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Abstract

A growing area of applied macroeconomic research is devoted to the
employment of dynamic stochastic general equilibrium (dsge) models for
policy analysis. In many cases, dsge models are intended to describe and
capture the cyclical movements of the macroeconomic variables. This be-
havior barely matches the highly non-stationary pattern of the macroeco-
nomic data. So, in order to take the data to the model, a researcher needs
to extract the stationary component from the data using some filtering
techniques, and it is well known that the improper use of filters can create
spurious cyclical behavior and in some cases bias the structural parame-
ters estimates. In this paper, I propose a method to estimate jointly the
structural parameters of the dsge model and the filtering parameters us-
ing bayesian techniques; in particular, I consider linear detrending (ld),
first difference (fd) and the Hodrick Prescott filter (hp). This method
allows a researcher to validate different tend specifications, and above all
to get estimates of the structural parameters robust to the filter used.
Simulations results suggest that (a) the joint estimate of structural and
filtering parameters are reliable under wrong specification of the trend,
and (b) under correlation between trend and cycles this method improves
in term of bias relative to the standard two steps approach.
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1 Introduction

Dynamic stochastic general equilibrium (dsge) models are now consid-
ered one of the most important framework for macroeconomic analysis.
Massive progresses have been done in estimating the deep parameters of
dsge models; from loosely calibrated parameters, applied researchers can
now estimate densely parameterized models with classical and Bayesian
methods. These improvements allowed a researcher to assess the degree
of fitness of the model both in and out of sample, and in some cases
to capture transmission mechanisms, to evaluate policy implications, to
test counterfactuals hypothesis. In general, dsge model are taken more
seriously as a tool for policy analysis because of rigorous econometric
evaluations. In the literature of dsge estimation, it is common practice
to linearize the equilibrium conditions around a pivotal point, the steady
state, and interpret the movements of the variables around it as cyclical
fluctuations. As it is well known, economic data are quite persistent and
display clear trend. So, before taking the model to the data, a researcher
must construct a data analog for the model concepts. Therefore, one
needs a method to remove the trend component form the data and trans-
form the highly stationary behavior of the data into stationary. There
are mainly two ways to account for it: either a researcher could rewrite
the model and transform the variables (i.e. rewrite the model in terms of
ratios), or could filter the data. With the first method, there is no guar-
antee that the transformed variables are indeed stationary; for example,
consumption-gdp ratio or investment-gdp ratio look stationary, but hour
worked over gdp is hard to think as a stationary process (see Figure 1).
Therefore, everybody opts for filtering the series. For the purpose of this
paper, I will consider the linear trend (lt) filter, the Hodrick-Prescott
(hp) filter and first difference (fd) filter, which are the most widely used
filters1. In principle, all of them remove the low frequencies of the times
series, as in Figures 2-4, but there are differences in the amplitude and
the duration of the cycles, as in Canova (1998). Therefore, depending
on the filter used, one could obtain different estimates and and possibly
draw different policy implications2. In other words, a researcher could

1Table 1 reports a non exhaustive listing of notable papers that estimate dsge models and
for which I report the assumption about the exogenous processes, the filter used to detrend
the data and the estimation technique.

2Harvey and Jaeger (1993) showed that using the Hodrey Prescott filter inappropriately
can result in creation of spurious cyclical behavior, and this point is illustrated with empirical
examples.
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use lt or hp or fd filter and obtain posterior estimates conditional on
different data set, i.e. g(θ|ylt) or g(θ|yhp) or g(θ|yfd), where θ is the
vector of parameters and yj are the filtered data with j = lt, hp, fd. In
this paper, I propose a method to estimate jointly the ’deep’ parame-
ter of the dsge model and the paraments governing the non-stationary
component in the time series. For the sake of the argument, let θm be
the set of ’deep’ parameters of the model and θf the parameters of the
filter. The MCMC algorithm will produce the joint posterior distribu-
tion of the ’deep’ parameters and of the filter parameters conditional on
the data and on the filter used, i.e. g(θm, θlt|y, f lt) or g(θm, θhp|y, fhp)
or g(θm, θfd|y, ffd). These three distributions are comparable because
the likelihood is computed at the same data point. With these posterior
distributions we can test trend specifications in a classical set up or in
a bayesian framework take decisions build on some loss function. More-
over, given the uncertainty of the trend specification, we can construct
estimates of the structural parameters that are robust to the trend spec-
ifications by bayesian averaging across posterior distributions.
The present analysis is tightly related to the literature on filtering data.
On one hand, we learned that filtering affects the structural property of
the time series: in fact, improper filtering can produce spurious cycle
(e.g. Harvey and Jaeger (1993)), or can alter the persistence and volatil-
ity of the series (e.g. Cogley and Nason (1995)). On the other hand,
structural parameters estimation can be corrupted by the wrong choice
of the trend. Cogley (2001) shows that inappropriate choice of trend,
either trend stationary or first difference stationary, can lead to strong
bias in parameters estimates using Maximum Likelihood methods; in par-
ticular, when the wrong trend specification is confronted with the data,
its deep parameters adjust to compensate for this distortion. Therefore,
even when the reduced form is correctly specified, trend misspecification
is likely to result in inconsistent estimate of deep parameters. On the
same track, Gorodnichenko and Ng (2007) show that estimates can be
severely biased when model trend specifications are inconsistent with the
data or detrended data are inconsistent with model concept of stationar-
ity. They also propose a robust approach to address these two problems
simultaneously using simulated methods of moments.
They both point at the bias arising from the ’mismatch’ between the con-
cept of non stationarity in the model and the one in the data; they need
to transform the series into stationary in a way that is coherent with the
model and viceversa. In some sense my method is similar to theirs since
neither takes a stand on the property of the trend dynamics before esti-
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mation, but there are differences. Mainly, I assume that the dsge model
capture only the cyclical variations and not the long run dynamics. The
latter assumption could seem a big restriction, but on the other hand
gives great flexibility in terms of long run restriction, especially when
data display very idiosyncratic trend. In the model of Ireland (2001)
with money in the utility function, he argues that if the source of long
run dynamics were given by a deterministic labor augmenting technology
process, then output and real balances would grow at the same rate in
the model. But distinct upwards trends appear in the series for output
and real balances in the US data3. Chang, Doh and Schorfheide (2007)
estimate a RBC model with bayesian techniques using non stationary
data, they test the hypothesis of a permanent labor supply shocks that
can generate a unit root in hours worked, and they found that the data
support this view. Their point is on the specification of the exogenous
processes from the model standpoint, they ask which is the specification
of the exogenous processes that better confronts with the data. In the
techniques used, my method resembles much their approach, by which
they compute the likelihood of the entire system of equations, the ones
governing the long run dynamics and the ones governing the cycles. My
direction is partially different: given a stationary model, I am asking
how to extract low frequencies altering as less as possible the structural
parameters estimates. Moreover, as mentioned before, confining the ex-
planatory power of the dsge model only to cycles allows to consider a
more flexible structure for the long run dynamics; in particular, I can
consider linear trend, unit root or smooth non linear trend. There is a
clear trade off between the flexibility in the specification of the long run
dynamics and the explanatory power of the dsge model; on one hand, a
coherent model that explain all range of frequencies in the spectrum is
clearly theoretically appealing. On the other hand, this approach is likely
to produce specification and measurement errors in in both the cyclical
component and the structural parameters.

With this paper, I propose a methodology to estimate the structural
parameters of a stationary dsge model using all the information contained
in the non stationary observed data; in particular, I estimate jointly struc-
tural and filtering parameters. This method allows to test different trend
specifications and by bayesian averaging it permits to construct estimates
of the structural parameters that are robust to the trend uncertainty. A

3In Merha (1997), it has been shown that real M2 grows at a much slower rate than output
since 1990.
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parsimonious set of assumptions is considered; mainly, I assume that the
dsge model is a reliable approximation of the cyclical movements of the
macroeconomic variables. I provide simulation results and I found that
(a) the joint estimate of structural and filtering parameters is able to back
up the true trend data generating process, (b) the estimates are reliable
under misspecification of the trend, and (c) under correlation between
trend and cycles this method improves in term of bias relative to the
standard two step approach by which one first filters the data and then
estimates the structural parameters. The paper is organized as follows:
Section 2 presents the dsge model followed by Section 3 in which I report
the econometric methodology. In section 4, I provide simulation results
to test the methodology proposed. Section 5 concludes.

2 Model

I consider a simple version of New Keynesian model with nominal rigidi-
ties in the spirit of Ireland (2001), but the method can be easily extended
to more densely parameterized models. The representative household has
a preference for variety: the consumption index is

ct =
( ∫ 1

0 ct(j)dj
) θc

θc−1 (1)

where ct(j) is the consumption of the good produced by firm j. The
maximization of ct w.r.t. ct(j) for a given total expenditure leads to a
set of demand function of the type

ct(j) =
(

pt(j)
Pt

)−θc

ct (2)

where pt(j) is the price of the good produced by firm j. Moreover, the
appropriate price deflator is given by

Pt =
( ∫ 1

0 pt(j)1−θcdj
) 1

1−θc

Conditional on such optimal behavior, it will be true that Ptct = [
∫ 1
0 pt(j)ct(j)dj].

The representative household faces standard intertemporal decisions by
choosing a stream of consumption and leisure.

E0

∞∑

t=0

βt
[

1
1−σc

c1−σc
t − χt

1
1+σn

n1+σn
t

]
(3)
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A demand shifter is assumed: χt affects the consumption-leisure in-
tertemporal trade-off. We assume that the process is exogenous and
(in logs) follows AR(1), i.e.

ln χt = ρχ lnχt−1 + εχ
t

where εχ
t ∼ N(0, σ2

χ). The nominal budget constraint is the following

Ptct + Bt = Wtnt + RtBt−1 (4)

where Wtnt is labor income. The bond maturity gives a gross interest
rate of Rt.

In the private sector there is a continuum of firms j each producing
one differentiated final good with the following linear technology

yt(j) = nt(j)zt

where zt is a stationary labor-augmenting productivity shock. Each firms
chooses its own price to maximize intertemporal profits defined as the
difference between total revenues and total cost (inclusive of the price
adjustment cost, which is scaled in terms of wholesale total output)

max
pt(j)

E0

∞∑

t=0

Q0,t{pt(j)yt(j)−Wtnt(j)− k

2

(
pt(j)

pt−1(j) − π
)2

Ptyt} (5)

subject to the fact that output is demand-determined. The total demand
for good j is equal to yt(j) = ct(j); thus, firm will face an isoelastic
demand function with price elasticity θc for its total demanded output.
Q0,t is the stochastic discount factor.

The behavior of the interested rate is controlled by a monetary au-
thority which follows a simple interest rate feedback rule a la Taylor
characterized by a response of the nominal rate Rt to deviations from
the steady state values of lagged inflation, contemporaneous output, i.e.

r̂t = ρRr̂t−1 + (1− ρR)ρπβ/ππ̂t−1 + (1− ρR)ρyβ/πŷt + εm
t (6)

where r̂t is the log deviation of interest rate from its steady state level, π
is the long run target inflation, and εm

t ∼ N(0, σ2
m). The aggregate level

of any quantity variable is xt(j) is given by

xt =
∫ 1

0
xt(j)dj
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Equilibrium in market goods requires:

yt = ntzt = ct + ADJt (7)

where ADJt stand for adjustment cost which, in real terms, are given by

ADJt =
k

2
(πt − π)2yt

Market clearing conditions in labor markets are obtained by setting firms’
demand equal to the household supply.

3 Econometric Methodology

In this part, I develop the statistic set up to estimate the structural
parameters of the model. The main idea is compute the likelihood of a
system the embodies the low and medium frequencies of the data. More
precisely, I assume that the linearized solution of the model provides a
good approximation of the cyclical movements of the variables. These
cyclical movements are combined with a non stationary behavior which is
going to be estimated jointly with the cyclical part. I allow for different
representations of the low frequencies process, mainly deterministic and
stochastic representations.

3.1 Time Series Specification

I assume that we observe a set of potential non-stationary times series;
in particular, we observe the log of hour worked, gdp, real wages, i.e.

yt = [nt, yt, ωt]

Harvey and Jaeger (1993) argued that detrending is best accomplished
by fitting a structural times series model consisting of a trend and cycle.
More precisely, as in Harvey, Trimbur and Dijk (2004) I assume that the
data are made up of a non stationary trend component, yt

t, a cyclical
component, yc

t , i.e. the identity follows

yt = yt
t + yc

t (8)

I assume that the cyclical component is given by the dsge linearized
solution. The solution takes the from

yc
t = RR(θm)xt−1 + SS(θm)zt (9)

xt = PP (θm)xt−1 + QQ(θm)zt (10)
zt+1 = NN(θm)zt + εt+1 (11)

7



The matrices PP (θm), QQ(θm), RR(θm), SS(θm) are non linear function
of the ’deep’ parameters of the model. The behavior of the endogenous
variables,

yc
t = [n̂t, ŷt, ω̂t]

is driven by the state variables

xt = [m̂rst, r̂t, π̂t]

and the set of exogenous processes,

zt = [at, χt, ε
m
t ]

The vector of structural parameters is

θm = [β, π, σc, σn, θc, ρR, ρπ, ρy, ρa, ρχ, σa, σχ, σm]

Equations (8) - (11) plus a specification for the trend define a state space
representation which can be estimated with likelihood based approach,
i.e.

st+1 = F (θ)st + G(θ)ωt+1 (12)
yt = H(θ)st + ηt (13)

From an econometric perspective, st can be viewed as a (partially latent)
state vector in a linear state space model where (12) is the transition
equation; F (θ), G(θ), H(θ) are matrices which are function of θ, the vec-
tor of parameters. ηt and ωt+1 represent the measurement and the process
noise, respectively, which are uncorrelated and normally distributed with
zero mean an constant variance covariance matrix. Equation (13) is the
measurement equation, where yt is a set of observable variables. The
following subsections present different trend specifications.

3.1.1 Hodrick Prescott filter (hp-dsge estimate).

Lets assume that the trend, yt
t, is given by

yt
t+1 = yt

t + µt (14)

µt+1 = µt + ζt+1 (15)

The trend generated by a Hodrick Prescott (hp) filter is approximated
by a smooth trend in a cloud of points. In Harvey and Jaeger (1993)
hp trend can be shown to be the optimal signal extractor filter in the
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identity, equation (8), when the trend, yt
t, is specified as in (14) and (15).

Equations (8)-(11) and (14)-(15) can be cast into the linear state space
representation (12) and (13), by setting

st =
(

yt
t µt xt−1 zt

)

ωt+1 =
(

ζt+1 εt+1

)

F =




I I 0 0
0 I 0 0
0 0 PP QQ
0 0 0 NN




G =




0 0
I 0
0 0
0 I




H =
(

I 0 RR SS
)

The set of shocks, ωt, of the state space model is the joint distribution of
the structural shocks of the model, εt+1, and the stochastic part in the
trend, ζt+1. I assume that ζt+1 ∼ N(0,Σζ), where Σζ has on its main
diagonal σζ

n, σζ
y , σ

ζ
ω, and zeros elsewhere. To make a link with the hp

filter, the ratio between the trend standard deviation and the cycle stan-
dard deviation is the smoothing parameter of the hp filter. Usually, the
smoothing parameters is set to 1’600 for quarterly values. Whereas ev-
erybody agrees on the smoothing parameter value for quarterly quarterly
observations, there is no such a consensus for annual data. Since in this
set up the ratio of the standard deviations is estimated from the data,
the statistical framework is quite flexible to for the time unit. Therefore,
the filter parameters to be estimated is given by θhp = Σζ . I will refer to
this specification as hp-dsge estimates.

3.1.2 First difference filter (fd-dsge estimate).

In this specification we assume that the data display a unit root pattern,
i.e.

yt
t = γ + Γyt−1 + ηt

where γ is the drift and Γ is a diagonal matrix; for the moment I assume
that Γ is equal to the identity matrix; ηt is a white noise normally dis-
tributed with zero mean and variance covariance matrix, Ση, on its main
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diagonal ση
n, ση

y , ση
ω, and zeros elsewhere. The latter equation and equa-

tions (8)-(11) can be cast into the state space representation (12)-(13) by
setting

yt = yt − γ − Γyt−1

st =
(

xt−1 zt

)

F =
(

PP QQ
0 NN

)

G =
(

0 I
)′

H =
(

RR SS
)

ωt+1 = εt+1

Therefore, the filter parameters to be estimated is given by θfd = [Ση, Γ, γ].
I will refer to this specification as fd-dsge estimates.

3.1.3 Linear trend filter (lt-dsge estimate).

In this specification, I assume that the data are made up of a linear trend,
i.e.

yt
t = A + B ∗ t + ηt

where A and B are vectors of the same dimensionality of the observed
times series. The latter with (8)-(11) can be cast into the linear state
space representation (12)-(13), by setting

yt = yt −A−B ∗ t

st =
(

xt−1 zt

)

F =
(

PP QQ
0 NN

)

G =
(

0 I
)′

H =
(

RR SS
)

ωt+1 = εt+1

Therefore, the filter parameters to be estimated is given by θlt = [A,B,Ση].
I will refer to this specification as lt-dsge estimates.
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3.2 Parameters Estimation

The set of parameters that we are interested in is the union of the model
structural parameters and of the filtering parameters. At the end of the
day, we obtain the joint posterior distribution of the set of parameters
conditional on the data, on the model and on the trend-filter specification,
i.e. g(θm, θf |y,M, f) with f = hp, fd, lt. Previous dsge estimates were
intended to get the posterior distribution of the structural parameters of
the model conditioning on the model once the data were already filtered,
i.e. g(θm|yf ,M). The advantage of having the joint posterior distribution
of θ = [θm, θf ] is twofold. On one hand, we can evaluate trend specifica-
tions by calculating the relative posterior support, i.e. the Posterior Odd.
The Posterior Odd ratio is constructed by comparing the bayes factor,
which is the ratio of the predictive density of the data conditional on the
model. In standard dsge estimates, data are already filtered in some way
and one could not compare posterior density of different data. In other
words, the ratio between the posterior density of hp filtered data with
the posterior density of linear detrended data would not be meaningful,
because the likelihood is computed at different data point, i.e. L(yhp|M)
with L(ylt|M). With the joint distributions of [θm, θf ], we can calculate
the posterior density of the data conditioning on the model and on the
filter used. More precisely, we can take Posterior Odds by taking the ratio
of the posterior density of hp filtered data with the posterior density of
linear detrended data conditional on a certain model, i.e. f(y|M, hp) and
f(y|M, lt). With the Posterior Odd and a loss function, we can compare
different trend specifications in a bayesian context, or test hypothesis in a
classical statistics set up. The second main advantage of this formulation
is that we can construct estimates of the structural parameters that are
robust to trend uncertainty. Given that we do not know the ’true’ data
generating process and given that the wrong use of the filter biases also
the structural parameters estimates (Cogley (2001)), by averaging across
trend specifications we can consistently account for trend uncertainty. In
particular, we can calculate

g(θm|y, M) =
∑

j=hp,fd,lt

f(y|M, j)∑
k=hp,fd,lt f(y|M, k)

∫
g(θm, θj |y,M, j)dθj

For the sake of the argument, suppose that a researcher knows that the
cyclical properties are correctly specified, but he does not know the cor-
rect specification of the trend, and suppose that the true trend data
generating process (dgp) is linear. If one employs a standard 2 steps
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estimate, he would first filter the data, with hp or linear filters, and then
estimate the structural parameters of the model; according to the filter
used he would get estimates of the structural parameters, but he can not
retrieve the trend specification. Estimating jointly the structural and fil-
tering parameters, a researcher can compare different Posterior Odd and
choose the correct trend specification. He can do more: since in most of
the cases the true trend dgp is not know, by bayesian averaging one could
construct posterior estimates of the structural parameters that account
to the trend uncertainty.

To obtain the non normalized posterior distribution of the parame-
ters, θ = [θm, θf ], I used Monte Carlo Markov Chain simulators, that
generate the sample from the posterior target distribution. In partic-
ular, following Schorfheide (2000) I used the Random Walk Metropolis
algorithm (RWM), which proceeds in two steps. First, the linear expec-
tations is solved to obtain equations (9)-(11). If the parameter value
θm implies indeterminacy (or non-existence of a stable rational expecta-
tions solution), then L(θ|y) is set to 0. If a unique solution exists, then
the Kalman filter is used to evaluate the likelihood function associated
with the linear state space system (12) and (13). The second step is
to generate a number of draws from the posterior distribution with the
RWM algorithm. This class of algorithm generates Markov Chains with
stationary distributions that correspond to the posterior distributions of
interest. The algorithm is as follow, starting from an initial value θ0 for
` = 1, ..., L

1. draw a candidate θ∗ = θ`−1 + N(0,Σ)

2. solve the linear expectations system given θ∗; if indeterminacy or
no-existence set L(θ|y) = 0

3. evaluate the likelihood of the data given θ∗ with the Kalman filter,
L(y|θ∗)4

4. calculate ğ(θ∗|y) = g(θ∗)L(y|θ∗)
5. calculate the ratio χ∗ = ğ(θ∗|y)

ğ(θ`−1|y)

6. draw u from U [0, 1]; if χ∗ > u then we accept the draw and we set
θ∗ = θ`, otherwise set θ`−1 = θ`

4Since the hp-dsge state spaces is not stationary, we can not use the unconditional moments
to start KF algorithm and we need to start from an arbitrary point. I picked s1|0 = [y1,0,0,0].
Same reasoning applies to the initial variance of the system. I chose Ω1|0 = 10 ∗ I.
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Iterated a large number of times, the RWM algorithm ensure that we get
to the limiting distribution which is the target distribution that we need
to sample from (for further details see also Canova (2006), Ch. 9).

4 Simulations

4.1 Set up and Bias Computation

In this part, I generate data using wide range of population values; in
Table 2, I report the values for the structural parameters of the dsge
model. To generate a data set, I had also to specify a set of values for the
non stationary component of times series. For each structural parameter
vector (i.e. each column of Table 2), I generate two data set, one with a
deterministic trend, i.e. a linear trend, and the other with a stochastic
trend, i.e. an integrated random walk. Therefore, I constructed 10 data
set, five of which have a deterministic trend and the remaining five have a
stochastic trend. Each data set is composed by three times series vectors
of 300 observations length; I discarded the first 140 observations, in order
to remove the dependence on the initial condition.
Table 3 to 10 report bias in the estimates using the method proposed
in the previous section, hp-dsge and lt-dsge, and the bias using current
bayesian dsge estimates, by which the data are first filtered and then the
structural parameters are estimated; I will refer to the latter as 2 steps
estimate. The estimation bias is calculated using the following algorithm

1. for each simulated dataset, ds for s = 1, ..., 10, run a RWM algo-
rithm as specified in section 3.2 until the convergence is achieved5.

2. discard the first 300,000 draws and keep one every 1,000 draws, θs
j ,

and compute

biass
` =

1
L

L∑

j=1

(
θs
j − θs

true

θs
true

)2

with L = (N − 300, 000)/1, 000 and N is the number of iterations
of the RWM.

3. do 2. 100 times and take the average bias, i.e. BIASs = 1
100

∑100
`=1 biass

`

4. do 2) and 3) for s = 1, ..., 10.

5Convergence checks are available upon request

13



We are interested only in the bias of the structural parameters estimates.
I fix β and π in order to have a net interest rate of 3% roughly. Through-
out these simulations, the acceptance rate played a crucial role. Mainly,
I observed that the bigger was the acceptance rate the bigger was the
bias; this is quite intuitive if we think that the acceptance rate is in-
versely related with the variance of the RWM algorithm. With a small
RWM variance, the step of the algorithm is small; that makes life hard
for the algorithm to explore the entire parameters space and to get close
to the true values. I tried to keep the acceptance rate between 15% and
35% as the literature suggests. In the following subsections, I report the
simulation results for the method; in particular, I confront first the bias
and the marginal likelihood across hp-dsge and lt-dsge estimate when the
trend is deterministic and stochastic. Then, I confront the bias relative
to traditional 2 steps estimate.

4.2 Baseline results

Tables 3-6 report the bias across different specifications. Simulations
results suggest that the method is able to retrieve the true data generating
process (dgp) throughout the marginal likelihood when the trend is an
integrated random walk. Confronting the marginal likelihood of Tables
4 and 6, we can notice that hp-dsge marginal likelihood is always higher
relative to lt-dsge one. This is not alwas the case when the trend is
linear. This can be due to the fact that the unobserved component set
up, equations (14) and (15), encompasses the linear trend specification
by setting ζt = 0.
Overall, the bias arise in both methods, suggesting that dsge parameters
are hard to identify, Canova and Sala (2006). Nevertheless, the bias does
not increase under the wrong trend specification. In particular, in Table
4 I report the bias of lt-dsge estimate when the true trend is stochastic.
Compared with the bias using the correct specification, Table 6, we do not
observe big changes in term of bias, meaning that under misspecification
we are not increasing the bias in the structural parameters estimate.
Same applies when the true trend is stochastic.

4.3 Comparison with traditional 2 steps estimate

In this part, I repeated the same exercise with also 2 steps estimates; I
gave the best chance to perform to the traditional methods by filtering
the series with the proper filter: if the true trend dgp was deterministic,
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I filtered the data with a linear filter, viceversa for a stochastic dgp. I
found that there are almost no differences between the method I pro-
pose and 2 steps method6. This was somehow predictable given that
by construction trend and cycle are independent; filtering first and then
estimating or doing it at once would not matter as long as these two
components are uncorrelated. Things change if we allow for some corre-
lations between trend and cycles in the simulated data. If we allow for
correlation, then differences in bias arise. The correlation is induced only
in the simulation part. All the estimation methods (2 steps, lg-dsge or
hp-dsge) are misspecified in the sense that they all assume that trend
and cycles are uncorrelated. To impose the correlation structure in the
simulated data, I assume that ηt = A1zt + vt or ζt = A1zt + vt, if the
true data generating process is deterministic or stochastic, respectively;
vt is white noise. This assumption induce that trend and cycles are corre-
lated, i.e. corr(yt

t, y
c
t ) 6= 0. Tables 7 - 10 report the bias in the parameters

estimates allowing the trend and the cycles to be correlated in the simu-
lated data. Looking at Tables 7 and 8, we can confront the bias between
the 2 steps and the lt-dsge methods when the true dgp is determinis-
tic. Overall, both specifications present bias is the parameters estimates.
Nevertheless, important differences come out: the bias of ρR and ρy is
systematically bigger. The 2 steps estimate produces an average bias of
75% for ρR whereas for lt-dsge estimate the bias is around 31%; similarly,
on average the bias for ρy is around 60% for the 2 steps estimate, whereas
is below 35% for the lt-dsge method. There are also big differences in the
bias of the standard deviation of the monetary policy innovation, σmp.
For the other parameters, the differences in bias are undistinguishable.
When the trend is stochastic, Tables 9 and 10, big gains in terms of bias
are relative to coefficients of the exogenous processes, ρz and ρχ, and to
the standard deviation of the monetary policy innovation, σmp. On aver-
age, the 2 steps method produces a bias of about 65% and 50% for ρz and
ρχ respectively, whereas the hp-dsge method gives a bias around 20% for
both parameters. The intuition for this outcome stands on the fact that
in the lt-dsge or hp-dsge estimates we are computing the likelihood of
the entire system, whereas in the 2 steps estimate we are computing the
likelihood of just the cyclical component. In the 2 steps estimate, we are
confining all the misspecification to the cycles, producing more bias. To
make the statement clearer, suppose that the true trend dgp were linear
and we observe the combination of a linear trend, cycles and their corre-

6Simulation results assuming independence between trend and cycles are available upon
request.
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lation; we do not observe the single components, just their combination.
If we employ a 2 steps method, we would first estimate A and B in a lin-
ear specification with standard least square regression and then estimate
the structural parameters using the as cycles residual of the regression.
A and B turn out to be unbiased; hence all the distortion given by the
correlation between trend and cycles would be absorbed by the residuals,
therefore affecting the structural parameters estimate. In the lt-dsge set
up, the misspecification of the correlation is going to be absorbed by the
entire system, producing bias in the filtering parameters (A and B are
biased as well) and reducing the bias of the structural parameters.

5 Conclusions

I build up a flexible set up to estimate structural parameters of a station-
ary dsge model using non stationary data. The method takes explicitly
into account the uncertainty embodied in the trend specification and in
the fact that we do not observe trend and cycles separately. To do this I
compute the likelihood function that includes the long and medium run
dynamics of the times series. I assume that the dsge linearized solution
is a good approximation of the cycles, and I allow for different trend
specifications, linear, unit root and stochastic smooth trend. simulation
results suggest that the method is robust to trend misspecification and
it improves the performance in terms of bias relative to traditional two
step estimates (first filter and then estimate), when trend and cycles are
correlated.
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Paper Exog Process Filter Est

Smets and Wouters (2003) stat hp B
Ireland (2001) stat lt MLE

Bouakez, Cardia and Ruge-Murcia (2005) stat lt MLE
Rabanal and Rubio-Ramirez (2003) stat lt∗ B

McGrattan (1994) stat lt MLE
Rabanal (2007) stat qt∗ B

Burnside, Eichenbaum and Rebelo (1993) stat hp GMM
Christensen and Dib (2008) stat hp MLE
Smets and Wouters (2005) stat† fd B

McGrattan, Rogerson and Wright (1997) stat† lt MLE
DelNegro, Schoerfheide, Smets and Wouters (2007) unit root fd B

Justiniano and Primiceri (2006) unit root fd B

Table 1: Summary of Selected papers.∗ the nominal variable are demeaned. †

the technology process is stationary, and there is a deterministic trend in labor.
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True Values 1 2 3 4 5

β 0.99 0.99 0.99 0.99 0.99
π 1.022 1.022 1.022 1.022 1.022
σc 0.80 0.70 0.60 0.50 1.80
σn 2.20 2.30 3.00 2.10 4.00
θc 6.00 6.20 5.70 6.50 6.00
k 5.30 6.00 5.30 5.00 5.00
ρR 0.80 0.90 0.70 0.75 0.60
ρy 0.50 0.60 0.65 0.60 0.40
ρπ 2.50 2.00 1.70 1.90 2.40
ρz 0.80 0.88 0.70 0.50 0.40
ρχ 0.80 0.82 0.70 0.60 0.40
σz 0.35 0.10 0.21 0.03 0.21
σχ 0.28 0.09 0.11 0.02 0.11
σmp 0.21 0.08 0.05 0.01 0.05

Table 2: Population values for the structural parameters of the dsge model.

TV 1 2 3 4 5

Marg Like 727 747 731 561 565
σc 53( 1.83) 2( 0.62) 10( 1.24) 36( 1.50) 20( 2.15)
σn 78( 1.57) 57( 0.84) 82( 1.24) 69( 1.17) 54( 1.70)
θc 1( 0.30) 1( 0.12) 7( 0.33) 5( 0.27) 4( 0.25)
k 4( 0.60) 16( 0.26) 3( 0.67) 2( 0.73) 1( 0.61)
ρR 22( 2.08) 75( 0.91) 38( 2.11) 81( 2.69) 75( 2.57)
ρπ 14( 3.34) 7( 1.46) 11( 2.36) 32( 2.51) 97( 3.92)
ρy 21( 0.77) 2( 0.34) 15( 0.90) 5( 0.97) 19( 0.72)
ρz 34( 15.53) 6( 5.32) 30( 22.36) 86( 13.72) 134( 17.38)
ρχ 18( 7.25) 53( 7.96) 33( 8.26) 45( 25.18) 22( 30.23)
σz 76( 10.79) 18( 25.84) 61( 19.20) 186( 133.62) 59( 19.43)
σχ 50( 29.76) 52( 54.91) 30( 71.53) 615( 384.06) 29( 70.83)
σmp 14( 44.70) 526( 99.47) 343( 258.89) 5567( 1866.00) 1041( 346.03)

Table 3: Bias with the lt-dsge filter. The DGP is generated with the values
in Table 2 and with a deterministic trend. The bias values are expressed in %
terms, with the standard deviations in parenthesis in % as well.
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TV 1 2 3 4 5

Marg Like 624 661 423 609 621
σc 10( 2.41) 20( 2.70) 44( 4.39) 33( 1.09) 77( 2.98)
σn 79( 2.00) 71( 3.18) 78( 3.67) 25( 0.94) 68( 2.36)
θc 0( 0.36) 3( 0.55) 6( 1.21) 6( 0.20) 1( 0.43)
k 6( 1.00) 16( 1.15) 6( 2.11) 1( 0.59) 4( 1.05)
ρR 79( 2.74) 10( 1.98) 76( 7.70) 31( 1.91) 65( 2.24)
ρπ 77( 3.76) 17( 6.01) 30( 8.87) 49( 2.23) 59( 6.44)
ρy 15( 0.88) 5( 1.72) 13( 3.59) 10( 0.64) 12( 0.91)
ρz 5( 14.15) 8( 8.86) 22( 35.43) 89( 13.31) 120( 34.32)
ρχ 19( 8.37) 8( 19.21) 18( 40.96) 13( 13.72) 146( 6.14)
σz 55( 34.67) 67( 23.95) 54( 39.51) 85( 9.49) 85( 10.12)
σχ 60( 30.52) 49( 46.50) 42( 48.45) 50( 28.41) 72( 22.60)
σmp 25( 41.53) 14( 70.58) 1452( 1139.75) 50( 54.07) 14( 61.25)

Table 4: Bias with the lt-dsge filter. The DGP is generated with the values in
Table 2 and with a stochastic trend. The bias values are expressed in % terms,
with the standard deviations in parenthesis in % as well.

TV 1 2 3 4 5

Marg Like 729 739 717 740 740
σc 29( 6.31) 68( 3.92) 60( 4.52) 55( 3.92) 28( 6.44)
σn 60( 4.76) 34( 5.69) 67( 3.74) 71( 3.69) 57( 5.49)
θc 3( 1.82) 2( 1.86) 6( 1.93) 6( 1.59) 2( 1.73)
k 7( 2.37) 18( 1.54) 7( 2.33) 2( 2.22) 1( 2.28)
ρR 87( 14.62) 94( 9.37) 88( 14.00) 91( 12.51) 88( 15.86)
ρπ 74( 22.22) 51( 14.37) 36( 15.94) 52( 14.52) 126( 26.35)
ρy 21( 5.16) 6( 5.46) 11( 6.84) 6( 5.04) 22( 4.10)
ρz 8( 14.49) 54( 11.69) 16( 17.08) 62( 24.39) 82( 30.96)
ρχ 6( 14.48) 18( 12.53) 20( 15.59) 41( 19.80) 98( 27.74)
σz 75( 21.76) 17( 60.56) 59( 34.44) 180( 222.63) 60( 33.63)
σχ 54( 45.26) 26( 120.03) 23( 114.73) 469( 483.72) 11( 55.26)
σmp 139( 228.65) 543( 659.70) 907( 1116.72) 5686( 4047.11) 975( 1028.69)

Table 5: Bias with the hp-dsge filter. The DGP is generated with the values
in Table 2 and with a deterministic trend. The bias values are expressed in %
terms, with the standard deviations in parenthesis in % as well.
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TV 1 2 3 4 5

Marg Like 764 760 758 739 761
σc 45( 6.21) 45( 5.10) 58( 4.00) 61( 5.00) 52( 6.56)
σn 54( 4.99) 58( 6.22) 66( 4.17) 57( 4.37) 35( 5.67)
θc 2( 1.70) 2( 1.97) 7( 2.04) 7( 1.82) 4( 1.75)
k 6( 2.24) 18( 2.03) 7( 1.95) 2( 2.26) 2( 1.95)
ρR 91( 11.63) 90( 10.83) 89( 14.50) 89( 13.45) 90( 14.45)
ρπ 81( 17.64) 47( 14.91) 35( 17.27) 47( 18.56) 126( 22.83)
ρy 25( 4.67) 6( 6.41) 14( 6.68) 3( 6.76) 20( 4.82)
ρz 8( 13.08) 6( 10.77) 18( 15.78) 52( 27.03) 25( 26.38)
ρχ 7( 11.34) 7( 13.40) 18( 18.31) 32( 20.96) 79( 27.08)
σz 61( 29.14) 70( 26.75) 60( 30.27) 80( 17.59) 84( 12.48)
σχ 65( 35.43) 55( 43.17) 49( 50.29) 61( 38.05) 77( 22.49)
σmp 25( 98.52) 160( 269.79) 1019( 1005.11) 89( 191.87) 139( 233.32)

Table 6: Bias with the hp-dsge filter. The DGP is generated with the values in
Table 2 and with a stochastic trend. The bias values are expressed in % terms,
with the standard deviations in parenthesis in % as well.

TV 1 2 3 4 5

σc 57( 31.81) 46( 43.60) 103( 54.17) 93( 55.83) 45( 16.75)
σn 53( 13.49) 48( 12.93) 67( 10.47) 44( 14.01) 69( 6.84)
θc 2( 1.07) 2( 1.08) 8( 1.03) 5( 1.04) 1( 1.03)
k 1( 1.19) 1( 1.29) 2( 1.25) 3( 1.23) 1( 1.27)
ρR 78( 8.21) 73( 7.31) 77( 9.26) 86( 6.86) 76( 9.86)
ρy 67( 13.07) 35( 9.90) 29( 8.80) 46( 11.35) 119( 15.15)
ρπ 25( 2.67) 8( 3.08) 10( 3.49) 3( 3.45) 21( 2.66)
ρz 38( 8.15) 50( 8.10) 24( 10.53) 43( 13.48) 32( 18.44)
ρχ 46( 8.04) 61( 8.08) 44( 10.06) 46( 9.28) 14( 15.22)
σz 73( 23.85) 10( 54.32) 55( 38.03) 221( 248.18) 54( 39.14)
σχ 48( 52.50) 79( 174.98) 28( 114.81) 596( 713.18) 33( 108.48)
σmp 257( 239.44) 691( 845.10) 1436( 1292.04) 6801( 6540.22) 1124( 1041.38)

Table 7: Bias with the 2 step estimate. The DGP is generated with the val-
ues in Table 2 and with a deterministic trend allowing for correlation between
trend and cycles. The bias values are expressed in % terms, with the standard
deviations in parenthesis in % as well.
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TV 1 2 3 4 5

Marg Like 688 697 666 692 550
σc 46( 1.80) 75( 1.21) 33( 6.32) 100( 13.44) 33( 3.05)
σn 73( 1.78) 50( 1.20) 75( 1.13) 79( 2.70) 76( 1.61)
θc 1( 0.34) 1( 0.24) 9( 0.30) 7( 0.45) 1( 0.58)
k 1( 0.88) 1( 0.65) 1( 0.72) 2( 1.17) 1( 1.09)
ρR 13( 2.32) 35( 1.56) 3( 2.47) 31( 2.48) 73( 5.29)
ρy 38( 4.01) 4( 2.55) 11( 3.01) 13( 5.76) 101( 7.11)
ρπ 24( 0.79) 8( 0.71) 16( 1.09) 5( 1.48) 26( 1.39)
ρz 59( 18.32) 6( 8.68) 44( 20.62) 14( 36.33) 133( 27.65)
ρχ 34( 20.84) 52( 12.91) 32( 21.02) 58( 11.19) 18( 48.31)
σz 73( 17.89) 14( 40.36) 53( 35.59) 198( 231.76) 54( 42.81)
σχ 53( 38.48) 55( 98.72) 25( 78.74) 570( 573.69) 36( 139.04)
σmp 20( 62.96) 221( 158.09) 807( 308.97) 1952( 1661.07) 1120( 577.75)

Table 8: Bias with the lg-dsge estimate. The DGP is generated with the val-
ues in Table 2 and with a deterministic trend allowing for correlation between
trend and cycles. The bias values are expressed in % terms, with the standard
deviations in parenthesis in % as well.

TV 1 2 3 4 5

σc 19( 29.64) 51( 43.37) 29( 26.45) 43( 46.37) 59( 14.67)
σn 43( 13.37) 45( 11.84) 51( 7.53) 33( 11.34) 62( 6.40)
θc 3( 1.11) 2( 1.00) 7( 1.00) 4( 0.85) 3( 0.98)
k 2( 1.11) 1( 1.05) 1( 1.01) 2( 1.12) 1( 1.01)
ρR 86( 6.36) 82( 6.25) 89( 7.39) 90( 6.90) 82( 8.63)
ρy 73( 12.25) 40( 10.53) 37( 9.06) 47( 7.63) 121( 12.78)
ρπ 25( 2.52) 5( 2.86) 10( 3.10) 4( 2.59) 16( 2.26)
ρz 69( 6.68) 56( 6.49) 73( 7.50) 65( 10.47) 57( 10.71)
ρχ 52( 6.42) 48( 7.37) 54( 8.06) 57( 9.51) 35( 11.79)
σz 83( 15.59) 80( 17.42) 56( 36.09) 79( 18.12) 83( 13.70)
σχ 58( 43.49) 39( 58.99) 45( 51.94) 66( 34.55) 69( 31.32)
σmp 31( 88.44) 74( 165.58) 985( 919.93) 126( 185.69) 144( 233.60)

Table 9: Bias with the 2 step estimate. The DGP is generated with the values in
Table 2 and with a stochastic trend allowing for correlation between trend and
cycles. The bias values are expressed in % terms, with the standard deviations
in parenthesis in % as well.
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TV 1 2 3 4 5

Marg Like 766 721 778 781 755
σc 60( 15.54) 58( 21.88) 12( 10.62) 100( 20.82) 67( 7.75)
σn 56( 5.09) 50( 6.76) 68( 3.99) 49( 5.03) 59( 2.64)
θc 2( 1.79) 2( 2.01) 8( 1.67) 6( 1.43) 2( 2.30)
k 2( 2.79) 1( 2.60) 1( 2.14) 2( 2.22) 2( 2.16)
ρR 88( 13.39) 74( 13.64) 90( 12.63) 91( 11.17) 90( 12.61)
ρy 75( 19.80) 37( 17.85) 39( 14.16) 52( 13.88) 123( 27.23)
ρπ 23( 4.48) 5( 7.64) 8( 7.49) 4( 5.01) 20( 5.59)
ρz 7( 13.93) 5( 12.70) 18( 16.16) 33( 24.85) 22( 19.25)
ρχ 7( 12.82) 5( 14.37) 18( 16.41) 41( 21.01) 35( 20.57)
σz 85( 13.28) 81( 17.03) 60( 33.26) 81( 16.67) 84( 12.96)
σχ 62( 36.15) 44( 65.37) 52( 43.28) 72( 23.46) 71( 27.74)
σmp 24( 89.16) 35( 152.96) 928( 888.30) 97( 217.20) 137( 245.91)

Table 10: Bias with the hp-dsge estimate. The DGP is generated with the
values in Table 2 and with a stochastic trend allowing for correlation between
trend and cycles. The bias values are expressed in % terms, with the standard
deviations in parenthesis in % as well.
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Figure 1: From top, investment, consumption, hour worked over gdp from
1964:1 to 2007:2.
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Figure 2: HP Filtered series. From top left, hour worked, wages, investment,
consumption, gdp, government spending, labor tax, capital tax and interest rate
from 1964:1 to 2007:2.
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Figure 3: Quadratic Trend Filtered series. From top left, hour worked, wages,
investment, consumption, gdp, government spending, labor tax, capital tax and
interest rate from 1964:1 to 2007:2.
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Figure 4: First Difference series. From top left, hour worked, wages, investment,
consumption, gdp, government spending, labor tax, capital tax and interest rate
from 1964:1 to 2007:2.

28


