
NOK/EUR returns. The highest kurtosis among the simulated returns is produced
by a1 and is equal to 3.09. This is relatively low since only weekly USD/EUR and
GBR/EUR exhibit lower kurtosis among the eight empirical estimates. Four of
the remaining six empirical kurtosis values range from 3.571 to 3.941, whereas the
kurtosis of YEN/EUR returns are as high as 4.918 and 7.047 in the daily and weekly
cases, respectively. Graphic inspection suggests the high kurtosis of YEN/EUR
returns is due to large (in absolute value) returns, which to some extent are clustered
(less so in the weekly case). This suggests that setting the jump size c equal to 2—as
in a1—is relatively low compared with empirical returns, or at least for YEN/EUR
returns from September 2005 to January 2008. The fourth row in table 2 contains
the coefficient of multiple correlation R2 of the OLS estimated regression rlt =
γ̂0 + γ̂1xt + êlt, and shows that the jump term has a large impact on the explanatory
power of xt, and that the persistence terms do not have notable impact on the
explanatory power with respect to the benchmark simulation DGP. With no jump
term R2 is as high as 50%, regardless of whether the persistence term is included or
not. Including the jump term, however, reduces R2 to 35%. The fifth and final row
in table 2 contains the R2 of the OLS estimated regression r2

lt = γ̂0+ γ̂1r̂
2
lt+ êlt, where

r̂2
lt is conditional variability of returns under al. It is commonly found that these

so-called Mincer and Zarnowitz (1969) regressions of r2
t on forecasts of variability

exhibit very low explanatory power in terms of the R2, see Andersen and Bollerslev
(1998). The simulations suggest that the low explanatory power (in population
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terms) remains low even for a3, where the conditional mean accounts for as much
as 50% of return variation, and where there is no heteroscedasticity in the errors of
the simulation DGPs.

2.2 Comparison models

Four models will be studied and compared given (4) as the DGP. At each simulation
the “correct” parameter values for each specification will be used instead of estimated
parameter estimates, because estimation at each simulation raises additional issues
that would have to be addressed very carefully.5 In other words, the simulation study
may be seen as replicating situations where the estimation algorithm is reasonably
successful in identifying the “correct” estimates of the specification in question.

The first of the four models is intended to mimic the situation where one fits a
model that includes all three explanatory components of the explained variation in
returns. Specifically, the forecasts of rt and σ2

t for model 1 are given by

r̂1t = bxt, σ̂2
1t = ω + αe2

1t−1 + βσ2
t−1 + cyt (5)

where e1t = rt − bxt, and where the model’s standardised residual at t is given by
ẑ1t = (rt − r̂1t)/σ̂1t. Accordingly, by construction ẑ1t = zt in the simulations. The
second model is intended to mimic the situation where one fits a model that only
includes the persistence and jump terms, which means the conditional mean is set
to zero. Specifically, forecasts of rt and σ2

t for model 2 are given by

r̂2t = 0, σ̂2
2t = [ω + b2(1− α− β)] + αe2

2t−1 + βσ2
t−1 + cyt (6)

where e2t = rt, and where the model’s standardised residual ẑ2t is defined as rt/σ̂2t.
The “augmented” constant [ω+b2(1−α−β)] in the variance specification is intended
to adjust for the absence of bxt in the mean specification, and ensures that the
unconditional variability E(r̂2

2t) of model 2 is equal to the correct unconditional
variability E(r2

t ) in the limit. The third model is intended to mimic the situation
where one fits a model that only includes persistence terms. In other words, the
conditional mean is set to zero and there is no jump term in the conditional variance.
Specifically, forecasts of rt and σ2

t for model 3 are given by

r̂3t = 0, σ̂2
3t = [ω + b2(1− α− β) + cp] + αe2

3t−1 + βσ2
t−1 (7)

where e3t = rt, and where the model’s standardised residual ẑ3t is defined as rt/σ̂3t.
Here the augmented constant in the variance specification is specified as [ω + b2(1−
α−β)+ cp] in order to adjust for the zero mean specification and the absence of the

5For a more detailed discussion, see my response to point 5 raised by anonymous referee number
2 in the “Specific remarks” part during the public review process of the discussion paper version of
this article: http://www.economics-ejournal.org/economics/discussionpapers/2008-18/.
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jump term. Again, the motivation is to ensure that the unconditional variability of
model 3 is equal to the correct unconditional variability in the limit. Finally, the
fourth model is intended to mimic the situation where one uses the sample variance
as an estimate of variability. Specifically, forecasts of rt and σ2

t for model 4 are given
by

r̂4t = 0, σ̂2
4t = simulated sample variance of rt, (8)

where the simulated sample variance is that obtained from the simulations reported
in table 2. In other words, for the benchmark simulations a1 the value of σ̂2

4t is
approximately (0.94)2 ≈ 0.88. The standardised residual ẑ4t is defined as rt/σ̂4t.

2.3 What is the most appropriate loss function?

By construction, model 1 accounts for a greater proportion of explained conditional
variability than model 2, model 2 accounts for a greater proportion of explained
conditional variability than model 3, and model 3 accounts for a greater proportion
of explained conditional variability than model 4. But to what extent are loss func-
tions capable of reproducing this ranking? Numerous loss functions have been used,
studied and suggested in the volatility evaluation literature within the paradigm of
volatility being given, see Patton (2007) for a survey, only three will be compared
here.

The first of the loss functions that will be studied is mean squared error (MSE)
of variability forecasts, and arguably MSE is the most commonly used loss function
in econometric volatility evaluation. The MSE of model m is given by

MSEm =
1

T

T∑
t=1

(r2
t − r̂2

mt − σ̂2
mt)

2. (9)

The lower the MSEm, the greater proportion of variability r2
t is on average explained

by model m. A possible shortcoming with the MSE measure is that it is biased
towards rejecting models unless they explain a substantial proportion of variability.
This motivates the second measure, the mean absolute error (MAE). The MAE of
model m is given by

MAEm =
1

T

T∑
t=1

|r2
t − r̂2

mt − σ̂2
mt|. (10)

The lower the MAEm, the greater proportion of variability is explained by model m.
Finally, the third type of loss function that will be studied is the multiple correlation
coefficient R2 of regressions of the type

r2
t = a + b(r̂2

mt + σ̂2
mt) + umt, t = 1, . . . , T, (11)
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Table 3: Probabilities of obtaining a correct ranking of models 1 to 4 using MSE,
MAE and the R2 of Mincer-Zarnowitz regressions when a is equal to the benchmark
values (5−1/2, 0.02, 0.1, 0.8, 0.2, 0.1)

T MSE MAE R2

25 0.28 0.44 0.33
50 0.39 0.49 0.47
100 0.52 0.57 0.65
500 0.85 0.62 0.96
1000 0.96 0.61 0.99

Simulations are in EViews 6 and R 2.6.1 with 1000 replications, each with a prior burn-in
sample of 100 observations in order to avoid initial value issues.

where a and b are parameters, and where ut is the error term. These regressions are
commonly referred to as Mincer-Zarnowitz regressions after Mincer and Zarnowitz
(1969), and have proved useful in the forecast evaluation of a range of different
economic and financial series.

Table 3 contains the simulated probabilities of obtaining the correct ranking of
all four models for the benchmark values a1. Ideally, the probability of providing
a correct ranking should increase with sample. This is indeed the case for MSE
and R2, but not always the case for MAE. Comparing MSE and R2, the latter is
more likely (between 3 and 13 percentage points) to provide the correct ranking
at all the studied sample sizes. It should be noted though that a possible reason
for this is that the constant model—which in the simulation by construction is
the worst—always produces an R2 of zero. This suggests that MSE generally is
preferable to R2, since a biased model can produce high R2 although far off. The
MAE increases in probability until T = 500 where the probability is 62%, but then
for T = 1000 the probability drops 1 percentage point to 61%. Closer inspection of
the simulation results reveals that the source of this is the constant model (see table
4). The probabilities of correctly ranking the other models always increase with
sample size when MAE is used, but not for model 4. Another result that is clear
from the simulations, and which is of practical interest, is that in small samples,
say, (approximately) when T ≤ 100, then the MAE is considerably more likely to
provide a correct ranking than MSE, and the magnitude is sufficiently high to be of
practical use. Additional simulations (not reported) with different parameter values
predictably suggest that the probabilities in table 3 fall as the difference between
the models is reduced, and that the probabilities fall as the values of the parameters
b, α, β and c are reduced. However, the property that probabilities increase with
sample size when MSE, MAE and R2 are used is retained (an exception is model 4
when MAE is used in large samples, see characteristic 3 in the next paragraph).

Table 4 contains the simulated probabilities for each of the model’s rank when
the DGP is given by (4) and the benchmark values a1. There are at least three
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characteristics of interest that emerge from the results:

1. The only loss functions that always (that is, for all four models) yield highest
probabilities for the correct ranking regardless of sample size are MSE and MAE.
The R2 yields the highest probability for the correct ranking most of the time, but
not when T = 25 for models 2 and 3. For these models the R2 are 2% points more
likely to incorrectly rank model 3 in front of model 2.

2. In samples smaller than (approximately) 100 observations, then the MAE is more
likely than both MSE and R2 to correctly rank each model regardless of the others’
rank. In other words, the probability of correctly ranking a single model regardless
of the correctness of the other models’ rank can be substantially higher than the
probability of correctly ranking all four models simultaneously. This is useful when
one is interested in evaluating a certain model against a set of comparison models
rather than obtaining the correct ranking between all the models. For example,
ranking according to MAE when T = 25, then the respective probabilities for models
1 to 4 are as high as 70%, 56%, 51% and 91%. By contrast, the probabilities for
MSE when T = 25 are 67%, 42%, 42% and 69%.

3. Increasing the sample size increases the probability of ranking each model cor-
rectly regardless of the others’ ranks if MSE and R2 are used, but not always when
MAE is used. The source of this anomaly is model 4 whose probability of being
ranked correctly falls from 90% to 84% when T increases from 500 to 1000.

Additional simulations predictably suggest that the probabilities in table 4 fall as
the difference between the models is reduced, and that the probabilities fall when
the size of the parameter values is reduced. However, the property that probabilities
increase with sample size when MSE, MAE and R2 are used is retained also for each
model’s rank regardless of the others’ rank.

2.4 Multiple comparison tests

The loss functions MSE, MAE, Kurtosis and the R2 of Mincer-Zarnowitz regressions
can provide rankings of the variability forecasts, but the measures alone do not
give any information regarding the statistical significance of the forecast properties.
A common econometric evaluation strategy is that of assessing whether the loss
associated with the forecast errors of one or several models is significantly smaller
than the loss associated with the forecast errors of a benchmark model. Three tests
that can be used for this purpose are the modified version of Diebold and Mariano’s
(1995) comparative forecast accuracy test (MDM), see Harvey et al. (1997), White’s
(2000) so-called “reality check” (RC) and Hansen’s (2005) test for superior predictive
ability (SPA) (cf. Hansen and Lunde 2005, and Bauwens and Sucarrat 2008). If
g(rt, r̂mt, σ̂

2
mt) denotes the loss associated with the predictions of model m at t, and

if g(rt, r̂t, σ̂
2
t ) denotes the loss associated with the benchmark model at t, then the
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MDM test provides a simple and flexible way of testing the null of the benchmark
yielding less or equal loss, that is, E[g(rt, r̂t, σ̂

2
t )] ≤ E[g(rt, r̂mt, σ̂

2
mt)], even when

the losses are possibly contemporaneously and/or serially correlated. Moreover, the
simulations by Harvey et al. (1997) suggest the MDM test statistic behave quite well
in samples of as small as eight observations. The RC and SPA tests can be viewed as
variations of the MDM test, but differ in important ways. Instead of testing whether
each of the comparison models is significantly better than the benchmark, they test
whether the best model is significantly better or not, taking into account that the
same data is re-used. That is, the RC and SPA tests control for the extent of “data
mining”. However, a disadvantage with RC and SPA is that they can be overly
conservative (cf. Romano et al. 2008). The main difference between the SPA and
RC tests is that they use different test-statistics, and according to Hansen (2005)
the SPA test is more powerful and less sensitive to irrelevant alternatives than the
RC test.

The purpose of this subsection is to assess the power of the MDM, RC and SPA
tests under the alternative assumption that one or more models are better than
the chosen benchmark. In the simulations we set model 4, the constant variability
model, as the benchmark, which means that the three other models are better by
construction. Two loss functions g(·) will be studied in the simulations, MSE and
MAE. The loss differential dt at t is defined as g(rt, r̂4t, σ̂

2
4t)− g(rt, r̂mt, σ̂

2
mt) for m =

1, 2, 3. When MSE is the loss function then dt = (r2
t − r̂2

4t− σ̂2
4t)

2− (r2
t − r̂2

mt− σ̂2
mt)

2,
where r2

t − r̂2
4t − σ̂2

4t is the variability forecast error of model 4 at t, and where
r2
t − r̂2

mt− σ̂2
mt is the variability forecast error of model m = 1, 2, 3 at t. When MAE

is the loss function then dt = |r2
t − r̂2

4t − σ̂2
4t| − |r2

t − r̂2
mt − σ̂2

mt|.
Table 5 contains the simulated rejection probabilities of the null of equal or

greater loss 1-step ahead for various sample sizes T , using a nominal size of 10%, for
the benchmark values a1 = (5−1/2, 0.02, 0.1, 0.8, 0.2, 0.1) of the simulation DGP. For
MDM three tests are made at each sample size, namely m1 against m4, m2 against
m4 and m3 against m4. Since the models have been specified such that m1 is better
than m2, m2 is better than m3 and m3 is better than m4, the MDM results should
ideally exhibit three properties. First, that the rejection probability of m1 vs. m4 is
equal to or higher than the rejection probability of m2 vs. m4, and that the rejection
probability of m2 vs. m3 is equal to or higher than the rejection probability of m3 vs.
m4. Because multiple comparison tests are often used to choose among models, so it
is desirable that better models are more likely to reject the null. The table suggests
that MSE satisfies this property at all sample sizes, although the probabilities of
m2 vs. m4 and m3 vs. m4 are virtually equal at all sample sizes. MAE is close
to satisfying the property, since the rejection probability of m1 vs. m4 is always
higher than the two other rejection probabilities. However, although the rejection
probability of m2 vs. m4 is similar to the rejection probability of m3 vs. m4 at
all sample sizes (the biggest difference is 2% points), the latter is always greater or
equal. A second property that is desirable for a multiple comparison test is that the
rejection probabilities increase with sample size. Both MSE and MAE exhibit this

15



Table 5: Rejection probabilities of the modified Diebold-Mariano (MDM), reality
check (RC) and superior predictive ability (SPA) tests with a nominal level of 10%
using MSE and MAE as loss functions when a is equal to the benchmark values
(5−1/2, 0.02, 0.1, 0.8, 0.2, 0.1)

T m4 MDM T Loss RC SPA
vs. MSE MAE

25 m1 0.38 0.61 25 MSE 0.25 0.23
m2 0.25 0.51 MAE 0.41 0.43
m3 0.24 0.53

50 MSE 0.26 0.21
50 m1 0.46 0.78 MAE 0.47 0.50

m2 0.30 0.72
m3 0.30 0.74 100 MSE 0.33 0.22

MAE 0.52 0.55
100 m1 0.62 0.95

m2 0.40 0.91 500 MSE 0.85 0.75
m3 0.37 0.92 MAE 0.90 0.91

500 m1 1.00 1.00 1000 MSE 0.98 0.96
m2 0.91 1.00 MAE 0.99 0.99
m3 0.85 1.00

1000 m1 1.00 1.00
m2 1.00 1.00
m3 0.98 1.00

Simulations are in R 2.6.1 and Ox 5/SPA 2.02 (see Hansen and Lunde 2007) with 1000
replications, each with a prior burn-in sample of 100 observations in order to avoid initial
value issues. The MDM test uses a t(1)-distribution for the test-statistic, and in the
RC and SPA simulations the nominal value is compared with the consistent p-value. All
three tests are one-sided, and the number of bootstraps and the value of the dependence
parameter in the RC and SPA tests are 1000 and 0.5, respectively.
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property. A third property that a multiple comparison test should ideally exhibit is
of sufficiently high power to reject the null in small samples. The table suggests that
this is indeed the case with MAE for the benchmark values, since the probability is
more than 50% when T = 50, and more than 70% when T = 100. Unfortunately,
additional simulations (not reported in the tables) suggest that these probabilities
can be substantially lower for different parameter values. For example, with no
mean, that is, a = (0, 0.02, 0.1, 0.8, 0.2, 0.1), the maximum MAE probabilities are
22%, 26%, 30%, 53% and 73% for the five sample size (T = 25, 50, 100, 500, 1000).
In other words, when the mean information carries little or no explanatory power
the MDM test is unlikely to reject the null in small samples. With a mean but no
ARCH and no jump by contrast, that is, a = (5−1/2, 0.2, 0, 0, 0, 0), the maximum
MAE probabilities for the five sample sizes are generally higher, namely 19%, 33%,
59%, 100% and 100%.

For the benchmark values a1 = (5−1/2, 0.02, 0.1, 0.8, 0.2, 0.1) the results for the
SC and SPA tests in table 5 can be summarised in five characteristics: (1) the
rejection probabilities generally increase when sample size increases, (2) for both
RC and SPA the MAE criterion is more powerful than MSE, (3) the power of
the RC and SPA tests are relatively similar, since they differ a maximum of 10
percentage points (for MSE when T = 100), (4) the RC test is more powerful
than SPA when MSE is used as criterion, whereas SPA is more powerful when
MAE is used, and (5) both RC and SPA are powerful in small samples, since their
rejection probability is about 50% for T = 50 and T = 100 when MAE is used.
Unfortunately, however, additional simulations (not reported in the tables) suggest
that the characteristics (1)-(5) are not necessarily reproduced when the parameter
values differ from the benchmark values. But an even more serious shortcoming
suggested by the additional simulations is that they do not provide clear guidance
as to whether MSE or MAE is preferable, since their comparative power depends
greatly on the parameter values of the DGP. Moreover, the additional simulations do
not provide clear guidance as to whether RC or SPA is preferable nor under which
circumstances. A likely reason for this is that both RC and SPA are asymptotic tests,
whose properties are not necessarily approximated in (moderately) small samples.
Presumably a more comprehensive and detailed simulation study could shed further
light on these issues.

2.5 Mincer-Zarnowitz regressions

The loss functions provide information about the ranking between models, whereas
the multiple comparison tests provide information about whether any model or group
of models is significantly better than the benchmark model(s). However, neither
the loss functions nor the tests provide information about the degree of forecast
bias. Several tests associated with Mincer-Zarnowitz regressions provide simple
ways of obtaining such information. Mincer-Zarnowitz regressions of variability r2

t
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on variability forecasts take the form

r2
t = a + b(r̂2

mt + σ̂2
mt) + umt, t = 1, . . . , T (12)

where r̂2
mt+σ̂2

mt is the variability forecast of model m. Ideally a and b should be equal
or close to 0 and 1, respectively, because then the forecasts are deemed “unbiased”
in the sense that they do not tend to over- nor underpredict.

Table 6 contains the simulated rejection probabilities of four different null hy-
potheses associated with Mincer-Zarnowitz regressions, using a nominal level of 10%.
It should be noted that for model 4 it is not possible to undertake tests 1 and 4, since
the variability forecasts of model 4 are constant (including a constant in addition
to the constant variability forecast results in co-linearity between regressors). In
test 1 the null is a = 0 and should not be rejected for model 1, whereas it should
be rejected for models 2 and 3. Overall, the simulations suggest test 1 behaves
as desired in large samples, but not in small samples. The rejection probabilities
are usefully close to the nominal level of 10% for model 1, since they range from
22% when T = 25 to 11% when T is equal to 1000. Also, for T = 50 or higher
the rejection probability falls as the sample size increases. For model 2 and 3 the
rejection probability increases—as desired—with sample size, but unfortunately the
probabilities are somewhat low in small samples since they vary from 27% when
T = 25 to 48% when T = 100 for model 2, and from 32% when T = 25 to 38% when
T = 100 for model 3. This suggests test 1 is unlikely to be informative in practice
in small samples.

Overall, tests 2 and 3 do not exhibit desirable properties. In test 2 the null is
b = 0 and it would be desirable that the null is rejected for model 1, and that model
1 exhibits the highest rejection probability for each sample size. Compared with
models 2 and 3 this is indeed the case, but not compared with model 4. Similarly,
in test 3 it would be desirable that the null of b = 1 is rejected for models 2, 3 and
4 but not for model 1, and that the probabilities increase with sample size T for the
former models and decrease with T for the latter. Unfortunately, this is not the case
for model 2 where the rejection probabilities decrease with sample size, and where
rejection probabilities are lower than for model 1 (except when T = 1000).

In test 4 the null is the joint hypothesis that a = 0 and b = 1, and among the
four tests this is the one that exhibits the most desirable properties. As in test 1 the
rejection probabilities decrease with sample size for model 1, and in large samples
the rejection probability is close to the nominal level as they range from 21% for
T = 100 to 11% for T = 1000. In small samples, however, the test is notably over-
sized since the probabilities are 36% for T = 25 and 28% for T = 50. A property
of test 4 which is in line with the results for test 1 is that the rejection proba-
bilities of models 2 and 3 generally increase—as desired—with sample size. The
qualifier “generally” refers to the characteristic that, for model 3, probabilities first
fall until T = 100 and then increase. Overall, then, the results suggest that tests 1
and 4 can be useful in econometric practice, but the degree of usefulness depends
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Table 6: Rejection probabilities of null hypotheses associated with the Mincer-
Zarnowitz regression r2

t = a + b(r̂2
mt + σ̂2

mt) + umt, using a nominal level of 10%,
when a is equal to the benchmark values (5−1/2, 0.02, 0.1, 0.8, 0.2, 0.1)

Model T Test 1 Test 2 Test 3 Test 4
H0 : a = 0 H0 : b = 0 H0 : b = 1 H0 : a = 0, b = 1
H1 : a 6= 0 H1 : b 6= 0 H1 : b 6= 1 H1 : a 6= 0, b 6= 1

1 25 0.22 0.44 0.33 0.36
50 0.23 0.67 0.27 0.28
100 0.17 0.91 0.19 0.21
500 0.13 1.00 0.15 0.13
1000 0.11 1.00 0.10 0.11

2 25 0.27 0.13 0.26 0.30
50 0.36 0.19 0.23 0.52
100 0.48 0.37 0.20 0.85
500 0.77 0.97 0.14 1.00
1000 0.88 1.00 0.11 1.00

3 25 0.32 0.15 0.42 0.46
50 0.37 0.14 0.43 0.40
100 0.38 0.17 0.40 0.33
500 0.46 0.73 0.46 0.36
1000 0.54 0.95 0.52 0.45

4 25 – 1.00 0.64 –
50 – 1.00 0.71 –
100 – 1.00 0.79 –
500 – 1.00 0.99 –
1000 – 1.00 1.00 –

Simulations are in EViews 6 with 1000 replications, each with a prior burn-in sample of
100 observations in order to avoid initial value issues. White (1980) standard errors are
used in all tests. The coefficient tests of a = 0 and b = 0 in tests 1 and 2 are two-sided,
and the Wald coefficient restriction tests in tests 3 and 4 are the χ2 versions.
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on sample size. For small samples (T between 25 and 100) the tests may not be
very informative, with test 1 being less informative than test 4. Finally, we can
also conclude that Mincer-Zarnowitz regressions on constant variability predictions
are not very useful, since tests 1 and 4 are not applicable to constant models of
variability.

2.6 A simple framework

The simulations suggest the following simple but general three step framework for
financial variability point forecast comparison:

1. Use MAE or MSE of variability forecasts to rank the models, since both MAE and
MSE exhibit the property that the probability of correctly ranking each model—
regardless of the others’ ranking—is always the highest among the rank probabilities.
Overall, these properties are retained also for parameter values that differ from the
benchmark DGP. Whether MAE or MSE is more appropriate depends on sample
size. As a rule of thumb, MAE is more likely to provide the correct ranking in
small samples of up to about 100 observations, whereas MSE is more likely to
provide the correct ranking in samples larger than 100 observations. With MSE the
probability of obtaining the correct ranking increases with sample size. With MAE
the probability of obtaining the correct ranking increases with sample size until
T = 500, but then decreases as the sample size increases further. Closer inspection
of the simulation results revealed that the source of this unexpected behaviour is the
constant model, whose ranking probability decreases when the sample size becomes
very large.

2. Compare the models against a benchmark using the MDM test and the RC
and/or SPA tests. For the MDM test the MAE is generally more powerful than
MSE and kurtosis, and this property remains for parameter values that differ from
the benchmark DGP. The properties of the RC and SPA tests by contrast depend
on the parameter values of the simulation DGP. So although the RC and SPA tests
provide additional information to the MDM, that additional information should be
interpreted with great care.

3. Run Mincer-Zarnowitz regressions, focusing on the R2 of the regressions and on
the joint hypothesis test a = 0, b = 1. The test provides information about the
degree of forecast bias and in the simulations it exhibited two desirable properties.
Namely that the rejection probabilities tend toward the nominal size as the sample
size increases when the null is true, and that the rejection probability generally
increases with sample size when the null is not true.6 The R2 provides additional
information on bias and how it can possibly be corrected. For example, if a model

6“Generally” because the simulations suggests model 3 is an exception. For model 3 the rejection
probability first decreases until T = 100 before it increases again.
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ranks badly according to MSE and MAE but produces a high R2, then this suggests
that the model’s forecasts can be considerably improved upon simply by means of a
linear transformation. Indeed, as we will see in the ex post comparison in the next
section, an example of this is realised volatility.

3 An empirical illustration

The purpose of this section is to illustrate the use in practice of the simple framework
outlined at the end of the previous section. The illustration will be on weekly
(close, Friday-to-Friday) Norwegian exchange rate (NOK/EUR) data from 7 October
2005 to 4 January 2008, a total of 118 weekly observations. The reason behind
this data choice is that they are very suited to illustrate the methodological and
practical issues that can arise in the forecast evaluation of explanatory models of
financial variability. The Norwegian krone is a minor currency in terms of volume
in the currency markets, and so market microstructure issues are likely to be more
pronounced than for, say, the EUR/USD exchange rate. Also, the Norges Bank
(The Central Bank of Norway) makes weekly order flow data of the Norwegian
krone (NOK) freely available on their website, which means the explanatory power
in terms of R2 of exchange rate returns is likely to be relatively high.7 Nevertheless,
it should be noted that daily and weekly NOK/EUR returns do not behave in a
fundamentally different way from the returns of more liquid currency pairs involving
the euro, see table 1 in section 2.1.

In order to undertake a true out-of-sample forecast evaluation the sample is di-
vided in two at 19 January 2007. The 68 observations up to and including this
date constitute the estimation and model design sample, whereas the 50 observa-
tions after this date constitute the forecast evaluation sample. No re-estimation
of any model is undertaken using data from after 19 January 2007, so the exper-
iment is a true out-of-sample exercise. Both ex post and ex ante evaluations are
undertaken, but for expository simplicity only for 1-step forecasts. The objective
of an ex post evaluation is to shed light on the accuracy in conditional forecasting
and counterfactual analysis situations. In other words, how well an explanatory
model forecasts given that the values of the conditioning variables are correct. If
correctly predicting the values of the conditioning variables does not improve upon
forecast accuracy beyond that of the non-explanatory models, then this suggests the
explanatory model does not constitute an improvement in conditional forecasting
and counterfactual analysis compared with the non-explanatory models. The objec-
tive of an ex ante evaluation is to shed light on the accuracy of explanatory models
when the values of the conditioning variables are uncertain. One cannot necessarily

7The Norwegian order flow data are collected daily since 2 October 2005, but Norges Bank
only makes weekly aggregates publicly available via their statistics webpages. Currently, the data
can be downloaded via the url http://www.norges-bank.no/templates/reportroot____60389.
aspx and are described in more detail in Meyer and Skjelvik (2006).
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expect the explanatory model to forecast better than the non-explanatory models
in this case, but ideally the explanatory model should forecast at least as well as
the non-explanatory models.

The section is divided in two. The first subsection presents the models to be
compared, whereas the second subsection contains the out-of-sample forecast eval-
uation.

3.1 The models

Four models of exchange rate return variability are compared. The first model is an
explanatory model of exchange rate return and is referred to as ECON. The model
is explanatory in the sense that it contains several explanatory variables, including
currency order flow, and Norwegian and Euro-area money market interest rates.
The model is given by (p-values in square brackets):

100∆st = 0.09
[0.00]

∆xt − 1.48
[0.02]

(∆irno
t −∆iremu

t )− 17.11
[0.00]

ECMt−1 + ê1t,

ECMt = st − 1.99 + 4.51irno
t − 8.02iremu

t

ê1t = σ̂1tẑ1t, σ̂1t = 0.57, ẑ1t ∼ IIN(0, 1)

R2 : 0.42 AR1 : 1.02
[0.31]

ARCH1 : 0.02
[0.90]

JB : 0.03
[0.99]

T = 68

The variable 100∆st is the Norwegian krone against the euro (NOK/EUR) log-return
in percentages from the end of Friday in week t− 1 to the end of Friday in week t,
which means positive values imply a depreciation of the Norwegian krone. ∆xt is
a measure of worldwide forward order flow involving the Norwegian krone (positive
values means there is net demand for foreign currency) in billions of Norwegian kro-
ner, ∆irno

t is the change in the Norwegian 1-week money market yield in percentage
points and ∆iremu

t is the change in the euro-area 1-week money market yield in
percentage points.8 The term ECMt is the estimated disequilibrium implied by an
OLS estimated cointegration relation between st, irno

t and iremu
t , where st is equal

to log(NOK/EUR). The explanatory power in terms of R2 is 0.42, which is high in
an exchange rate context, and the errors are homoscedastic and normal according
to standard tests and common significance levels. AR1 and ARCH1 are the Ljung
and Box (1979) test statistic for first order serial correlation in the residuals and
squared residuals, respectively, and JB is the Jarque and Bera (1980) test statis-
tic for non-normality in the residuals. Values in square brackets are the p-values

8The rawdata of st, irno
t and iremu

t are the daily series ew:nor19101, ew:14307 and ew:emu14813
from Reuters - EcoWin. The source of and further reading on the order flow data is contained in
footnote 7.
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associated with the tests. Several conditional variance specifications that included
GARCH terms and explanatory variables—including volume variables—were tried,
all resulting in either numerical problems or insignificant parameter estimates. So
even though the conditional variance might not be homoscedastic, this is neverthe-
less the practical option that suggests itself to the modeller according to standard
tests and modelling strategies. ECON’s ex post forecast r̂1t of the conditional mean
is given by 0.09∆xt−1.48(∆irno

t −∆iremu
t )−17.11ECMt−1, and the ex post forecast

of conditional variability is given by r̂2
1t + σ̂2

1t. In an ex ante situation the contempo-
raneous values of the variables ∆xt, ∆irno

t and ∆iremu
t would have to be forecasted.

For simplicity, the ex ante forecast of the squared conditional mean forecast r̂2
1t is

specified as (0.09)2x + (1.48)2ir + (17.11ECMt−1)
2, where x and ir are the sample

variances of ∆xt and (∆irno
t − ∆iremu

t ), respectively, in the estimation and model
design sample.

The second model that will be evaluated is realised volatility (RV), that is, the
sum of squared intra-weekly equidistant returns. Under certain assumptions, in-
cluding no measurement error and market microstructure noise, it can be shown
that RV provides a consistent estimate of integrated variance (IV)—a continuous
time analogue of discrete time volatility—when the time increment goes to zero (see
appendix). The assumptions of no measurement error and no market microstructure
noise are unlikely to hold—in particular in the Norwegian case, and numerous mod-
ifications and extensions to RV have been proposed, see Aı̈t-Sahalia (2007) for an
overview. For simplicity, however, since the forecast comparison is intended for illus-
tration rather than as a comprehensive evaluation of state-of-the-art forecast models,
only RV is included here. The weekly RV series is made up of 30-minute squared
log-returns using end-of-interval mid-point quotes from Olsen Financial Technologies
(OFT). The RV model is given by (p-values in square brackets):

100∆st = ê2t, ê2t = σ̂2tẑ2t, ẑ2t ∼ IIN(0, 1)

σ̂2
2t =

N(t)∑

n(t)=1

(100∆sn(t))
2

R2 : 0.00 AR1 : 0.06
[0.80]

ARCH1 : 0.78
[0.38]

JB : 0.77
[0.68]

T = 68

The term σ̂2
2t is RV at t and the diagnostic tests AR1, ARCH1 and JB are of the

standardised residual ẑ2t = 100∆st/σ̂2t. The ex post variability forecast is given by
σ̂2

2t, that is, RV at t, whereas the ex ante forecast is given by the fitted values of an
AR(1) model of RV.9

The third model is a plain exponential GARCH(1,1) model, that is, a plain
EGARCH(1,1) model. The model is “plain” in the sense that the conditional mean

9Only one lag is included because further lags are insignificant at 10%. The in-sample R2 of
the fitted model is 16%, and the standardised residuals are non-normal white noise according to
standard diagnostic tests.
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is set to zero, and the model is exponential in the sense that the conditional variance
has an exponential specification. The main motivation for the exponential specifi-
cation instead of a GARCH(1,1) is that the latter produces negative fitted values
of conditional variance. The EGARCH(1,1) is widely used and has been exten-
sively studied in the academic literature since it was put forward by Nelson (1991).
Specifically the model is (p-values in square brackets):10

100∆st = ê3t, ê3t = σ̂3tẑ3t, ẑ3t ∼ IIN(0, 1)

log σ̂2
3t = −1.19

[0.00]
+ 0.25

[0.48]
| ê3t−1

σ̂3t−1

| − 0.50
[0.37]

log σ̂2
3t−1

R2 : 0.00 AR1 : 0.12
[0.73]

ARCH1 : 0.06
[0.80]

JB : 1.19
[0.55]

T = 68

The diagnostic tests are of the standardised residuals, and both the ex post and ex
ante forecasts of variability are given by σ̂2

3t.
11

The fourth and final model that is included in the comparison is the simplest
version of a constant variance model (variation about zero, division over T ):

σ̂2
4 =

1

T

T∑
t=1

(100∆st)
2

R2 : 0.00 AR1 : 0.00
[0.99]

ARCH1 : 0.03
[0.86]

JB : 1.44
[0.49]

T = 68

The diagnostic tests are of the standardised residual ẑ4t = rt/σ̂4, the square brackets
contain the associated p-values, and both the ex post and ex ante forecasts are given
by σ̂2

4.

3.2 Variability forecast comparison

Explanatory models can provide conditional forecasts, say, the impact on variability
of a change in the interest rate, and counterfactual analysis, say, what the profit
would had been if a derivative had been priced conditional on a change in the inter-
est rate rather than not. The objective of an ex post comparison is to evaluate the
forecast accuracy of explanatory models in such situations, which amounts to the
assumption that the values of the conditioning variables are correct. If explanatory
models do not fare better than the “non-explanatory” models when the conditioning
information is correct, then the explanatory models do not provide insight beyond
the non-explanatory models for the purpose of conditional forecasting, counterfac-
tual analysis and scenario analysis more generally. Table 7 contains the ex post

10It should be noted that we use a slightly reparametrised version of Nelson’s (1991) model.
11Estimation is by quasi maximum likelihood (QML) in EViews 6 using the Marquardt algorithm

and no backcasting.
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1-step out-of-sample forecast evaluation results of the four models. According to
the MAE criterion ECON is the best forecaster of variability, the constant variabil-
ity model is second, the EGARCH(1,1) comes third and RV is last. The p-value of
the SPA test is 13%, which suggests that there is no model that is significantly bet-
ter than the benchmark MAE at common significance levels, say, 1%, 5% and 10%.
However, one should bear in mind that the simulations suggested that the power of
the SPA test can be very low in small samples—even when the mean information
carries a reasonably high explanatory power. Also, the supporting simulations sug-
gested the p-values of the SPA test should be handled with great care. The MDM
test suggests stronger insignificance, since the lowest p-value produced by the three
models that are tested against the benchmark is 31%. But also for the MDM test
one should keep in mind that the power can be very low. That RV produces the
worst ex post forecast of variability according to MAE is possibly surprising, but an
explanation is suggested by the relatively high R2 of 20% in the Mincer-Zarnowitz
regression. This is second highest after ECON with 0.48%, which suggests that the
RV forecast is biased and can be improved upon in a straightforward manner.12 The
bias of the RV forecast nevertheless underlines that the precision of high-frequency
estimates based on continuous time theory is questionable empirically. The R2 of
the GARCH(1,1) model’s forecasts are, as expected, very low, 1%, whereas the R2 of
the constant model’s forecast by construction is equal to zero. The joint Wald test
of a = 0, b = 1 is not rejected for ECON, whereas it is for RV and EGARCH(1,1).
Moreover, the residuals of RV are serially correlated, which supports the previous
evidence of it being biased.13 All in all, then, the results are indeed in favour of
ECON for conditional forecasting and counterfactual analysis purposes.

Ideally an explanatory model should not only be useful for conditional forecast-
ing, counterfactual analysis and other situations where the assumption that the
values of the conditioning variables are correct is appropriate. Explanatory mod-
els should ideally also be useful for forecasting when the values of the conditioning
variables are uncertain. In such cases one cannot expect that explanatory models
fare better than non-explanatory models. However, it is desirable that they fare at
least as well as non-explanatory models. Table 7 contains the ex ante 1-step out-of-
sample forecast evaluation results of the four models, and it should be noted that
the respective ex ante forecasts of both the EGARCH(1,1) and constant models are
equal to their respective ex post forecasts. According to MAE the constant model
is best, ECON is second, the EGARCH(1,1) is third whereas RV is last. Unsur-
prisingly, therefore, the SPA test suggests that none of the comparison models have
a significantly smaller MAE than the constant model (and similarly for the MDM
test). The R2s of the Mincer-Zarnowitz regressions are low and equal to 1% for
ECON, RV and EGARCH(1,1), which is common in ex ante forecasting of vari-

12The RV also comes second after ECON according to MSE (not reported).
13The p-value of the Wald test for RV does not change when Newey and West (1987) estimates

are used in order to account for serially correlated residuals.
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Table 7: Ex post and ex ante out-of-sample evaluation of 1-step weekly Norwegian
exchange rate variability forecasts 26 January 2007 - 4 January 2008 (50 observa-
tions)

MAE MDM a b R2 AR1 χ2(2)
Ex post : ECON 0.59 0.67 -0.50 1.81 0.48 0.14 1.52

[0.13] [0.31] [0.24] [0.02] [0.70] [0.47]
RV 0.84 -1.30 -0.35 1.01 0.20 2.99 15.71

[0.79] [0.42] [0.07] [0.08] [0.00]
EGARCH(1,1) 0.81 -1.57 0.89 -0.29 0.01 0.50 80.03

[0.82] [0.00] [0.05] [0.48] [0.00]
Constant 0.67 – – 1.30 0.00 0.73 –

[0.00] [0.39]

Ex ante: ECON 0.74 -1.29 -0.37 0.36 0.01 0.10 46.96
[0.65] [0.79] [0.41] [0.55] [0.80] [0.00]

RV 0.87 -2.23 -0.25 0.22 0.01 0.48 42.36
[0.87] [0.33] [0.56] [0.49] [0.00]

EGARCH(1,1) 0.81 -1.57 0.89 -0.29 0.01 0.50 80.03
[0.82] [0.00] [0.05] [0.48] [0.00]

Constant 0.67 – – 1.30 0.00 0.73 –
[0.00] [0.39]

The first column contains the variability forecast MAE for each model, where the variabil-
ity forecast error of model m at t is defined as (r2

t −r̂2
mt−σ̂2

mt), and the consistent p-value of
Hansen’s (2005) SPA test in square parentheses. Column two contains MDM tests against
the constant model as benchmark, columns three and four contain the OLS estimated
parameter estimates of the Mincer-Zarnowitz regression r2

t = a + b(r̂2
mt + σ̂2

mt) + umt,
column five the associated R2 of the regression, column six the Ljung and Box (1979)
test-statistic (Q-stat.) for first order serial correlation in the residuals, and column seven
contains the Wald test-statistic (χ2 version) of a joint coefficient restriction test with
a = 0, b = 1 as the null hypothesis using White (1980) estimates of the standard errors.
Computations are in EViews 6, R 2.6.1 and Ox 5/SPA 2.02.
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ability. The joint test of a = 0, b = 1 in the Mincer-Zarnowitz regression, that is,
the bias test, is rejected for all of the three models in which it can be undertaken.
Overall, then, although the results do not point to a clear winner, the evidence is
in favour of the constant variability model. Put differently, for the study of weekly
NOK/EUR exchange rate variability 1-step ahead, the ex post results suggest ECON
should be used in scenario analysis, say, conditional forecasting and counterfactual
analysis, whereas the ex ante results suggest the constant model should be used in
ex ante forecasting.

4 Conclusions

Evaluating explanatory models of financial inter-period return variability by com-
paring their forecasts with high-frequency intra-period estimates of continuous time
analogues raises several methodological and practical issues. Together these method-
ological and practical issues suggest an alternative approach is needed, and this study
has contributed in two ways. Firstly, the finite sample properties of operational and
practical procedures have been studied, and the results suggest indeed that vari-
ability forecast comparison is feasible. Secondly, based on the simulation results, a
simple but general framework has been proposed and illustrated.

The simple framework contains three steps. First, compute the MAE or MSE
variability forecast errors where financial variability is defined as squared returns,
and use the MAEs or MSEs to rank the models. Whether the MAE or MSE is more
appropriate depends on sample size. As a rule of thumb, the simulations suggest
that MAE is more appropriate when the sample size is lower than about 100 ob-
servations, whereas MSE is more appropriate when the sample size is higher. The
second step of the framework consists in testing for significantly superior forecast
precision using the MDM and SPA/RC tests. The tests exhibit relatively high power
when the benchmark values are used by the simulation DGP—even in small sam-
ples. However, when the models differ less and/or when the mean and/or variance
specification account for little of the conditional variability, then the power can be
very low—in particular in small samples. The third and final step consists of testing
for forecast bias by means of a Mincer-Zarnowits regression of the actual value of
variability (squared return) on a constant and the variability forecast, paying par-
ticular attention to the joint restriction test of the constant being equal to zero and
the slope coefficient being equal to one.

The results of this study can be investigated further and complemented in many
ways, but here only two suggestions are given. First, although the benchmark val-
ues of the simulation DGP were carefully selected to reflect the empirical properties
financial returns actually exhibit, further study is needed. In particular, further
investigation is needed in order to understand better how the loss functions and sta-
tistical tests behave when the standardised error is (much) more fat-tailed than the
Gaussian distribution. Second, although the MDM, RC, SPA and Mincer-Zarnowitz
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tests performed reasonably well in small samples for the benchmark values, the
power decreases substantially when the explanatory information in either the mean
or variance specifications tends to zero. A test with more power in small samples is
desirable, and the forecast evaluation literature contains a large number of potential
candidates.
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Appendix: Explanatory modelling of financial re-

turn variability

There is a curious twist to a current development in financial econometrics. On
the one hand, continuous time methods are (uncritically) becoming more and more
common and important. On the other hand, the widespread view among philoso-
phers of time and among philosophers of mathematics is that mathematics in general
and real numbers in particular are not capable of depicting continuous time in an
entirely accurate manner. For many purposes the representation error incurred by

31



mathematics is unimportant. However, when temporal aggregation issues are in-
volved, as is often the case in financial econometrics, then it can lead to seriously
erroneous conclusions. One of the problems stems from the so-called principle of
extensionality, that is, the axiom that two sets (or elements of a sets) are equal if
and only if they are the same. This axiom is needed by mathematics in order to
avoid contradictions caused by some self-referential paradoxes, and the consequence
of the axiom is essentially that mathematics is “discrete” and that the notion of
continuity has to be approximated. Typically the axiom of infinity plays an impor-
tant role in such approximations, and an example of a mathematical structure that
is commonly used in order to approximate the idea of continuity is the set of real
numbers.14

The focus of this appendix is on economic and econometric issues rather than
on philosophy, although they of course are related. The purpose of this appendix
is to provide a more detailed characterisation of the first three methodological and
practical issues listed in the introduction. This characterisation is contained in the
second and last part of this appendix. Before that, in the first part, a discussion
of explanatory discrete time models as derived entities is needed. This discussion
is useful in order to understand why volatility in explanatory models is not only a
latent and unobservable variable to be estimated, but also an entity whose properties
depend on functional form and on the explanatory power of the information in the
conditional mean and variance specifications.

Discrete time models as derived entities

Econometric models are simplified and partial representations of a highly complex
and evolving social reality, and the probabilistic study of their relation belongs to
reduction theory, see amongst others Hendry and Richard (1982), Florens et al.
(1990), Hendry (1995, chapter 9), Spanos (1999), Davidson (2000, subsection 4.1)
and Sucarrat (2009).15 A key distinction in reduction theory is that between the
model that governs the reality on the one hand and simplifications of it on the
other, and the objective of reduction theory is to study to what extent important
information is lost by representing the former by means of the latter. A well-known
example of a model that governs reality is the Data Generating Process (DGP) as
defined in David F. Hendry’s (1995, chapter 9) reduction theory. On the other hand,
a simple example of a simplification of the DGP is the linear model rt = b0+b1xt+et.
A shortcoming with Hendry’s theory is that it cannot provide reduction analysis
on the relation between continuous and discrete time models, since his theory is
entirely couched in terms of discrete time variables. However, the non-restrictive

14See Tiles (1989) for an introduction to the philosophy of mathematics that takes continuity
issues as its organising theme. Further reading on the philosophy of time and on the philosophy of
mathematics can be found in most dictionaries and handbooks of philosophy (even Wikipeadia).

15Reduction theory plays an important role in the General to Specific (GETS) methodology,
since the methodology can be viewed as an attempt to mimic reduction theory.
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modifications to the initial probability space in Hendry’s theory proposed in Sucarrat
(2009) enables reduction analysis on the relation between continuous and discrete
time models.

A key implication of reduction theory is that the properties of an empirical model
are the result of its specification subject to the model that governs reality. To see the
implication of this in a volatility context consider first the implication for models of
financial returns. For simplicity of discussion but with no loss of generality, I assume
no measurement error in any of the variables of the DGP, so that the variables of the
DGP correspond to that of the theory mechanism (cf. discussion in Sucarrat 2009).
In this regard it should also be noted that volatility is not a variable in the DGP (nor
in the theory mechanism), since the theory mechanism and the DGP are entities
whose properties are independent of how we represent them by means of models.16

Let the density f(rt, xt, yt) denote the DGP of rt, xt and yt, where rt is financial
return, and where xt and yt are vectors of conditioning variables. Specifically, in
addition to other contemporaneous and/or lagged explanatory variables the vectors
xt and yt may also contain lags of rt and/or transformations of lags of rt. Suppose
the discrete time representation

rt = g(xt, b) + et,

is a model of the conditional DGP given by f(rt|xt) such that g(xt, b) is equal to
the conditional mean E[rt|g(xt, b)], where b is a parameter vector and et is the error
term. The error term et is then defined as rt − g(xt, b), and the properties of et are
therefore derived or “designed” in the sense that they are a result of how g(xt, b)
is specified subject to the conditional DGP given by f(rt|xt).

17 In particular, the

16From a reduction theory point of view there is only one DGP, the DGP, and the DGP is the
most accurate and complete probabilistic representation of reality. In other words, the DGP serves
as a “probabilistic ontology” (a probabilistic representation of reality as it objectively is). The
volatility models or continuous time structures that have been put forward in the literature can
therefore not be a DGP in the reduction theoretical sense, since they are not accurate and/or
complete enough to constitute a probabilistic representation of an ontology. However, they can
constitute what I elsewhere call “estimation and inference” models (Sucarrat 2009, introduction
and figure 1 in particular, but see also section 4). Moreover, since the DGP is intended to be
something objective and independent of ourselves and our representations of it, unless you believe
in a rather unusual version of Platonism, and Platonism itself is a questionable philosophical
thesis, then volatility as such does not exist objectively. In empirical discrete time modelling this
is straightforward: Volatility is simply a model of the unexplained portion of the mean, that is, a
model of the error term, and volatility is therefore entirely determined by the modeller through the
choice of specification, conditioning information, assumptions on the standardised residuals and
so on. In (objective) continuous time, the thesis that continuous time (instantaneous) volatility
exists independently and objectively would therefore have to resort to rather strong philosophical
assumptions.

17There are at least two possible sources of information loss in modelling rt by means of g(xt, b).
First, the variables yt have been marginalised, so one may ask how well f(rt|xt) approximates
f(rt|xt, yt). Second, there is the question of how well the distribution of g(xt, b)+ et approximates
f(rt|xt), see Hendry (1995, chapter 9) for a more detailed discussion.
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better g(xt, b) is specified and the more explanatory power carried by xt, the smaller
et is likely to be in absolute value.

Consider now the discrete time model

rt = g(xt, b) + et, et = σtzt, (13)

σ2
t = h(yt, c), (14)

where c is a vector of parameters, and where σ2
t is discrete time volatility and equal

to the conditional variance V ar[rt|g(xt, b), h(yt, c)]. The term g(xt, b) is now equal
to the conditional mean E[rt|g(xt, yt)], and the standardised residual zt is defined as
[rt − g(xt, b)]/σt. The properties of zt are therefore determined by the specification
of g(xt, b) and h(yt, c) subject to the conditional DGP given by f(rt|xt, yt). In par-
ticular, the better g(xt, b) and h(yt, c) explain the variation in rt and e2

t , respectively,
the smaller zt is likely to be in absolute value.18

Continuous vs. discrete models

If models are entities that depend on the specification of the conditional mean and
variance subject to the DGP, then discrete time volatility is not a given magnitude
independent of the researcher as suggested by some scholars. On the contrary, the
value and characteristics depend on the conditional mean and variance specifica-
tions, and the more so the better the explanatory variables explain the variation in
return and in the squared error. Accordingly, evaluating volatility estimates from an
explanatory discrete time model by comparing them with high-frequency estimates
of continuous time analogues can lead to highly misleading results. For the purpose
of a more specific discussion, consider as an example of a general class of continuous
time models the semi-martingale

r(t) = A(t) + M(t), t ∈ [0, T ], (15)

where r(t) = p(t)− p(t− 1) is the price increment from t− 1 to t, A(t) is a locally
integrable and predictable process of finite variation, and M(t) is a local martingale,
see Andersen et al. (2001) and Andersen et al. (2003). Some continuous time models
that are contained in this formulation are Itô, jump and jump-diffusion processes.
For example, by setting A(t) equal to

∫ t

t−1
µ(s)ds and M(t) equal to

∫ t

t−1
σ(s)W (s)ds,

where {µ} and {σ} are continuous processes, and where {W} is a standard Wiener
process, we obtain the Itô process

r(t) =

∫ t

t−1

µ(s)ds +

∫ t

t−1

σ(s)W (s)ds. (16)

18Of course, as pointed out by the reviewers, the converse is not necessarily true: The smaller zt

is in absolute value, the better g(xt, b) and h(yt, c) explain the variation in rt and e2
t , respectively.

The reason is that the {zt} can be made small in absolute value by setting {σt} arbitrarily large.
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In this particular case the integrated variance
∫ t

t−1
σ(s)2ds serves as the counterpart

of discrete time volatility σ2
t as defined in the discrete time model (13)-(14) above,

and a common estimator of integrated variance is realised volatility, that is, the sum
of equidistant intra-period squared returns.

Evaluating volatility estimates from the discrete time model (13)-(14) against
estimates obtained based on, say, (16) raises several methodological and practical
issues which were listed in the introduction. Here the first three of these issues are
discussed in more detail:

1. Although financial price data may be available at high frequencies (say, intradaily)
this is not necessarily the case for explanatory data. Suppose for example that or-
der flow data is available at lower frequencies but not at higher frequencies. That
means the term

∫ t

t−1
µ(s)ds is likely to explain a very small (if any) fraction of the

total variation in r(t) when only high-frequency data are used for estimation. By
contrast, when lower frequency data are used then

∫ t

t−1
µ(s)ds may account for a sub-

stantial fraction of the total return variation. A similar argument applies of course
to values of

∫ t

t−1
σ(s)ds. If

∫ t

t−1
µ(s)ds is equal to or approximately equal to zero,

then the value of
∫ t

t−1
σ(s)ds is effectively determined by the assumptions regarding

the process {W (t)}. By contrast, estimation of σt—the discrete time counterpart
of

∫ t

t−1
σ(s)ds—can lead to substantially different values owing to explanatory in-

formation in either or both g(xt, b) and h(yt, c). As a consequence, the properties
of the standardised residual zt can be substantially different from the properties of∫ t

t−1
W (s)ds. All this is not surprising since the two approaches use information sets

that differ. But it nevertheless underlines the need for methods that enable us to
evaluate discrete and continuous time models against each other without treating
either as more basic.

2. Due to economic reasons both A(t) and the “explanatory” component of M(t)—for
example

∫ t

t−1
σ(s)ds in (16)—are likely to account for a decreasing portion of the

variation in returns as the time increment decreases, since time is needed for an
event—or as is typically the case, a combination of events—to bring about another
event. Indeed, for philosophical reasons A(t) will reach zero before the time incre-
ment reaches zero. The economic reasoning underlying Evans and Lyons’ (2002)
order flow measure, for example, is that private information disseminates sequen-
tially and aggregates temporally, so that time is needed for it to have an effect. In
other words, even if explanatory intra-period high-frequency data is available, an
inter-period low frequency model of variability may perform better.

3. Whenever it is assumed that a discrete time model can be derived from the contin-
uous time model in question—as assumed in Andersen and Bollerslev (1998)—then
a probabilistic restriction is imposed. In other words, contrary to a common misper-
ception, a continuous time model does not nest (in a probabilistic sense) a discrete
time model if the latter can be derived from the former. The reason for this is
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that discrete time models are potentially compatible with (and can thus be derived
from) more than one continuous time structure. In terms of the concepts and ter-
minology in Sucarrat (2009, see section 4 in particular), if A = {A1, A2, . . .} are the
sets of possible worlds in which the discrete time model (13)-(14) is “true”, and if
B = {B1, B2, . . .} are the sets of possible worlds in which the continuous time model
(15) is true, then the probabilities of (13)-(14) and (15), respectively, being true
are P (

⋃∞
i=1 Ai) and P (

⋃∞
j=1 Bj), respectively. Furthermore, the probability of both

(13)-(14) and (15) being true jointly, which is effectively the assumption upon which
evaluation of discrete time estimates against continuous time estimates is based, is
P [(

⋃∞
i=1 Ai) ∩ (

⋃∞
j=1 Bj)]. Now, by the nature of probability it is always the case

that P [(
⋃∞

i=1 Ai) ∩ (
⋃∞

j=1 Bj)] ≤ P (
⋃∞

i=1 Ai). In words, the probability that both
the discrete time model (13)-(14) and the continuous time model (15) are true is
always equal to or smaller than the probability that only the discrete time model
(13)-(14) is true. Another way to put this is that, in a probabilistic sense, it is not
generally the case that continuous time models nest the discrete time models that
can be derived from the former.
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