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Abstract

In most cases patients are not compelled to switch treatments at any specific moment,
they hold an option to switch treatments that should only be exercised when it is optimal
to do so. This paper sets up a stochastic model that provides an optimal rule for the
timing of treatment switch. In the real world, cost fluctuations render the outcome of
any treatment switch uncertain, so that patients might have to wait for more information
before optimally switching treatments, especially when the incremental cost per quality-
adjusted life year (QALY) gained cannot be fully recovered later on. The results of
the model were then tested empirically with imatinib cost data. The empirical results
support the findings of the analytical model.
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1 Introduction

For some diseases, patients receive a sequence of treatments. These may involve different
drugs or different dosages of the same drugs. The decision regarding whether to move a
patient to the next treatment in a sequence may be based on patient characteristics or
patient history, and therefore subject to variability. If it is accepted that adoption decisions
should be made with consideration of the associated decision uncertainty, then we may
say that models submitted to decision-makers should do two things: estimate expected
net benefit (NB) and characterize decision uncertainty. If this dual purpose of models is
accepted, failure to fulfil the latter requirement will limit its value for decision-making and
leave the decision-maker without a key element of information.

The decision to adopt a particular technology should be based on expected net benefit so
that, when comparing mutually exclusive treatment strategies for a particular disease, the
optimal strategy is simply the one with the highest expected NB (Claxton, 1999). Neverthe-
less, decisions based on expected NB are only appropriate if there is also some consideration
of whether current evidence is sufficient for allocating health-care resources, based on an
assessment of the consequences of decision uncertainty (Sculpher and Claxton, 2005). If
the decision uncertainty and the consequences of adopting a suboptimal treatment strategy
are large, the decision-maker may require further evidence on which to base the adoption
decision (Claxton, Eggington, Ginnelly, Griffin, McCabe, Philips, Tappenden and Wailoo,
2005).

For example, adopting some medical technologies restricts the use of certain medical
technologies in the future, and explains the lack of consensus about when to start therapy
in HIV patients (Cohen, 2000, Harrington and Carpenter, 2000). Some advocate fighting
HIV with a powerful combination of drugs as early as possible in the course of the disease in
order to prevent the disease from progressing. Others are concerned that starting therapy at
early stages, may lead to the development of viral resistance to these drugs and related com-
pounds. Although the disease may progress to an advanced stage more rapidly, while other
clinicians advocate waiting until the disease reaches a more advanced stage to initiate treat-
ments so that future options can be preserved. This problem of current decisions affecting
future options has received considerable theoretical attention in the literature on economic
investments. The higher the uncertainty about future outcomes, the more individuals will
gain from waiting for more information before committing to investment (or dis-investment)
whenever there are significant sunk costs (Pindyck, 1988). This result is a prediction of
the “option-pricing” approach to the analysis of irreversible investment under uncertainty
(Dixit, 1989a,b, Dixit and Pindyck, 1994). Numerous empirical studies have shown that ig-
noring this investment option value can be an error (see, for example, McDonald and Siegel
(1985), Pindyck (1988), Pennings (2000), Brito and de Mello-Sampayo (2005), Yu, Chang
and Fan (2006), de Mello-Sampayo, de Sousa-Vale and Camões (2011)). Analogously, the
benefits associated with actions that preserve treatment choices in the future, above and
beyond the direct value associated with those actions, are referred to as the option value of
the intervention.

For many physicians the observation that current medical treatment decisions have reper-
cussions for the treatment of health conditions in the future is an obvious one that is often
considered in their clinical decision making. Such considerations form no part of health-care
technology assessment calculations, leading to potentially significant mischaracterizations of
the treatment value. Whilst it is difficult to systematically assess the size of the bias induced
from ignoring option values, the only empirical study in the health domain found an increase
in consumer willingness-to-pay of approximately 53% when option values were considered
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(Smith, 2007).
Using the “option-pricing” approach to the analysis of irreversible treatment choices un-

der uncertainty is important since the health sector is one in which there is tremendous
uncertainty about the demand for future medical technologies. When we begin treating a
population of individuals, we do not know what additional conditions they will develop in
the future. Since new diseases are constantly emerging, we do not even necessarily know the
nature of these future conditions. Higher life expectancy prospects for new conditions to
arise, especially those associated with aging such as cancer and dementia, make the option
value of the interventions a key variable of the valuation equation. Ignoring option values
during the drug approval and reimbursement setting process could result in disincentives to
create socially valuable technologies. Finally, unlike many private investment decisions, de-
cisions taken by national health systems may be effectively irreversible for political reasons.
Palmer and Smith (2011) focus on the timing of health investments and whether it makes
sense to delay adoption of a new technology in anticipation of the exogenous arrival of new
information about its value. While the prospects for delaying investments has potentially
important implications for decision making, delay is often not feasible in this setting, espe-
cially on the time scale under which we expect new information to arrive. When analyzing
situations where current treatment decisions have irreversible implications for the treatment
of future diseases, and decision makers are choosing between competing interventions with
differing temporal consequences, Zivin and Neideill (2009) find that irreversibility raises the
value of treatment modalities that preserve future treatment options. However, introducing
some reversibility can either increase or decrease the option value, depending on the distri-
bution of patient types. These authors also examine the relationship between these values
and the biological and economic parameters that characterize any given set of technologies.

In this paper we consider the problem of a patient that is using a specific treatment but
is contemplating using higher doses of the same treatment and then is provided with a more
advanced drug. The patient will use the new drug only if such a move is deemed beneficial
in the medium and long term. That, in turn, will depend on the perceived evolution of cost.
The higher the uncertainty regarding the cost of a new treatment, the more likely it is that
a favourable situation will turn into an unfavourable one, and the more the patient will gain
from waiting for more information before committing to the new treatment whenever the
incremental cost per quality-adjusted life year (QALY) gained cannot be fully recovered later
on. This result is a prediction of the option pricing approach to the analysis of irreversible
investment under uncertainty (Dixit, 1989a,b, Dixit and Pindyck, 1994).

With the aim of empirically testing this study’s “option-pricing” model, an economet-
ric application uses data from a modelling exercise that compared alternative treatment
pathways for patients with unresectable gastrointestinal stromal tumour (GIST) who failed
to respond to imatinib 400 mg/day (Hislop, Quayyum, Elders, Fraser, Jenkinson, Mowatt,
Sharma, Vale and Petty, 2011). The study of Hislop et al. (2011) assessed the effectiveness
and cost-effectiveness of imatinib at escalated doses of 600 and 800 mg/day following pro-
gression of disease at a dose of 400 mg/day, compared with sunitinib, or the provision of
best supportive care (BSC) only for patients with unresectable and/or metastatic GISTs.
Several studies have reported further disease control after progression on an initial imatinib
dose of 400 mg/day with dose escalation of imatinib to 800 mg/day, and this has also be-
come common practice (Zalcberg, Verweij, Casali, Cesne, Reichardt, Blay and et al., 2005,
Blanke, Demetri, von Mehren, Heinrich, Eisenberg, Fletcher and et al., 2008). However,
it should be noted that current NICE guidelines for imatinib do not actually recommend
dose escalation for patients with unresectable and/or metastatic GISTs who progress on an
initial dose of 400 mg/day (NICE, 2004) but suggest that clinical decisions are made on an

3



individual case-by-case basis, reflecting uncertainty regarding optimal practice.
Three studies (Wilson, Connock, Song, Yao, Fry-Smith, Raftery and Peake, 2005, Huse,

von Mehren, Lenhart, Joensuu, Blanke, Feng and et al., 2007, Mabasa, Taylor, Chu, Mora-
van, Johnston, Peacock and et al., 2008) compared imatinib with BSC. The study by Wilson
et al. (2005) used the manufacturer submissions (Novartis model) and compared imatinib
and BSC, but in the imatinib group allowed for escalation of doses from 400 to 600 mg/day
for those who failed to respond or were intolerant to imatinib at the 400 mg/day dose. The
study by Mabasa et al. (2008) noted that patients included from retrospective cohorts in
their analysis were given imatinib 400 mg/day until disease progression, and later were al-
lowed escalated doses of between 600 and 800 mg/day. Six out of 56 patients in the imatinib
groups of patients considered in this economic evaluation were then allowed to switch to
sunitinib therapy. The economic evaluation by Huse et al. (2007) considered imatinib at
400 mg/day. Two studies (Contreras-Hernandez, Mould-Quevedo, Silva, Salinas-Escudero,
Villasis-Keever, Granados-Garcia and et al., 2008, Teich, Hashizume and Follador, 2009)
compared both imatinib and sunitinib with BSC for patients who had failed or become
resistant to imatinib 400 mg/day.

The empirical application of this study assumes that patients start with 400 mg/day and
the second-line treatment consists of dose escalation of imatinib to 600 mg/day followed by
sunitinib. The empirical results suggest that as sunitinib becomes less cost competitive, the
cost uncertainty becomes more dominant. With limited substitutability, higher quality of
sunitinib will increase the demand for sunitinib disregarding the cost uncertainty. Several
key insights emerge. The existence of an option value means that imatinib at 400 mg/day
may be the better choice when considering lifetime welfare. Thus, under irreversibility, low-
risk patients must begin the second-line treatment as soon as possible, which is precisely
when the second-line treatment is least valuable. As the costs of reversing current treatment
impacts fall, it becomes more feasible to provide the option-preserving treatment to these
low-risk individuals later on.

This paper is organized as follows. The following section develops the stochastic option-
pricing model, specifying the two feasible treatments and examining the impact of cost
shocks on both the timing of treatment switching and the NB of each treatment. Section
3 presents the probability and expected time of treatment switch. The discussion of the
results with an empirical application are presented in Section 4. Conclusions are discussed
in Section 5.

2 The Model

In this section we develop a simple model to illustrate the role that uncertainty and irre-
versibility can play in determining the decision regarding whether to move a patient to the
next treatment in a sequence. Consider a chronic disease that occurs in period 1 and lasts
two periods. Suppose that there are two choices in treating this disease, denoted by T1 and
T2, respectively. Patients start being treated with T1 and patients treated with T2 in the
second period attain a higher benefit but pay more.

The value of each technology is expressed in terms of net benefits, i.e. the value of health
benefits generated by treatment (B) minus the costs of that treatment (C). The net benefits
from treatment with T1, at time t, is denoted by NB1t and the net benefits from treatment
with T2 is denoted by NB2t.

Population individuals, Nt = {1, 2, ...n}, are endowed with one unit of labour which is
inelastically supplied to firms, and receive wage income at the rate wt. We assume that
the individual’s health level augments with the public provision of health care services (see
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Chakraborty (2004)). The benefit from treatment at time t, Bt, depends upon her health
capital, ht. We assume that the per capita health investment at time t, ht, is financed at a
balanced budget with a (constant) wage income tax, 0 < τ < 1, that is:

ht = τwt. (1)

Patients observe and decide the viability, utility, and characteristics of health care goods
and services only after using those products or services. Thus, the quality of health care
good or service can only be ascertained upon their consumption. In such cases, a drop
in price is often interpreted by the prospective consumer as a drop in quality or utility of
the product or service. Indeed, it is possible for the demand curve for medical care to be
upward sloping, even though medical care is a non-inferior good1, a relationship that has
some empirical support (Hoi and Robson, 1981, Hau, 2008, Dusansky and Cagatay, 2010).
Under this hypothesis the demand for medical care is given by:

T = Bth
ϕ
t , (2)

where T is the total quantity demanded of the treatment at time t, Bt is the benefit gain
at time t, and ϕ is the parameter for the elasticity of demand. We consider that medical
care operates where patient’s demand for treatments is inelastic2, 0 < ϕ < 1. In this
model set-up, the mechanism that leads health to be a Giffen good also involves a wealth
consideration; when the price of treatment falls, the patient is effectively wealthier, he can
afford more treatments generally and so, he needs fewer treatments of this kind. From
Equation (2), the benefit function of a representative patient is given by:

Bt =
T

hϕt
. (3)

The benefit increases with the number of treatments, but it is inversely related with the
per capita health investment. The higher patient’s health capital, the fewer treatments he
needs for the same benefit. The cost of the treatment, Ct, is a nonlinear function of patient’s
particular characteristic, x, that evolves over time:

Ct = rkx2t , (4)

where r is the interest rate, k is the capital invested in the treatment and x is the level of
the state variable that represents the random shock of the cost side at time t. For analytical
tractability, the state variable is assumed to evolve according to a geometric Brownian
motion:

dx = αxdt+ σxdz, (5)

where dz = εt
√
dt is the increment of a Wiener process and

εt y N(0, 1), E(εt, εs) = 0 for s 6= t.

1Housing is another example of a non-inferior good whose own-demand can be upward sloping (see Du-
sansky and Ç. Koç (2007)).

2An example of perfectly inelastic demand would be a life saving drug that people will pay any price to
obtain. Even if the price of the drug were to increase dramatically, the quantity demanded would remain the
same.
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Equation (5) implies that the current value of the random shock is known, but the future
values are log-normally distributed with a variance growing linearly with the time horizon3.

We calculate net benefit for the patient using Ti, i = {1, 2}:

NBit = Bit − Cit. (6)

Firms producing treatments are identical and competitive. Treatment is produced using a
Cobb-Douglas production technology:

Tit = kθ, i = 1, 2 (7)

where k = Kt/Nt is capital per worker and 0 < θ < 1. Profit maximisation implies that
factor inputs are paid by their marginal products, that is,

r = θkθ−1,
w = (1− θ) kθ. (8)

We assume treatment to be unit price, and capital totally depreciates at the end of every
period.

2.1 Expected Net Benefit

By maximising the net benefit at time t, NB1t can be derived as:

NB1t = xδ

[
θ
ϕ−1
ϕ

(1− θ)
ϕ (1− ϕ)

1−ϕ
ϕ

τ

]
, (9)

where δ = 2(ϕ−1)/ϕ. Using Ito’s lemma, it can be confirmed that xδ also follows a geometric

Brownian motion: dxδ = (αδ − δ(ϕ−2)
ϕ σ2)xδdt+ δσxδdz.

We now calculate net benefit for the patient engaged in T2. Here we assume that B1 =
πB2, π < 1 and that C1 = φC2, φ < 1. In other words, T2 yields better results but is more
expensive. Thus, there is an option value associated with using T2 but that option comes at
a cost.

By maximising the NB at time t, NB2t can be derived as:

NB2t = xδ

 θ
ϕ−1
ϕ

(1− θ)
ϕ (1− ϕ)

1−ϕ
ϕ

τ

φ
1−ϕ
ϕ

π
1
ϕ

 . (10)

Proposition 1: Higher volatility of patient´s particular characteristic reduces the ex-
pected NB associated with both technologies.
Proof:
Comparing the state variables in Equations (15) and (17) in Appendix A, the expected NB
is proportional to xδ under both technologies. Recalling that medical care operates where
the patient’s demand for treatments is inelastic (ϕ < 1), it follows that δ < 0. Consequently,
cost uncertainty reduces expected NB under both treatments4.

3We may also assume that x varies across patients, such that xi may also follow a Brownian motion, for
i = 1, 2, ..., n, dxi = αixidt + σixidz. The expected value of dxi across all patients, E[dxi], cannot be used
to derive the expected value of Ct; an estimate of E[dx2i ] is required because E[dxi]

2 6= E[dx2i ]. Thus, an
analysis which failed to account for the variability in x across patients would provide biased estimates of
expected costs. Such multi-patients processes are important in health economics, but we will not develop
this more advanced application in this study.

4Under our model set-up, the magnitude of this adverse effect is identical for both technologies.
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The second-line treatment consists of using a higher dosage of T1 and then starting
with T2. When the patient is using exclusively T1 her decision as to whether or not to use
the second-line treatment constitutes an optimal stopping problem for which the relevant
Bellman equation is:

V 1(x, t) = Max{V 2;NB1 +
1

t
E[dV 1]}, (11)

where V 1(x, t) is the option value of intervention associated with using the second-line
treatment, V 2 accounts for the expected patient’s value gain that results from switching
treatment and starting the second-line treatment, and the second term in curly brackets
yields the time-discounted expected increment in the value of the option that arises from
keeping the option unexercised for an additional lapse of time, dt. The range of values for
which the second term in curly brackets is greater than the first defines the continuation
region, where it is optimal not to exercise the option.

Proposition 2: The patient will only use T2 if the patient´s value associated with using
the second-line treatment exceeds that of a situation of using T1 , i.e.

x̃ = [
β1

β1 − δ
×

µ− αδ − δ(ϕ−2)
2ϕ σ2

φ
1−ϕ
ϕ [e−µ(t̃+1)]− π

1
ϕ

× π
1
ϕ θ

1−θ
θ (1− θ) τ

ϕ (1− ϕ)
1−ϕ
ϕ

×
ICQALY

µ
(1− e−µt̃)]

1
δ . (12)

Proof: See Appendix A.

In Equation (12), x̃ is the critical value5, t̃ denotes the time at which T2 will be used,
and ICQALY stands for the incremental cost of quality-adjusted life year (QALY6) gain of
using a higher dosage of T1. ICQALY measures the QALY value wasted when using a higher
dosage of T1. It follows from Equation (12) and the previous assumptions on the parameters

that the value of x̃ is greater than zero if φ
1−ϕ
ϕ [e−µ(t̃+1)] > π

1
ϕ , implying that the patient

will use T2 only if the relative benefit associated with T2 exceeds the present value of the
relative cost of T2 weighted geometrically by the elasticity of demand, and that is due to the
uncertainty of treatment’s cost. Moreover, since

∂x̃
∂σ2 > 0 and limσ→∞ x̃ =∞,

the greater the volatility of the cost (i.e. the higher σ2) the higher the critical value has
to be to make it optimal for the patient to use the second-line treatment. The higher the
expected trend of the treatment’s cost, the less the option of using second-line treatment is
worth, and thus the lower the value that triggers the use of T2, i.e.

∂x̃
∂α < 0.

The reason for this is that the more expensive one expects technology to become, the lower
the uncertainty that results from the switch from a situation of using T1 to one where the
patient uses the second-line treatment.

With regard to the discount rate, the greater the patient’s time discount rate, the less
she values the option, and thus the lower the value x that triggers optimal treatment switch;
i.e.

∂x̃
∂µ < 0.

5The value above and beyond the direct value of the second-line treatment.
6QALY measures the cost of disease burden, including both the quality and the quantity of life lived.
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This result stems from the fact that a higher time preference increases the patient’s oppor-
tunity cost of not immediately using the second-line treatment. In the extreme case where
the patient cares only about the present moment, so that µ → ∞, then limµ→∞

β1
β1−ϕ = 0

and x̃ = 0, so that uncertainty is disregarded and the value of the second-line treatment
option collapses to zero.

The greater the tax rate, the higher the patient’s health capital, thus, the more patients
value using the second-line treatment option, and thus the higher the value x̃ that triggers
optimal T2 use; i.e.

∂x̃
∂τ > 0.

Lastly, the lower the relative cost of T2, the higher the relative benefit of T2 and the sooner
T2 will be used, the lower the threshold for using the second-line treatment.

∂x̃
∂π < 0 , ∂x̃

∂φ > 0 and ∂x̃
∂t̃
< 0.

3 The Probability of using T2

Before proceeding to the empirical application, it would be interesting to ascertain, from
any point within the continuation region, the likelihood that using the second-line treatment
will become optimal in the future. It is important for the patient to know the expected time
that will transpire until the decision of using the second-line treatment becomes optimal.

Using standard properties of the Brownian motion and the lognormal distribution, (see
Dixit (1993)) closed-form solutions for the probability Q(x) and expected time T(x) for the
process x to hit the barrier x̃ from any point inside the continuation region, are given by:

Q (x) =

{
1 if α 6 0

e

[
2α(x̃−x)

σ2

]
if α > 0

(13)

T (x) =

{
∞ if α > 0
x̃−x
α if α < 0

(14)

where (α) and
(
σ2
)

are respectively, the drift and variance parameters of the process (x).
Equations (13) and (14) indicate that the probability and expected time until using the

second-line treatment to become optimal depend on the variability and trend of the patient´s
particular characteristic. The greater is the variability, σ2, the higher is the likelihood that
x diverges away from the threshold that triggers the use of the second-line treatment, and
so the lower the probability that using the second-line treatment will ever become optimal.
Similarly, the higher the drift, α, the more likely long excursions of x away from the critical
ratio become, and so, the more time the system is expected to take until hitting the threshold
beyond which using the second-line treatment is optimal.

Using the second-line treatment will become optimal with certainty provided that α < 0
and it is expected to occur sooner the higher x and the lower σ2. For the limiting case
where α = 0, even though the probability that the patient will start using the second-line
treatment in the future is one, the expected time for it to occur is infinite. The intuition
behind this apparently contradictory result is that if the drift of x is zero, long diversions
away from the barrier x̃ might occur. Thus, since the probabilities for successfully longer
hitting times do not fall sufficiently fast, the expectation, which is the average of the possible
hitting times weighted by their respective probabilities, diverges7.

7This argument is presented in Dixit (1993), p. 56.
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For the set of parameters for which x has a positive drift, i.e. when α > 0, there is still
a positive probability that using the second-line treatment will become optimal sometime
in the future, as given by Equation (13). This is because, in spite of x drifting away from
the critical ratio, there is the possibility that a combination of positive shocks might just
bring the system toward the threshold barrier. However, the expected time for this event is
infinite, as given by Equation (14), given that there is a positive probability that x never
reaches x̃ that drives the expectation into diverging.

4 Empirical Application

The model presented gives clear indications regarding treatment switch decisions under cost
uncertainty. It predicts that the higher the volatility of the patient’s particular characteristic,
the sooner T2 is used, the higher the tax rate and the higher the relative cost of T2, the more
valuable the option of using the second-line treatment will be, and so the fewer switches
of treatment will be observed. Conversely, the higher the trend of the patient’s particular
characteristics, the higher the discount factor and the higher the relative benefit of T2,
the more switches of treatment one would expect to observe. Thus, for empirical testing
purposes, the reduced form of equation (12) can be written as follows:

x̃ = f

(
σ2 α µ t̃ τ π φ
+ − − + + + −

)
.

These results are extended for Equation (12) using simulations. The simulations are per-
formed against a benchmark case8. The data in the present application consist of the cost-
effectiveness of imatinib for gastrointestinal stromal tumours (Wilson et al., 2005). Current
guidelines at the time of the assessment recommended an initial dose of 400 mg/day, with
the option of proceeding to a higher dose in the event of a poor response or disease pro-
gression, and withdrawal of treatment in the absence of benefit after 8 weeks. Nevertheless,
because of a paucity of data, the best starting dose of imatinib and best treatment pattern
were highly uncertain. The model had four health states: progressive disease, treatment
with 400 mg imatinib, treatment with 600 mg imatinib, and death. Patients in the imatinib
treatment group began with 400 mg/day. For those patients who failed to respond to 400
mg imatinib, a random number was generated to determine whether they would be moved
to 600 mg, or straight to the progressive disease state. The probability of receiving 600
mg was based on the number of patients who had responded after crossing over from 400
mg to 600 mg imatinib in a clinical trial. We assume patients start with 400 mg/day and
the second-line treatment consists of dose escalation of imatinib to 600 mg/day followed by
sunitinib.

Figures 1–5 provide a sensitivity analysis9 of the trigger value x̃ with respect to the
following parameters of the model: σ, α, µ, τ , t̃, π, and φ. The simulations carried out
on the critical values of cost shock confirm the results of the comparative statics discussed
above. Figure (1) reveals that the trigger value is much more sensitive to σ than to α. This
is due to the fact that the higher the uncertainty, the higher the risk of treatment switch, and
thus the higher the threshold in order to trigger the use of the second-line treatment. Figure
(2) illustrates that the dampening influence of higher µ on the critical value strengthens as
σ increases.

(Insert Figure 1 here)
(Insert Figure 2 here)

8See Appendix B for data description.
9The parameters are calibrated with the values shown in Appendix B.
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Figure (3) shows that the trigger value rises when both φ and π increase. It illustrates that
as T2 becomes less cost competitive, the uncertainty about using the second-line treatment
decision becomes more dominant. With limited substitutability, higher quality of T2 will in-
crease the demand for T2 disregarding the uncertainty of treatment switch. The accentuated
curvature of the surface graphed in Figure (3), in which the critical value rises very quickly
as both φ is high and π is low, indicates that the lower is the cost-quality relationship, the
more the uncertainty of the use of the second-line treatment decision becomes dominant.

(Insert Figure 3 here)

Figure (4) illustrates that as soon as one is expected to use the new technology, the uncer-
tainty about the use of the second-line treatment decision becomes more dominant. Figure
(5) illustrates the impact of σ and τ on the critical value of treatment switch, showing that
the lower is the patient’s health capital, the higher is the uncertainty regarding the treatment
switch decision.

(Insert Figure 4 here)
(Insert Figure 5 here)

Figures (6) and (7) illustrate, respectively, the impact of σ and x on the expected proba-
bility of treatment switch and on the probability of optimal treatment switch, as given by
Equations (13) and (14)10.

(Insert Figure 6 here)
(Insert Figure 7 here)

In Figure (6), when α > 0, the probability that x̃ will be hit in the future is increasing in x
and decreasing in σ2. This is because, first, the lower is σ2, the less valuable is the option
to switch treatment, and so the more treatment switches will be observed, and second, the
higher is x, the more likely it is that the process will be “thrown off-course” by a sequence
of positive shocks toward the optimality threshold.

In Figure (7), our simulation benchmark values are expressed in year terms so that the
simulations for the expected time for optimal treatment switch can be read in years. Figure
(7) shows that the lower is σ2 and the higher is x, the sooner the treatment switch is expected
to occur. However, the further away x is from the trigger value, the greater is the impact of
an increase of σ2 on the delay expected before treatment switch becomes optimal.

In summary, the lower the volatility of cost, the more likely treatment switch is to become
optimal and the sooner it is expected to occur. Moreover, treatment switch becomes likelier
and is expected sooner, the closer is the system to the critical threshold, that is, the closer
x is to x̃.

The empirical results suggest that as sunitinib becomes less cost competitive, the cost
uncertainty becomes more dominant. With limited substitutability, higher quality of suni-
tinib will increase the demand for sunitinib disregarding the cost uncertainty. Several key
insights emerge. The existence of an option value means that imatinib at 400 mg/day may
be the better choice when considering lifetime welfare. Thus, under irreversibility, low-risk
patients must begin the second-line treatment as soon as possible, which is precisely when
the second-line treatment is least valuable. As the costs of reversing current treatment
impacts fall, it becomes more feasible to provide the option-preserving treatment to these
low-risk individuals later on.

10The parameters are calibrated with the values shown in Appendix B.
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5 Conclusion

Growth in the availability of treatments for chronic diseases that require permanent inter-
vention, along with general increases in life expectancy, suggests that the impact of omitting
option values from evaluations will only become larger. In this paper we developed a formal
valuation model that addresses to these intertemporal dependencies by explicitly modelling
the cost uncertainty.

The optimal timing for treatment switch becomes increasingly important for patients
who might switch treatments. This paper sets up a stochastic model that provides an
optimal rule for the timing of treatment switch. In the real world, cost fluctuations amongst
other factors, render the outcome of any treatment switch uncertain, so that patients might
have to wait for more information before optimally switching treatments, especially when
the incremental cost per QALY gained cannot be fully recovered later on. Since in most
cases patients are not compelled to switch treatments at any specific moment, they hold an
option to switch treatments that should only be exercised when it is optimal to do so.

Viewed from the perspective of real option theory, this paper sheds new light on some
debates about switching treatments. Our theoretical model suggests that cost uncertainty
reduces expected NB. In addition, cost volatility discourages switching treatments. The
stochastic model also illustrates that as technologies become less cost competitive, the cost
uncertainty becomes more dominant. With limited substitutability, higher quality of tech-
nologies will increase the demand for those technologies disregarding the cost uncertainty.
Several key insights emerge. Irreversibility raises the value of the option-preserving treat-
ment. The existence of an option value means that a seemingly poorer treatment may be
the better choice when considering lifetime welfare. Optimal decision making requires a
careful comparison of the “costs” of a less effective treatment for a condition today with the
“benefits” of more effective treatments in the future.

The intuition for these results is deepened when we recognise that one of the princi-
pal features driving our results is that patients have particular characteristics that make
technology’s cost uncertain. Thus, under irreversibility, low-risk patients must begin the
option-preserving treatment as soon as possible, which is precisely when the second-line
treatment is least valuable. As the costs of reversing current treatment impacts fall, it be-
comes more feasible to provide the option-preserving treatment to these low-risk individuals
later on.

Our basic framework of option valuation highlights potentially important macro-level
strategies to improve social welfare through medical technologies. Research investments
that focus on transforming irreversibility from complete to partial could generate large social
benefits. Investments in the development of alternative treatments for future diseases are
also important, but the return to such investments will depend on the degree of irreversibility.

The greatest obstacle to translating theory to practice is the intensive data requirement,
which in some cases would require coordination across firms whose products might interact.
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Appendix

A Proofs

Proof: (Proposition 1 )
We assume that patients initiated on T1 will receive that treatment for the rest of their life
and the same will be true for patients initiated on T2. As such, the decision maker will
calculate the expected present discounted value (PDV) of each treatment regime and select
the one with the highest return. Thus, the NB of using T1 is given by the intertemporal
NB function when the patient is constantly optimising over time:

NB∗1t = Et

∫ ∞
0

NB1te
−µ(τ−t)dτ. (15)

Bearing in mind that x(t) follows a geometric Brownian motion, the properties of the log-
normal distribution11 can be used to transform Equation (15) into:

NB∗1t =
NB1t

µ− αδ − δ(ϕ−2)
2ϕ σ2

, (16)

provided that µ− αδ − δ(ϕ−2)
2ϕ σ2 > 0, which will be assumed here.

The same applies to the NB of using T2, i.e.:

NB∗2t = Et

∫ ∞
0

NB2te
−µ(τ−t)dτ =

NB2t

µ− αδ − δ(ϕ−2)
2ϕ σ2

, (17)

provided that µ− αδ − δ(ϕ−2)
2ϕ σ2 > 0, which will be assumed here.

T2 will be the preferred option since NB∗2t > NB∗1t. For those with NB∗2t < NB∗1t, T1
will be preferred.

Proof: (Proposition 2 )
In the continuation region the Bellman equation is given by:

µV 1(x, t) = NB∗1t +
1

t
E[dV 1], (18)

where NB∗1 is given by Equation (15).
Applying Ito’s lemma to the RHS of Equation (18) yields the partial differential equation:

∂V 1

∂x
αx+

1

2

∂2V 1

∂x2
σ2x2 − µV 1 +NB∗1t = 0 (19)

The general solution to the above-stated differential equation has the form:

V 1 = B1X
β1 +B2X

β2 +NB∗1t, (20)

where B1, B2 are constants that are yet to be determined, and β1, β2 are the roots of
the characteristic equation Q(β) = σ2

2 β
2 + (α − σ2

2 )β − µ = 0. The two roots are β1 =

1
2 −

α
σ2 +

√
( α
σ2 − 1

2)2 + 2µ
σ2 and β2 = 1

2 −
α
σ2 −

√
( α
σ2 − 1

2)2 + 2µ
σ2 . Since the coefficient of

β2 is positive, Q(β) is an upward pointing parabola. Moreover, since Q(1) = α − µ and
Q(0) = −µ are both negative by previous assumption, it follows that β1 > 1 and β2 < 0.

11See Aitchison and Brown (1957).
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In order to satisfy the boundary condition12, V 1(0) = 0, we must have B2 = 0 and the
general solution to Equation (19) simplifies to

V 1 = B1x
β1 +NB∗1t, (21)

where NB∗1t is now given by Equation (16).
The set of boundary conditions that applies to this optimal stopping problem is composed

of a value-matching condition,
V 1(x̃) = V 2(x̃), (22)

and one smooth-pasting condition,

[V 1(x̃)]′ = [V 2(x̃)]′. (23)

Letting t̃ denote the time at which T2 will be used, the value of the optimal treatment switch,
V 2(x̃), is given by the NB after using T2, see Equation (24), minus the incremental cost per
quality-adjusted life-year (ICQALY ) gain of using a higher dosage of T1, i.e. value of QALY
wasted in T1 dose escalation.

V 2 = Et{
∫ ∞
t̃+1

NB2e
−µ(τ−t)dτ−

∫ t̃

0
ICQALY e

−µ(τ−t)dτ} =
NB2e

−(t̃+1)µ

µ− αδ − δ(ϕ−2)
2ϕ σ2

−(1−e−t̃µ)
ICQALY

µ
.

(24)
Making use of the value-matching and smooth-pasting conditions, the expression for the
critical value (x̃) is obtained and likewise for the constant B1 as:

x̃ = [
β1

β1 − δ
×

µ− αδ − δ(ϕ−2)
2ϕ σ2

φ
1−ϕ
ϕ [e−µ(t̃+1)]− π

1
ϕ

× π
1
ϕ θ

1−θ
θ (1− θ) τ

ϕ (1− ϕ)
1−ϕ
ϕ

×
ICQALY

µ
(1− e−µt̃)]

1
δ , (25)

B =
δ

β
θ

1−ϕ
ϕ [

β

β − δ
θ

1−ϕ
ϕ
ICQALY

µ
(1−e−µt̃)]1−

β
δ (

1

µ− αδ − δ(ϕ−2)
2ϕ σ2

φ
1−ϕ
ϕ
ϕ(1− ϕ)

1−ϕ
ϕ

(1− θ)τ
[e−(t̃+1)µ]− π

1
ϕ

π
1
ϕ

)
β
δ .

(26)
Equation (25) is the trigger value of demand separating the region in x space where the pa-
tient’s option of using T2 remains unexercised (i.e. for x > x̃) from the one where immediate
exercise of that option is perceived as optimal (i.e. for x ≤ x̃).

B Data

The simulations relate to the critical ratio obtained in Equations (12), (13) and (14). The
time horizon for the model was limited to 10 years since the typical survival of GIST patients
is relatively short. The input choices and the results of sensitivity analyses are presented in
Table 1, below.

The parameters from the equations of the critical ratio are defined as:
σ: Volatility of cost, is the standard deviation of the natural logarithm of cost of imatinib

at dose of 400 mg/day for the two years prior to dose escalation. The input values were
based on the Novartis model by Wilson et al. (2005).

12If x reaches zero, the NB will stay at zero afterwards, in which case the value of patient’s health will
have no value.
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α: Trend of the cost is the moving average of the natural logarithm of cost´s rate of
growth of imatinib at dose of 400 mg/day for the two years prior to dose escalation. The
input values were based on the Novartis model by Wilson et al. (2005).

µ: The costs and outcomes were discounted at 3.5% in accordance with the NICE refer-
ence case.

ϕ: Since the data on the parameter for the elasticity of demand are not available, the
benchmark value and the range of variation were picked arbitrarily.

τ : Tax on income is the United Kingdom income tax, basic rate of 20%, and the
range of variation were the taxable bands in accordance with the HM Revenue & Cus-
toms, http://www.hmrc.gov.uk/.

π: Since the data on the parameter for the relative benefit of T2 are not available, the
benchmark value and the range of variation were picked arbitrarily.

φ: Since the data on the parameter for the relative cost of T2 are not available, the
benchmark value and the range of variation were picked arbitrarily.

ICQALY : The estimated incremental cost of quality-adjusted life-year (QALY) gained
from the pathway of increasing imatinib dose from 400 mg to 600 mg/day estimated by
(Hislop et al., 2011) at £27,304.

Table 1 presents the range as well as the mean of each parameter according to the data
set specified above. The baseline values are used to define the benchmark case while the
maximum and the minimum values bound the range used for the simulations of the critical
ratio.

Table 1: Parameter Values

Maximum Minimum Baseline
α 0.05 0.01 0.025
σ 0.12 0.15 0.135
µ 0.035 0.015 0.06
τ 0.5 0.1 0.2
θ 0.99 0.01 0.5
ϕ 0.99 0.01 0.5
φ 0.99 0.01 0.5
π 0.99 0.01 0.5
t 10 1 5
ICQALY - - 27,304
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