Therole of volatility regimes on volatility
transmission patterns

Abstract

This paper investigates volatility transmissiont@ats between US and Eurozone stock markets
differentiating between low and high volatility pmats which tend to be related with international

crisis. Our approach let us distinguish the spélointensities between markets in calm and crisis
periods and it also tests for a potential increafsenarket comovements during these periods of
market jitters. State-Dependent Volatility ImpuResponse Functions (SD-VIRF) are also

introduced considering different responses of stowckets during the detected high and low

volatility periods. The results show that both lepirs intensities and conditional correlation

increase in times of market unstability.
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1.-Introduction

With the recent process of globalization, therarisncreasingly interrelation between stock
markets all over the world. The relationships aadgsmission mechanisms among different
countries is a topic that has received lots ofnditba in the financial literature (Rachmand
and Susmel (1998), Brooks (2000), Bekaert et. 882@mong others) and seems even a
more attractive topic in the current moment of glldimancial crisis. Although interactions
and transmission patterns among countries have aealyzed both in mean (Eun and
Shim (1989) Kroner and Ng (1998)) and variance {ims and Booth (1995), Beirne et al.
(2009)), in this paper we focus our attention oa tklationships between conditional
second moments. We are interested in knowing hewttatility of one market reacts to
innovations in other markets and whether or na tkaction is different during low and
high volatility periods. Moreover, previous studissow evidence of nonlinearities in
volatility dynamics (Frijns and Schotman, 2006) dhd no consideration of them could
lead to misleading conclusions about the signiftearand magnitude of volatility
transmission mechanisms.

In the literature the studies have focused on mplls analyzing how shocks from one
market affect volatility in other markets (Hamaoaét (1990), Lee et. al (2004)). Another
volatility transmission mechanism treated in theer&ture is financial contagion, often
detected as changes in the correlations level duiisis periods (Forbes and Rigobon,
2002). One of the attractive features of our stigdthat it presents a time-varying shock
spillover sensitivity that is driven by a regime#sling model (Baele, 2005). This
approach let us observe the magnitude of the \ipJatiansmission between markets and
how it evolves during time. Moreover, as far asriarkets are more interconnected during
high volatility periods, a potential increase ie ttorrelations between them may suggest a
sign of higher market comovements or interdepenglgiforbes and Rigobon (2002),
Bekaert et. al(2005)). Therefore, this study magdshght on the topic discussing if it is
worth using country diversification during perioosmarket jitters. Some studies focus on
analyzing the role of several crises (for examplexMo, Russia, Argentina) in the
volatility transmission patterns between marketslfEs and Rigobon (2002). In this study
we do not consider the effect of a specific crizi we let the data decide which periods
corresponds to high volatility states (associateth wrises) and to low volatility states
(associated with stable periods).

From a methodological point of view, in the vaseamn of literature analyzing volatility
transmission, one of the most popular approachéisne using GARCH processes. In its
univariate specification, the conditional variance one market may be affected by
additional information (such as innovations, paatiance levels in other marketsyhich

! This univariate GARCH models are the second phase dktage methodology. Generally, the goal of ifst phase is to
obtain series of unexpected innovations or votegsliof a specified market. In the second phaseyntheariate GARCH models
are estimated including the series from the firstgghas explanatory variables (see e.g. Hamao et 80)j19



let us analyze the relationship between the domesérket variance and the unexpected
volatility/innovations of the foreign market. Preus studies using this univariate
methodology already concern about the potentiduémice of changes in regime in the
volatility transmission patterns. Some of them wledi several regimes through sudden
changes in unconditional volatility. Aggarwal et.(8999) use a model combing GARCH
specification with dummy variables which repressmtiden changes in variance detected
with an iterative cumulative sum of squares (IC&fjorithm. However, studies using
univariate models merely propose the conditionalanege of one market as explanatory
variable for the conditional volatility of the otheand do not consider potential
interrelations between volatilities also ignoriftgetrole of the covariances. Therefore, a
multivariate GARCH model (Darbar and Deb (1997),ngle and Torro (2003)) seems
more attractive in order to analyze the volatititgnsmission patterns between two markets.
Sudden switches in bivariate models have also b#mduced in studies such as in Ewing
and Malik (2005). Other studies considering ponthanges in regime use the Switching
ARCH (SWARCH) model of Hamilton and Susmel (1994arsng with univariate
estimation of each series and then use the bieavetsion of a SWARCH model. Edwards
and Susmel (2001) apply this methodology to trassion volatility in emerging markets
finding that high volatility states tend to be telto international crisés

Another line of research recently developed tresttto solve the problem showed above is
based on the use of Markov-Switching models. Thelies in this stream propose the
analysis of volatility transmission patterns bytites several hypotheses on how changes in
regime in one country may lead to changes in Mijategime in other countries. Sola et. al
(2002), Gallo and Otranto (2007), Bialkwosky et(2006) use a methodology that allows
them to test different types of volatility transsi@ mechanisms by proposing hypothesis
on the parameters that define the transition prtibamatrix. These studies identify the
direction of the volatility spillovers and the monte when they occur. However, although
these studies identify properly the volatility tsamssion among markets they ignore
potential differences in the magnitude of spillavduring high and volatility periods.

In our study we try to develop a model that refietie advantages of these two approaches.
We propose a multivariate GARCH framework where alow for state-dependent
parameters. With our approach we can overcomeirttigation of single-regime GARCH
models (Brooks and Henry (2000), Caporale et. 8022 among others) when they
consider the same volatility transmission pattéonsall periods (calm and crisis). Another
advantage of our model is that we do not needttibksh calm and crises periods a priori
but is the estimation procedure itself which desiddéen the markets are in periods of calm
or financial turmoif. Our analysis also lets us analyze the magnitudthe spillovers

2 The studies using SWARCH models are similar thenatpproach we used in this paper, but our modeldates a GARCH
structure in conditional variance and considers tie o6 covariances between markets while SWARCH modgdsbased on
univariate ARCH specifications of the conditionatigace.

3 In the approach used in papers such as Ewing atil {2805) the sudden changes in variances are agsdcwith regime
shifts and are computed in a previous stage usingC88 algorithm and then they are incorporated to Hre&ance equation
using dummy variables. In our approach we definaliffierent states in the estimation process.



during time. Moreover, with time-varying volatii we are able to propose volatility
impulse response functions (VIRF) measuring howmexpected shock in one market can
affect the volatility in another market. We areeatd perform this analysis in times of calm
and crisis and see if a shock of the same magnitadea similar effect under different
volatility market scenarios through the state-deleet VIRF we define in the paper (SD-
VIRF)*.

In this study we detect volatility spillovers iféghpast volatility of one market has a
significant impact on the volatility formation ofi¢ other market. We perform a similar
analysis and we define shock spillovers when weudis how the past shocks generated in
one market have a significant impact on the otharket volatility. We also analyze
changes in correlation levels during crises periadd associate them as increases of
market comovements. Although some studies (Forbebs Rigobon, 2002) associate
increases in correlations during crises periods sign of financial contagion, as we do not
know the direction or the origin of the potentiantagion, we just establish these higher
correlations as market comovements.

The contributions of the study to the current &tere are the followings. First, we study
the volatility transmission between the US and Hwwozone using a sample period
including the recent global financial crisis periddecond, we also present the shock
spillover intensity between these two markets whiehies over time according to the
regime-switching process. Third, we present a sngpbcedure to test differential market
comovements during crises periods based on thenastil time-varying correlations.
Finally, we introduce a State-Dependent Volatilliypulse-Response Function which
distinguishes between calm and crises periods aot s1ow different the conditional
second moments in each market react during calntuaimil periods.

The main results of the study can be summarizetblésns. First, the intensity of the
spillovers during high volatility periods is sigigi&ntly higher than the observed during low
volatility periods. Second, the impact of an unetpd shock in the volatility formation
depends essentially on the market scenario (lovigin volatility). The magnitude and
decay of these shocks is higher and takes longdis&ppear during high volatility periods.
Third, we find a significant difference between thagnitudes of conditional correlations
during periods of high and low volatility observitigat markets present a higher level of
correlation during market turmoil periods. Fourggenerally the Eurozone stock market
seems to be more sensitive to volatility spillovansl react more against unexpected shocks
occurring in any of two markets.

The rest of the paper is organized as follows.i&e@ presents the database and performs
some previous statistical analysis on the datati®@e@ introduces the econometric
approach. Section 4 shows some empirical resutigtalmlatility and shock spillovers and

4 To the best of our knowledge this is one of ih& fittempts analyzing regime-dependent volatilispomse functions. Some
works (Ehrman et. al (2003)) propose state-dependentlSeypesponse functions for autoregressive processesan but the
application on volatility is a topic yet to analyze



analyzes the role of conditional correlation. Settb deals with the state-dependent
volatility impulse-response functions and finalBgction 6 concludes.

2.- Data description

The data used in this study includes weekly clogirigeS (Brooks and Henry (2000),
Billio and Pellizon (2003)) for the US (S&P100 injeand the Eurozone (Eurostoxx50
index) stock markets. The time horizon includeseobations since 1 January 1988 until 31
December 2010. We obtained the market stock indéatsfrom Thomson Datastream.

[INSERT FIGURE 1]

Figure 1 displays the evolution of the ret(raad prices series of Eurostoxx50 and SP 100
during the sample period considered.

[INSERT TABLE 1]

Several statistical tests performed over the weelyrns are presented in Table 1. Panel A
shows the main summary statistics for the EU and iit#xes. Certain results are
noteworthy. For the returns, negative values aesgnt in the third-order moments. There
is also excess kurtosis in the returns (fat taitg} finding suggests that the variances of the
series may be time varying. Finally, note thatihegue-Bera normality test is rejected, due
to the asymmetric and leptokurtic characteristicthe series. Panel B shows several tests
to identify serial autocorrelation in the returmiee and in their squares (heterokedasticity).
The first one reveals evidence for serial autodatian in returns levels There are also
displayed two tests to detect potential ARCH effecthe first one uses the serial
autocorrelation tests for the squared series. €hersl one uses the Engle’s ARCH test. It
is noteworthy that the statistics for both testsggast evidence of conditional
heteroskedasticity for EU and US series. Panelfleats the stationarity tests performed
over the returns and prices series and revealgtibgtrices series are 1(1), so we have to
work with the returns series for stationarity reaso

5 Most of the authors using non-linear switching nede a bivariate framework (Edwards and Susmel (20Bagle (2005)
among others) use data at weekly frequency becausendoeeflect the noise of higher frequencies anetefore, let identify
more accurately the different regimes in the votgtpirocesses.

6 We use logarithmic returns multiplied by 100 toilftate the convergence process of our model.

7 Despite the presence of serial correlation in thermetseries we do not consider any structure in ther ragaation as the
standardized residuals from the estimations are freerdd| autocorrelation.



3. Methodology

In contrast to previous studies in which the dyr@aralationship between the returns of two
markets is characterized by linear patterns (se@@oand Climent, 2006 for a review),
the model presented by Lee and Yoder (2007) alfawsegime shifts in this relationship.
This type of non-linear models opens up a new fanenodeling conditional volatilities in
a multivariate framework. In that study, the Grafi996) method to solve the problem of
path dependency is extended to a bivariate case.

Let r, . @ndry, ,be the state-dependent Eurostoxx and SP500 redtitnespectively;

US, t, st

we define the state-dependent mean equations as:

rEU,t,st = :uEU,st+eEU,t,sl (1)
Mus,tst = Hus st € st « (2)
€U st
a1 [eus,t,st}pt‘l ~ BN H.) (3)

where g, ,and g , for 5 ={1,2 are parameters to be estimated.

The state-dependent innovatiogs, follow a bivariate normal distribution that depsnzh

the state variabls;:{l,2}8. This state variable follows a two-state first@rdMarkov
process with transition probabilities:

o[ Pls=1s.=9=p P(s={s=3=(2 )
Pris=2s.=9=(p9 P{s=2s= 2= g

wherep represents the probability of continuing in statat period t if it was previously in

state 1 and) represents the probability of continuing in s@iéit was previously in state 2.

The state-dependent conditional second moménts follow a BEKK specification model

(Baba et. al, 1990) that takes different valueseddng on the value of ={1,3 . Thus,
the variance specification in each state is defamtbllows:

8 We want to thank an anonymous referee for suggesiing more general model with two states variableg for each
market). After a careful study evaluating the costsl &enefits of each specification we decided to gth whe more
parsimonious model. The expected benefits of threatricted model would be a more realistic repregent of the regime-
switching (it would let the markets change regimedifferent periods). However, we observed that in mbsh® sample both
markets are in the same state (fact which is reflectéuki more parsimonious model). The costs of theatricted model would
be the overparameterized optimization problem we evéate (35 parameters) with bad consequences for theaay of the
estimations. Given this evidence, the restrictedamae specification is choseResults of this analysis are available upon
request.
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where g7, , ,and g , are the conditional variances for the EU and USrnetin period
for each state and o, .05, IS the conditional covariances tirfor each state. C,

A, and B are matrices of parameters to be estimated.

If we develop the compact form we obtain the follogv specification for each state-
dependent variance equation:

Tans  Tmnusis :[Cllst O](Cﬂﬂ O].,.
Osileyts azusm Qo Cos)\ Cos Cay (6)

(%st azlstJ‘ éu,t—l eEu,HQJs,H( A 821j _{ B bzsi UéU,t—l Ory-9us 11 ( R 2@1}

H=
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The consideration of several states leads to awootky rise in the number of parameters
to estimate. In order to reduce this over-paranzstion the difference among states is
defined by three new parametess sh and sc that properly weight the estimations
obtained in one state for the other state. Thezetbie state-dependent covariance matrices

in our model are:

2

— JEU,t,l aEU,t,laUS,t,l — ' - :
thq:l - 2 _C1C1 + A&-le-l Al‘+ 5 lTI—l @
UUS,t,laEU,t,l aUS,t,l (6.1)
2
_ UEU,t,Z JEU ,t,Zo-US,t,Z — ' . .
Hiqoo = 5 =CC+Ag ., A+ BH,B
JUS,t,ZaEU,t,Z JUS,t,Z (6.2)

where C, =sc G, A, =sa Aand B, = sb B, A and B, are 2x2 matrices of parameters and

C, is a 2x2 lower triangular matrix of constants.

Because of this state dependence, the model wilbrbe intractable as the number of
observations increases. In order to solve thislprobnve apply the recombining method
used in Gray (1996) where the path dependency @mold solved for univariate models.
Lee and Yoder (2007a) extend this recombining nmeethothe bivariate case.

9 Following the insightful suggestions from an anooys referee, we have also considered a variance ispgoifi where all
parameters are estimated freely. In order to chooseebe this more general model and the one presentdiie paper we
analyzed the costs and benefits of using each mdtlelexpected benefits of the more general modeldioe a more realistic
representation of dynamics for volatilities and covarés among regimes. This is expected to lead téter bepresentation and
fit of this model to the financial data. To checksthypothesis, we run a likelihood-ratio test betwbeth models and we
observed that the more general model cannot impravétting of the data obtained with the restricted 0Again, the costs of
the unrestricted model would be the overparameterizgtimization problem we would face (28 parametersjhwbad
consequences for the accuracy of the estimationenGhis evidence, one state variable for both maikethosen. Results of
this analysis are available upon request.



The basic equations of the recombining method usedollapse the variances and
covariances and the innovations, and to ensurmtukel| is tractable are described below:

:AR_(ﬂlx r1,1+(1_ﬂn)rt, ,2) i:{EU,US}

ol =m, (12, +02 )+(1-m)(r? #a? )—(nr #(1-m,)n, ’ffori:{EU,US}

it i it

()
(8)
9
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)
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Where AR are the observed EU and US returos,, o, are the state-independent
variances and covariances aggregated by the reppmhinethod, andsy’, ., , 0pyys . « are

the state-dependent variances and covariances=fEU,US} and 5 ={1,% .

The termsr,, , represent the state-dependent mean equadiothgz,, is the probability of
being in state 1 at time t obtained by the expoessi

T,=p O1t-1/0y-1 +(1_ q) O21- 1(1 e 1)
gt
O11-1/Ty-1F G 1(1_ Ty J) 0 Ty, ¥ Q¢ (ll_ T

1
Where Ui, ( |§ =1,Q,_ 1) = 2” ‘Htst‘ e p{_%et,st Ht_,itet,st}

(10)

(11)
for 5 ={1,3 andp, q were described in (4).
Thus, the parameters of the model can be estimatbdhe following maximum likelihood

function L(6) = ilog f(r.;0) (12) where
t=1

The interpretation of the parameters obtained @arhot be done individually. Instead, we
have to interpret the non-linear functions of tlaegmeters which form the intercept terms
and the coefficients of the lagged variances, damaes and lagged error terms. So, the
conditional variance for each equation can be edgdror each state-dependent bivariate
GARCH as follows expanding (6):

2 _ A2 2 2 2
Ocutg=1 — Crig=1™ b11,§: Fruett 2b11; plg; qev+q ust T 5 215 91 ust

2
+a11,§:1eéu 1 +23115: 1oe= &ur 1 %s+ i ‘23‘215 1%%5—1 1

(14)
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2
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Equations (14) to (17) reveal how past shocks afakilities are transmitted over time and
across the EU and US stocks indexes in each vbladiiate. Note that these coefficient
terms are nonlinear functions of the estimated efégmfrom (6). We follow Kearney and
Patton (2000) and compute the expected value andtdndard error of those non-linear
functions.

The expected value of a non-linear function of mandvariables is calculated as the
function of the expected value of the variablegshd estimated variables are unbiased. In
this case we just develop the compact form in (8) eompute the products between the
corresponding coefficients. This leads to equatiday to (17). In order to calculate the
standard errors of the function, a first order Baypproximation is uséd This approach
linearizes the standard error function by usingaagformation of the variance-covariance
matrix of the parameters.

4.- Empirical results

Table 2 shows the estimated parameters for the Inppdposed. The estimations for the
mean equation reveal that for state 1(associateloxt volatility states) the average returns
for both countries present a positive and significzalue while they present a significant
negative value for state 2 (high volatility stat@his result is consistent with some
literature (Lundblad, 2007) which discuss that ireml returns, particularly in the less
common high volatility states (corresponding gelienaith recession periods) are often
associated with low or even negative markets returnile during calm periods the returns

10 To calculate the standard errors, the function mestifearized using a first order Taylor series expgangising the
covariance matrix of the parameters (which in QMLreation is approximated by a sandwich expression tlighouter product

of the gradient and the inverse of the hessian abpiﬁemumv(e):(OPG* Hess'* OP()s (Bollerslev-Wooldrige(1992)).
Note that for the parameters in table 2, the st@héaors are computed using the square root of thgoda in this matrix
v (6).

However, for the non-linear expression in equatibfsl7 we need to use a transformation of this maising the mentioned
Taylor series expansion. For this specific case, timelinear transformations involving just one of thiegimal parameters i@,
(for exampleafl’sm ) is given by this expression:

V(Y):(AY)Zz%(AXf:% V(Y wheny = £(X)

And for transformations involving two parametersgiffor examplea,, ... -a,, . , ), the expression to use is:

V(Y)=(a ZZ%V(W% y 2}+2(%j(§—2 Coy X pwhenY = f(X, 2)



observed in the markets are usually higher. As wationed above, the parameters of the
model in the variance equation cannot be intergretdividually, so we have to develop
the compact form and focus on the non-linear coatimns of parameters in the expanded
model. However, we can observe that the estimateahpeters for the model are generally
significant and the standardized residuals obtaifieth the estimation do not present
significant evidence of serial autocorrelation onditional heterokedasticity

[INSERT TABLE 2]

Table 3 represents the expected value and theasthedrors of these non-linear functions
in each volatility regime which are expressed dsirection of the lagged variances and
innovations in both markets and their cross pragluct

[INSERT TABLE 3]

Regarding other studies using multivariate GARCHuia et. al, 2009, Ewing and Malik,
2005) our model let us distinguish the volatiliprrhation in each market during periods of

low and high volatility. During calm market situatis (51 =1), the Eurostoxx50 volatility
is directly affected by its own past volatili(yféuyt_l)and by the past volatility of SP500 at
1% of significance(ajsyt_l) . Our findings also suggest that the past Eurosshocks
(eéuyt_l)do not have a significant impact on the Eurozonset@mporaneous volatility.

However, the shocks occurred in the l@%S’H) have a significant effect on Eurozone
volatility at 10% of significance. In these low watility periods, the SP100 volatility is
affected by its own past volatilitfrys . ,) and by the Eurostoxx past volatilify?, , ,) at

1% of significance. However, in this case only g8fecks occurred in the US market
(ejsyt_l) have a significant impact on the volatility fornoat at 10% of significance but not

those ones occurring in the Eurozeg  ,) .

The situation during high volatility perio(Is:Z) varies from the observed in low

volatility periods. First of all the impact of botrast variance and innovations is higher
during this turmolil periods. All the coefficientseasuring the sensitivities of the own,
foreign and cross-product variances and innovatiocrease regarding the observed in low
volatility states. The significance is similar théme observed in low volatility states

obtaining that Eurostoxx50 volatility is affectet 26 level by its own(aéuyt_l) and the
SP100 past volatility o7 ., ) but only by the shocks occurring in US afféef; ) at 10%

of significance the Eurozone volatility. The volig§ formation in the SP100 index during
turmoil periods is affected at 1% of significance its own (o7, ,)and the Eurozone



volatility (0%, ,,) but only the shocks occurring in the domestic Ussket(e’; ,,) affect
the volatility of the SP100 at 5% of significance.

Besides this, the estimation of our model alsoentdl other interesting results. We can
compute the average duration of low and high Mdlatstates according to the transition
probability estimatep andq in equation (4). These parameters present a wdlpe0.9502
andg=0.9112 this means that once in state 1, the probahlityemaining in that state is
95,02%, while the probability of remaining in st&téf previously the process was in state
2 is 91.12%. Therefore, the average duration aide state 1 when the volatility process
is governed by this state will be approximately @@eks (1/(1-0.9502)) and it is
significantly less longer in high volatility regimél/(1-0.9112))being the average duration
of this state 11 weeks. This indicates that themmegswitches present a smooth evolution
staying the process in each state during relatielyg periods.

[INSERT FIGURE 2]

We show in figure 2 the smooth probabitityf being in the low volatility state for the
sample period used. The figure is governed esdigniig this staté® which corresponds
with calm periods of financial markets. When th&testgoverning the process is the state 2,
this corresponds to periods of international majiktetrs. The most relevant periods where
the high volatility states are the dominant stai@sespond to the dot-com bubble (2002-
2003) and the last financial crisis (2008).

Using the figure 2 and the plots in figure 3 whigpresent the estimated conditional
volatilities we can associate states 1 and 2 tm ¢kdw) and crises (high volatility) periods
respectively. Moreover, the estimated conditionalatilities tend to be higher in the
Eurostoxx50 than in the SP100.

[INSERT FIGURE 3]

Finally, to obtain an understanding of the magretwahd evolution of shock spillover
intensity through time and among countries we pidtgure 4 the weighted foreign shock
spillover in both markets.

[INSERT FIGURE 4]

The magnitude of spillovers is clearly distinct idgr different periods of the sample. In
those periods corresponding to high volatility esathe magnitude of foreign shock
spillovers is higher both in the US and the Eurezorarkets. Furthermore, this magnitude
is also higher in the direction of the impact of Bl®ck to Eurozone volatility than in the
direction from Eurozone to US. If we consider therage spillovers, we obtain that during
low volatility periods the shock spillover is maitgan 6 times higher during crises periods

11 The smooth probability is computed following &ien and Nelson (1999) algorithm.

12 Assuming that 0.5 is the threshold between lmlatility states (probabilities higher than 0.5) amdh volatility states
(probabilities lower than 0.5), during 816 periods tleenohant volatility process is the low volatility staagainst only 384
periods where both markets are in high volatilityegat



than during calm periods; for example, in averape, sensitivity of shock spillovers is
2.82% and 0.72% during stable periods for the Famezand the US market respectively
but these percentages increase until 18.09% andd#dairing times of financial turmoil.

4.1.- Obtaining time-varying correlations

In the previous subsection we analyzed how the yasance and shock spillovers are
transmitted among US and EU stock markets. We &xtusssentially on the patterns
followed by conditional volatilities and the factothat may affect them. Using those
conditional volatilities it is easy to obtain cotidhal correlations just by using the
following expression:

—_ Teuust
pEU/US,t - 2

O-EU,IJSS,t (18)

[INSERT FIGURE 5]

Figure 5 plots the conditional correlations accogdio expression 18. It is observed that
conditional correlations tend to be higher durihgse periods governed by high volatility
states. For example, in the periods from 1998 @B24hd during 2008-2009 is observed an
increase in the correlation levels between the tmarkets. It is noteworthy that these
periods coincide with situations of market jitterxeEU and US markets.

To contrast this potential fact that during highatitity (crisis) periods it is observed a rise
in the correlation level we propose the followinggle regression:

pEU/US,t:C+yDt+£t (19)

where D; is a dummy variable taking the value of 1 durihetected high volatility
period$>. So the coefficient represents the increase of correlation levelsguperiods of
market turmoil.

[INSERT TABLE 4]

Panel A of Table 4 shows the value of the estimatsefficients in this regression. The
coefficienty takes a significant value of 0.1067 which mearad there is an increase of
0.1067 points in the correlation levels during higitatility periods regarding those of low
volatility. Panel B reflects a battery of simple aneequality tests between the two samples
of conditional correlations (corresponding to pdsif low and high volatility) and we
conclude that we cannot accept the null hypothefsexjual average correlation during low
and high volatility states. So, these results ssgteat correlation dynamics dependence
increases during periods of high volatility indiogt a higher degree of co-movement
between the two markets during these periods

13 We define high volatility periods as those obatons in which the smooth probability for state Ibiger than 0.5.



Finally we also regress the conditional volatitief EU and US on the computed
conditional correlations to detect the contributminthe observed variance level in each
country to the obtained conditional correlationeThsults are summarized in table 5.

[INSERT TABLE 5]

It is observed that during high volatility periodsthe volatility generated in the US market
which has a greater impact on the conditional ¢aticen. However, during low volatility
states is the volatility generated in the Eurozeéch seems more important. The results
for the whole period also reflect a higher influeraf the US volatility on the observed
correlation between EU and US. Therefore, althougtrieases in volatilities in both
markets lead to higher correlations, it seems ithet the volatility generated in the US
market which generates a greater commovemet betwaekets. This can be viewed as
more evidence for our previous results. It suggegstsincreases in US market volatility are
transmitted to the Eurozone market making the ilibjabf the Eurozone increase as well
and this fact is reflected in the estimated coti@ts of how similar these two markets
behave. The transmission in the other directiofe¢efof increases in EU and then
transmitted to US) is less strong and the effecthencorrelations (how similar the two
markets evolve) is lower.

5.- State-dependent volatility impulse-response functions (SD-VIRF)

Volatility Impulse-Response Functions (VIRF) (Li8A7), Hafner and Herwartz(2006))
are useful tools to analyze the second momentactien between related markets since
they measure the impact of an unexpected shockempredicted volatility. The regime-
dependent impulse response functions we develadpisrpaper are slightly different form
the traditional VIRF since they describe the intéoam between volatility markets within
each Markov-Switching regime. Regime dependent Isgpuesponse functions are
conditional on a given regime prevailing at thediof the disturbance and thorough the
time of response. The validity of regime conditimpidepends on the time horizon of the
impulse response and the time and the expectetiatuat the regime. As long as the time
horizon is not excessive long and the transitiontrism@redicts regimes which are highly
persistent then the conditioning is valid and regidependent impulse response functions
are a useful tool (Ehrmann et al., 2003).

The state-dependent VIRF is based on the paperafrigd and Herwartz (2006) which
define the VIRF as follows:

V,(£,Q.,) = E[ vecH{ H., )|, Q. |- B vech H,)Q,] (20)
where &, is a specific shock hitting the system at dated &x,is the observed history up
to t-1. The index h represents the forecast horiimmvh(st) is the(N(N+1)/2) vector of

the shock impact on the h-ahead conditional comagamnatrix components. The VIRF is
therefore the difference between the h-ahead esggeaxnditional covariance matrix given
an unexpected shock and the history up this datk the expectation given just the



history* The operator vech is used to eliminate the vagmbf the conditional covariance
matrix which appear twice.

So, we have to transform our state-dependent BEKIdeais into its vech specifications.
Notice that the BEKK (1,1) model we use in ourestdépendent equations (6.1) and (6.2)
is a particular case of the more general multiva@ARCH(p,q) model written as follows:

p

vech( H)= ¢+ Evec(n € t'_q)+zq: G veth, K (21)
j=1

i=1
Where H, stands for the conditional covariance matrix atetit, vech (-) is the operator
that stacks the lower fraction of an N x N matnixoi an N= N(N + 1)/2 dimensional

. A Y . N
vector.F and G, are parameters matrices each contalr(lhlg) parameters and c is ®
vector.

The relation between the matrices of parametetbeimultivariate GARCH(1,1) and the
BEKK(1,1) model$’ is:
F=L,(A0A)D, 22)
G=L,(BD0B)D,.
The VIRF yields an analytical expression of the usp response function when is applied
to the previous class of MGARCH models. Computimg impact of shocks on volatility is
therefore less time-consuming compared to a sionldtased estimatidh (Le Pen and
Sevi (2010)). Applied to a MGARCH(1,1) model, theeestep ahead VIRF is:
V,(&.9Q,,)= FD} (H? 0 H?) Dyvec &g, - |) 23)
Where | is the identity matrix,D, is the duplication matrix previously defined ab its

Moore-Penrose inverse. For h>1, the VIRF is:

Y, (6,020.) = (F+6) iy () o
For the Regime-Switching Multivariate GARCH we dieye a similar approach. The
regime-dependent impulse response functions arel@#ed in (25). It shows the expected
changes in conditional volatility at time t+h taae standard deviation shock occurring in
one market at time t, conditional on regime i.

14 It is important to note that in equations 14 7othe analysis is performed using the informasiehup to t-1 (,_,) and in
the VIRF we use a different information set becausénalede an unexpected shock in t (so, we @3g, plus £,). Although

we showed that the European lagged shogks ,_, have no effect in either market (table 3), using equatil4-17 we do not

know the effect of unexpected contemporaneous shindke volatility transmission mechanisms. Thishis tnain objective of
the VIRF we present.

15 The vec operator stacks the column of a (NxN) mattixa N2 column vector but does not eliminate retint parameters.

L, is the elimination matrix such thateci{ A= L, ve€ pand D, is the duplication matrix such thaed A = Q, vech A

16 Koop et. al (1996) presents a unified approach fulse-response functions using simulation-based #@igustfor both
linear and non-linear models. Since in their apprahehimpulse-response functions are derived from Montée@aperiments
(instead of an analytical expression) they requirgyaeri computanional effort.



Vio(80Q)|g-.g S EL Vel H)[e,Q0, 557 5= - E vebh HIQw, 5.7 .5 ] (25)
The state-response vectors can be obtained siynitaah those for the linear GARCH case,

conditioning the horizon forecast to stay in thmeaegime and using the state-dependent
variance parameters:

Vig (£09Q01)| 4o mgmi= F.Dy(H20 HY2) D yec{eg - 1)

Voo (£,Q.)) =(F,+G,)V,(¢) for s=1,2

$=.FEn=i

(26)

Figure 6 plots the SD-VIRF for an unexpected shiacEurope and in the US. The top of
figure 6 plots the results for an unexpected stamdurring in the Eurozone. The impact of
a shock of a certain magnitude (one standard demjatiuring low volatility states has a

greater impact in the Eurozone (0,1%) than in tis& rharket (merely 0,02%). However,
when this shock occurs during a situation of matkanoil the effect of the shock on the
market volatility raises the Eurozone market vditgtievels in 11% and the level of US

volatility in 5,5 % approximately. Another intergsj result from these plots is the
persistence of the unexpected shocks along timeafainexpected shock of EU during
low volatility periods the effect only is latentilug 4-5 observations. However, the effect
of a shock of the same magnitude still have effectshe market volatility after 12-14

observations if it is produced during periods afficial turmoil.

The results for an unexpected shock occurring i@ thS market have a similar
interpretation. Again, the Eurozone market seemsbéo more sensitive against the
unexpected shocks. Against shocks in the US maoketrring during low volatility
periods the volatility in the Eurozone and the SPlfcreases 0.15% and 0.07%
respectively. If the same shock is introduced dutimgh volatility periods the volatility
response arrives until 27-28% in Eurozone and 13-18 US. Again, the impact of the
shocks during time is more persistent during highatiity periods remaining their effect
on volatility during 3-4 weeks and 12-15 weeks dejieg if they are introduced during
low or high volatility scenarios.

So, summing up the SD-VIRF analysis, the most @sttang results we find are: (1)
Conditional variances are more sensitive to shacksirring during high volatility states;
(2) the Eurozone market is generally more sensitvaoth EU and US shocks than the US
market; and (3) the persistence of shocks is sinmlidboth markets having an effect on
volatility of approximately 4-5 weeks during low latility states and 12-14 (even longer)
when they occur in times of financial turmoil.



6. Conclusions

The main objective of this study is to analyze pbg differences in the volatility
transmission patterns during periods of low and higlatility often associated with boom
and crises periods. To do this, weekly data for Ws (SP100 index) and the Eurozone
(Eurostoxx50) stock markets is used in a RegimeeBuig Multivariate GARCH
framework. Our approach presents the main advartteggeit is the data evolution itself
which decides the observations corresponding todogvhigh volatility periods.

We focus on the magnitude and direction of spilievdistinguishing those caused by
foreign innovations from those by foreign past tibtees and we are able to show how
these transmission patterns vary depending on dh@ndnt market volatility regime. We

also perform a study on the obtained conditionaletation searching for potential rises on
the observed correlation levels in both marketthose periods corresponding to financial
crises. Finally, we introduce a complementary asialythrough a State-Dependent
Volatility Response Function (SD-VIRF) which allows to know how reacts the volatility

of one market against an unexpected shock in anyheftwo markets considered
distinguishing if the shock occurs during periofistability or in periods of turmoil.

The results suggest that although the transmissiomast volatility is bi-directional
between US and EU, only the past shocks occurnidgS have a significant impact on the
volatility formation of both markets. We also obsetthat volatility transmission patterns
are intensified with periods of financial instatyili The spillover intensities during these
periods are around 6 times higher than during cpkniods. Moreover, we detect
significant changes in the correlation levels dynoeriods of market jitters. Some authors
associate this fact with financial contagion. Hoem\was we do not know the direction of
this potential contagion we just point out thatsanéwo markets tend to be more correlated
in times of instability. The response of volatilégainst an unexpected shock of the same
magnitude also presents different patterns in lad lsigh volatility periods. It seems that
this shock has a lower impact and decay quickdmes of financial calm but the same
shock presents a higher effect and their impa&sddnger to disappear in times of markets
jitters.

So, what it seems clear is the important role of-lweearities and regimes switching when
we analyze volatility transmission patterns. Theuhes reported in this paper regarding the
magnitude of the spillover, the correlation levatgl the response of volatility against an
unexpected shock clearly differ if we are perforgnithe analysis under a situation of
financial stability or we are in time of market @n@inty and we would like to highlight
this matter for future research.
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Table 1.- Table statistics for the Eur ostoxx50 and SP100 retur ns

Panel A.- Summary statistics
F\;teg;IoS; c/ Eurozone United States
Mear 0.129¢ 0.122:
Standard Deviatio 2.373: 2.786¢
Minimurr -19.864: -25.130t
Maximun 10.464- 13.592:
Skewne: -0.696¢ -0.838¢
Kurtosis 9.2497 10.430¢
JB tes 2048.3" 2090.57
e B.- Test for serial autocorrelation
geg;i(;ni c/ Eurozone United States
LB-Q (7 49.381" 54.145:"
ARCH tes 67.920¢" 21.1097
LB-Q2 (7 279.317 342.027"
RSteg;iosrt]i c/ Eurozone United States
Dickey-Fuller -38.338( -35.764:
Phillips-Perror -38.338( -35.764:
This table presents the descriptive statisticalierreturns series for the Eurozone and US stoakets The

JB-test is the Jarque-Bera (1980) test for normpalitB-Q (7) is the Ljung-Box (1978) test for serial
autocorrelation for the series in levels and sqsaaed ARCH-test is the Engle’s test ferorder ARCH.



Table 2.- Estimation results

Panel A.-Variance equation estimations
rEU,t,st = quU, st + eEU.lsI
lus,ist = Hug st ¥ €usist
0-2 St g sp S ! \ ! >
=y, Tt TG, Rt A BB o 5712
where G= scC A= saA B sb
o Pla=ds.=3=p P(s=1s=13= ¢ a
Prs=24s,=9=@&p) Pfs=25=2=¢
Parameters State 1 State 2
0.4287 -0.6574
Heu (0.0638) (-0.2132)
0.3469 -0.3873
Hus (0.0515) (-0.1704)
c 0.7650
1 (0.1422)
0.1777
G (0.2325)
c, 1.1071
2 (0.2646
0.0007
8y (0.0128)
a -0.0271
2 (0.0122
a, 0.0538
1 (0.0142)
a, 0.0591
2 (0.0136)
b 0.9424
1 (0.0503
b, 0.5978
2 (0.0506)
b2 -0.7833
1 (0.0803)
b, -0.2608
2 (0.1122
1.5631
Sc (0.1093)
8.7942
Sa (1.7405)
1.61215
Sb (0.0875)
D 0.9502
(0.0312)
q 0.9112
(0.0638)
Panel B.- Serial correlation test on standardiesitiuals
e,/ o} (p-value) e,/ 05, (p-value)
Q") 11.5624 0.1159 11.3252 0.1250
Q*(7) 8.7837 0.2686 8.7510 0.2710
ARCH (7) 0.8315 0.3618 2.5463 0.1105

Panel A shows the estimation results MRS-BEKK @blstandard errors in parenthesis). ***** and *
represents significance at 1%, 5% and 10% levehdP® perform several tests for serial correlatiom the
standardized residuals (Q(7) and Q(7) represents lthung-Box test for series in levels and squaned a
ARCH is the Engle’s test for ARCH effects.



Table 3.- Resultsfor thelinearized state-dependent variance equation

L ow volatility states

Eurostoxx50 conditional varian

aéu"'s = 0027861):*_@- (8)9?08 SaT'ZEU et 0%1%)’@*%““5*1 (. 1258)“3'85)5"1 (1 766E— [S) QZ“ ((}6053?)6 e 1 Sysit . 0015)*®g9

SP100 conditional varian

UUSW_l B O(ooogé:?l')& (%3%324)53 (ogegs?ﬁu = (0 1789) 156%usat (. oz%**?ﬁgfl (0007) QJ €1 (. 0072)0{%;]JQI Cusar® (0,0016(-))*;*(§Q§‘5
High volatility states

Eurostoxx50 conditional varian

2 2

Ocyg=2 = 1(043523)9* (§2§5965 euert O%ng?EUUSfl’f (0}15)??45“ ?;oﬁ% 5., - (mm)oﬂu“ €usit (0_1319;)2%;

SP100 conditional varian

Tl o = O(OQZSZ? (2159;394359 (002362)% u (04510)59uus 1 (Oogmﬁfm (006)05?&1 01 0.140, eys it (o_lsgg;ﬁ@%

Parameters values for the linearized state-dependeiatilities. Robust standard errors in parentises
(computed following the Kearney and Patton (20@hgformation). , and represent significance at
1%, 5% and 10% levels.



Table 4.- Equality of conditional correlation during low and high volatility periods

Panel A- Dummy regressic

pEU/US,t =C+yDt+£t
c 14
Par ameter 0.6117" 0.1067"
(standard error) (0.0026) (0.0047)
t-tes Satterwit-Welch | ANOVA F-tes Welch F-tes
t-test
Statistic 22.8795 21.2951 523.475 453.483
(p-value) (0.00) (0.00) (0.00) (0.00)

This table represents several tests analyzing réiffees on conditional correlation during low andghi

volatility periods.




Table5.- Impact of country volatility on conditional correlation

pEU/US,t :C+yaEU,t+ﬂJUS t+£t

Pane A.- State-independent volatility

C y £
Par ameter 0.42745" 0.03491" 0.05947"
(standard error) (0.00622) (0.01403) (0.01824)
Panel B.- Low volatility periods
c 4 B
Parameter 0.3783" 0.08327 0.0304~
(standard error) (0.0044) (0.0106) (0.0138)
Panel C.- High volatility periods
c 4 B
Parameter 0.4869" 0.0202 0.0566
(standard error) (0.0079) (0.0190) (0.0246)

This table represents the estimation for equatipdiétinguishing for the entire sample and duriog and
high volatility periods.




Figure 1.- Priceindexes and returnsfor Eurostoxx50 and SP100
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This figure shows the evolution for the Eurostoxaf the SP100 indexes from January 1988 to Decembe
2010



Figure 2.- Smooth probability of being in low volatility states
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This figure displays the smooth probability of lgeiim a low volatility state during the sample petio
considered.



Figure 3.- Estimated state-dependent conditional volatilities
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These two figures represent the estimated staterlgmt volatilities in US and EU during low (grelere)
and (red line) volatility periods.



Figure 4.- Spilloversintensities over time
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This figure reports the time-varying intensitiesvilyich shocks are transmitted from the US markéeoEU
market and vice-versa. The vertical axes repreff@mmagnitude of the spillover (in % of volatilignd the
horizontal axes represent the sample period



Figure5.- Time-varying correlation against smooth probabilities
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This figure compares the evolution through the darppriod between the time-varying correlations émel
smoothed probabilities.



Figure6.- Volatility impulse response functions

State-dependent VIRF for a shock in Europe
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These figures represent the impact of an unexpesttedk originated in a certain market on the market
volatility of EU/US during the next 25 observatiogistinguishing between low and high volatility joels.
The vertical axes represent the magnitude of teelskin % of volatility) and the horizontal axegpresents
the period of decay (in weeks).



