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Abstract

In this paper I formulate and solve a new Keynesian dynamic stochastic general
equilibrium model with monetary and fiscal policy rules whose coefficients are time-
varying and contemporaneously interdependent. I implement time variation in the
policy rules by specifying coefficients that are logistic functions of correlated latent
factors. This specification allows for smooth transition of the coefficients and coordi-
nation between policies. I present a solution method to the model that allows for these
characteristics. The paper uses Bayesian methods for nonlinear state-space models
to estimate the policy rules with time-varying coefficients, endogeneity and stochastic
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1 Introduction

The great recession has raised awareness of and interest in the role of monetary-fiscal
policy interactions in determining the behavior of economic aggregates. Fiscal stimulus
policies have been accompanied by reductions in discount and funds rates, and even by
unconventional quantitative easing measures. Fears of a second great depression led to im-
plicit coordinated policies between central banks and fiscal authorities. Moreover, given the
high level of projected fiscal liabilities in developed as well as in some developing countries,
interactions are likely to figure more prominently in determining economic outcomes.

In a historical context, Friedman (1948) is the first to design a scheme of monetary-
fiscal policy interactions to deliver economic stability in terms of cyclical fluctuations. The
proposal involves the monetary system, government expenditures on goods and services, gov-
ernment transfer payments and the tax structure. Sargent and Wallace (1981) provide the
first formal work to illustrate how monetary and fiscal policy interact to determine inflation
and how, in an environment of fiscal dominance, the ability of the monetary authority to
control inflation disappears. The first contributions to the literature of monetary-fiscal policy
interactions in a dynamic stochastic general equilibrium (DSGE) framework were made by
Leeper (1991), Sims (1994) and Woodford (1994). Canzoneri et al. (2010) offers a compre-
hensive review of the positive and normative aspects of monetary-fiscal policy interactions
present in the literature.

This paper formulates and solves a new Keynesian DSGE model that incorporates feed-
back monetary and fiscal policy rules whose coefficients are time-varying and contempo-
raneously interdependent. Time variation and contemporaneous interdependence allow for
coordinated changes between monetary and fiscal policy, introducing a direct channel of
interactions.

Conventional monetary policy analysis makes use of macroeconomic DSGE models that
specify a Taylor (1993) interest rate rule under which the central bank reacts to increases in
inflation with increases more than proportional in the nominal interest rate. Monetary policy
provides the nominal anchor to deliver price level determinacy in this scenario. This conven-
tional setup assumes that fiscal policy will accommodate increases in the nominal interest
rate with increases in (lump-sum) taxes to stabilize debt. Another strand of the literature
emphasizes that fiscal policy may play a more important role than just accommodating mon-
etary policy in achieving inflation stabilization, in particular when monetary policy is not or
can not be used as the conventional models propose. The role of fiscal policy at providing
a nominal anchor has been studied by Leeper (1991), Sims (1994), Woodford (1994, 1995,
1996) and Cochrane (1998, 2001, 2005). The principle is that fiscal policy, through expec-
tations about future surpluses, can provide the nominal anchor for price level determinacy.
In this paper I offer a framework for analyzing monetary as well as fiscal policy in a setup
that stipulates that they can be equally important in achieving inflation stabilization.

The literature on monetary-fiscal policy interactions with feedback rules has modeled
interactions by specifying policy rule coefficients that take on a finite set of states. Interac-
tions emerge in equilibrium as a result of the combination between states of the monetary
and fiscal policy rule coefficients that place the economy in different regimes, which results
in different model dynamics (see Leeper, 1991; Davig and Leeper, 2006; Chung et al., 2007;
Bianchi, 2012). Given that there are not driving forces behind policy rule coefficients that
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make them in fact interact, these equilibrium interactions are casual in some sense. In this
paper I specify a direct channel of interactions between monetary and fiscal policy. Policy
rule coefficients are defined as logistic functions of stationary latent factors specific to each
of the policy rules. These latent factors are permitted to be correlated, introducing a direct
channel of interactions in addition to the equilibrium interactions that exist in the literature.
Allowing for interdependence between policy rule coefficients generalizes the current results
and offers a more realistic way of incorporating fiscal policy in macroeconomic modeling.

Time variation in policy making has been documented by substantial empirical literature
that argues that policy rules have not remained invariant over the course of the last six
decades (see Clarida et al., 2000; Cogley and Sargent, 2002; Favero and Monacelli, 2003; Lu-
bik and Schorfheide, 2004; Primiceri, 2005; Davig and Leeper, 2006; Fernandez-Villaverde et
al., 2010; Bianchi, 2010). There is also theoretical literature arguing that, in designing policy
rules, policy authorities may have asymmetric preferences with respect to deviations of vari-
ables of interest from target, or state-dependent loss functions, resulting in state-dependent
policy rules (see Dolado et al., 2005; Svensson and Williams, 2007). The events of the great
recession evidence how policies have shifted in some countries: monetary policy has appar-
ently switched from following the Taylor principle to a pegged interest rate, while fiscal policy
has moved from stabilizing debt to actively aiming to stimulate the economy. This paper
incorporates time-varying monetary and fiscal policy rule coefficients in a macroeconomic
model to be consistent with both the empirical and the theoretical literature.

As Davig and Leeper (2007) emphasize, policymaking is a complicated process that in-
volves analyzing data, receiving advise, interpreting data, and applying judgment. I use
latent factors to represent a combination of political and institutional determinants of pol-
icymaking beyond the systematic or nonsystematic components of a policy rule. During
some periods policymakers may give more attention to inflation or debt stabilization, while
in other periods more attention may be given to output stabilization. In this paper, policy
coefficients move across regimes as functions of latent factors. This is analogous to hav-
ing a random-coefficient specification, or a Markov-switching specification for policy rules.
The difference is that the function considered here is bounded, as opposed to the random-
coefficient setup, and continuous, as opposed to the Markov-switching setup. A function
that satisfies these requirements is the logistic function. Boundedness is important because
some policy rule coefficients make sense only if they are positive or, in terms of determinacy
of a linear rational expectations model, if they have an upper or lower bound. Smoothness
or continuity of the transition between states is also relevant since policies do not necessarily
switch abruptly from one regime to another, and if they do, the logistic function still allows
to have that type of behavior.

Given the logistic specification of policy rule coefficients and the existence of latent factors
as additional states, the DSGE model is intrinsically nonlinear. In the paper I implement
a solution method that takes into consideration these nonlinearities. This solution method
incorporates agents’ expectations with respect to the joint evolution of the policy rule co-
efficients, and makes the model suitable to consistently analyze the impacts of monetary
and fiscal policies in a framework of interactions. I estimate the policy rule coefficients with
Bayesian methods appropriate for nonlinear state-state models and then incorporate the es-
timated coefficients, along with other calibrated coefficients, in the model to carry out policy
analysis.
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Results from the paper can be summarized as follows: 1) The econometric estimation
shows that there is important persistence in policymaking with fiscal policy being slightly
more persistent than monetary policy. There is also a small degree of direct interactions
between policies given by a positive estimated correlation between latent factors. Monetary
policy switches more frequently than fiscal policy and the former loosens during recessions
almost systematically. 2) Policy experiments reveal that taxes have effects on output and
inflation as the literature on the fiscal theory of the price level suggests, but the effects are
attenuated with respect to a pure fiscal regime.

2 The Model

The economy is populated by a representative household, a final goods producing firm,
a continuum of intermediate goods producing firms, a monetary authority and a fiscal au-
thority. The model extends the setup in An and Schorfheide (2007) to incorporate a fiscal
policy rule and time-varying policy rule coefficients. To keep the specification simple, the
model includes neither wage rigidities nor capital accumulation. Appendix A details the
derivations.

2.1 Households

The representative household derives utility from consumption, Ct,
1 relative to a habit

stock, At, that is given by the level of technology of the economy, and real money balances,
Mt/Pt; and derives disutility from working hours, Ht. Hence, a representative household
chooses consumption, real balances, bond holdings and working hours to maximize

E0

∞∑
t=0

βt

(
(Ct/At)

1−σ

1− σ
+ χM log (Mt/Pt)− χH

H1+φ
t

1 + φ

)
,

where 0 < β < 1 is the discount factor, σ > 0 is the inverse of the elasticity of intertemporal
substitution, φ > 0 is the inverse of the Frisch elasticity of labor supply, and χM > 0 and
χH > 0 are constants that determine the steady state level of real money balances and hours
worked. The household saves in the form of nominal government bonds, Bt, that pay a gross
interest rate Rt each period, and by accumulating money balances that do not pay interests.
It supplies labor services to the firms taking the nominal wage ,Wt, as given; it also receives
its aggregate share on the firms’ nominal profits, Dt, and pays lump-sum taxes, Tt. Thus
the household’s budget constraint is expressed as

PtCt +Mt +Bt + PtTt ≤ HtWt +Dt +Mt−1 +Rt−1Bt−1 for t ≥ 0,

1Ct is a composite consumption good given by Ct =
(∫ 1

0
Ct(j)

θ−1
θ dj

) θ
θ−1

and θ ≥ 1. The household

chooses Ct(j) to minimize expenditure on the continuum of goods indexed by j ∈ [0, 1] which yields j’s

good demand as Ct(j) =
(

Pt(j)
Pt

)−θ

Ct, where Pt is the final good price at t and Pt(j) is the price of the

consumption good indexed by j.
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given the initial value of nominal assetsM−1+R−1B−1, and where the transversality condition
that rules out Ponzi schemes holds.

2.2 Firms

There are two types of producers: perfectly competitive final goods producers, and a
continuum of monopolistic intermediate goods producers.

2.2.1 Aggregation Firms

Given the composite good price, Pt, and intermediate goods prices, Pt(j), for j ∈ [0, 1],
producers ensemble the intermediate goods, Yt(j), to obtain a composite final good, Yt,
according to a CES technology, so that

Yt =

(∫ 1

0

Yt(j)
θt−1
θt dj

) θt
θt−1

, (1)

where θt ∈ [0, 1] is the (time varying) price elasticity of demand for each intermediate good.
Here θt represents a markup, or cost-push, shock in the Phillips curve relationship. This
cost-push shock follows the autoregresive process

log θt = (1− ρθ) log θ + ρθ log θt−1 + εθt ,

with ρθ ∈ (0, 1), θ > 1 and εθt ∼ iid N(0, σ2
θ).

Final good producers choose the demand of intermediate goods, Yt(j), to maximize profits
given by

PtYt −
∫ 1

0

Pt(j)Yt(j)dj.

Optimization yields the demand function of intermediate good j,

Yt(j) =

(
Pt(j)

Pt

)−θt

Yt. (2)

Combining (2) and (1) yields the expression of the final good price

Pt =

(∫ 1

0

Pt(j)
(1−θt)dj

) 1
1−θt

.

2.2.2 Intermediate Goods firms

Intermediate goods firms produce type j good according to the linear technology

Yt(j) = AtLt(j), (3)
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where Lt(j) are hours of work employed by the producer of intermediate good j, and At is
an exogenous technology shock identical across producers following the stochastic process

At = δAt−1 exp(νt),

where δ is a trend, and νt is a stochastic component following the process

νt = ρννt−1 + ενt ,

with ρν ∈ (0, 1) and ενt ∼ iid N(0, σ2
ν).

Intermediate good producers face an explicit cost of adjusting their price, measured in
units of the finished good, and given by

ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2

Yt,

where ϕ ≥ 0 measures the magnitude of the price adjustment cost, and Π is the steady state
gross inflation rate associated with the final good.

Producers in the intermediate goods sector take wages as given and behave as monop-
olistic competitors in their goods market, choosing the price for their product taking the
demand in (2) as given. Hence, firm j chooses its labor input, Lt(j), and its price, Pt(j), to
maximize

E0

∞∑
t=0

MRS0,t

[
Pt(j)

Pt

Yt(j)−
Wt

Pt

Lt(j)−
ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2

Yt

]
, (4)

where MRS0,t is the household’s marginal rate of substitution between periods 0 and t,
which is given exogenously to the firm. Notice that firm j’s nominal labor cost is given by
WtYt(j)/At, and its real marginal labor cost is given by ψt = Wt/PtAt, which is the same
across firms in the intermediate goods sector.

2.3 Government

The government finances purchases of goods, Gt, with a combination of lump-sum taxes,
Tt, and money creation,Mt−Mt−1, so that the implied process for nominal debt, Bt, satisfies
the budget constraint:

Bt +Mt + PtTt = PtGt +Mt−1 +Rt−1Bt−1 for t ≥ 0, (5)

given M−1 +R−1B−1. Each period, the government demand of the final good is given by

Gt = ζtYt,

where ζt ∈ (0, 1) is an exogenous process defined by the transformation gt = 1/(1− ζt) with

ln gt = (1− ρg) ln g + ρg ln gt−1 + εgt ,
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where ρg ∈ (0, 1), g = 1/(1− ζ) with ζ being the steady state ratio of government spending
to output, and εgt ∼ iid N(0, σ2

g).

2.4 Policy Rules

Time-varying policy rule coefficients have received special attention in recent years.
Dolado et al. (2005) offers a survey of the literature to support on theoretical grounds
the existence of nonlinear responses of an interest rate rule with respect to inflation and/or
output. In particular, one of the arguments goes along the line of asymmetric preferences
by the central bank with respect to deviations of inflation and/or output with respect to
target. In a similar line, Svensson and Williams (2007), in a context of model uncertainty,
specify a loss function whose weights are not fixed and obtain a monetary policy rule whose
coefficients take on different values across states.

I specify policy rules with coefficients that are time varying. The time varying coefficients
of a particular policy rule are specified as logistic functions of a latent state. More specifically,
if ϱt is a time varying coefficient of a policy rule, it has the following functional form:

ϱt ≡ ϱ(zt)

= ϱ0 +
ϱ1

1 + exp (−ϱ2(zt − ϱ3))
,

where zt = ρzzt−1 + ξt is a latent factor, 0 < ρz ≤ 1 and ξt ∼ iidN(0, 1).
Under this specification, ϱ0 denotes the lower (upper) bound of ϱt, while ϱ0 + ϱ1 denotes

its upper (lower) bound (if ϱ1 < 0). ϱ2 > 0 is a transition coefficient affecting with its
magnitude the speed of the transition between the lower and the upper bounds, and ϱ3 is a
location parameter determining the value of zt at which ϱt crosses the y-axis. A graph for
ϱ(zt) with ϱ0 = 0.01, ϱ1 = 0.1, ϱ2 = 1, and ϱ̄3 = 0 is reproduced in Figure 1.

Figure 1: Logistic Function
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Two approaches have been proposed in the empirical literature to model time-varying pol-
icy rule coefficients: 1) A specification with two-state Markov-switching coefficients (Davig
and Leeper, 2006; Eo, 2009; Davig and Doh, 2009; Bianchi, 2010), and 2) a random-coefficient
specification (Kim and Nelson, 2006a; Fernandez-Villaverde et al., 2010). An advantage of
the Markov-switching specification is that it implies bounded coefficients, which in terms of
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determinacy and relevance of the equilibrium can be important. A disadvantage of this spec-
ification is that it implies sudden changes from one policy regime to the other. With respect
to the random-coefficient specification, an advantage is that it implies smooth transitions
between states. A disadvantage is that it does not bound the evolution of policy rule coeffi-
cients. The logistic specification proposed in this paper allows to generalize both approaches
in the literature: On one hand it allows a policy rule coefficient to switch smoothly from one
regime to another, while on the other allows for a bounded evolution of the coefficient.2

Davig and Leeper (2007) argue that a policy rule, in particular the monetary policy rule, is
a “complicated, probably non-linear, function of a large set of information about the state of
the economy” (p. 607). In this paper, latent factors represent a combination of political
and institutional determinants of policymaking beyond the systematic or nonsystematic
components of a policy rule. I assume that the variables summarized in the latent factors
are exogenous with respect to the variables in the model, and that the information that
they provide is part of the information set of the agents in the model. That is, agents and
policymakers share the same information set that is transmitted by the latter to the former
as part of the political e institutional process of electing monetary and fiscal authorities.
Notice that using latent factors as the processes driving policy rule coefficients avoids having
to choose an observable macroeconomic variable to drive the transition between states, like
in the threshold autoregressive (TAR) and the smooth threshold autoregressive (STAR)
literatures.

2.4.1 Monetary Policy Rule

Monetary policy takes place by means of an interest rate feedback rule of the form

Rt = RρR
t−1R̄

(1−ρR)
t exp (εRt ),

where ρR ∈ (0, 1) indicates the degree of interest rate smoothing, and εRt ∼ iidN(0, σ2
R) is a

monetary policy shock. R̄t is the target short-term nominal interest rate. The central bank
sets the interest rate to react to deviations of inflation from target and to the output gap
according to

R̄t = R

(
Πt

Π̄

)απ(zmt )(
Yt
Y ∗
t

)αy(zmt )

,

where Πt = Pt/Pt−1, Y
∗
t is output in the absence of price rigidities, and R is the steady state

nominal interest rate, which is guaranteed to be state independent if the target inflation
rate, Π̄, is set equal to Π, the steady state inflation.3

The time varying monetary policy rule coefficients are denoted by απ(zmt ) for inflation
deviations from steady state, and αy(zmt ) for the output gap. Both are logistic functions of
the monetary policy latent factor, zmt .

2The Markov-switching specification is a particular case of the logistic specification, when ϱ2 = ∞.
3The target inflation rate is constant to allow the linearization of the model around the steady state

conditional on a realization of the latent factor at each period. A time-varying target inflation rate goes
beyond of the scope of this work.
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2.4.2 Fiscal Policy Rule

The fiscal rule is a feedback rule for the ratio of lump-sum taxes net of transfers to output,
τt = Tt/Yt, of the form

τt = τ ρτt−1τ̄
(1−ρτ )
t exp (ετt ),

where ρτ ∈ (0, 1) indicates the degree of tax rate smoothing, and ετt ∼ iidN(0, σ2
τ ) is a fiscal

policy shock. τ̄t is the target level of the ratio of taxes net of transfers to output. The fiscal
authority sets lump-sum taxes to respond to debt deviations, the output gap and government
spending according to

τ̄t = τ

(
bt−1

b̄

)γb(zft )
(
Yt
Y ∗
t

)γy(zft )

,

where bt = Bt/(PtYt) denotes the debt-to-output ratio in period t, and b̄ is its target level.
τ denotes the steady state level of τt, which is guaranteed to be state independent in the
steady state equilibrium if b̄ is set equal to its steady state value, denoted by b.

The time varying fiscal policy rule coefficients are γb(zft ) for debt deviations from steady
state and γy(zft ) for the output gap. All are logistic functions of the fiscal policy latent
factor, zft . This fiscal policy rule setup generalizes the specification in Chung et al. (2007)
by adding the output gap and the smoothing component and Davig and Leeper (2006) by
adding the smoothing component, although the latter includes feedback from government
spending.

2.5 Interactions Between Monetary and Fiscal Policies

The introduction of monetary and fiscal policy interactions in the context of dynamic
stochastic general equilibrium models dates back to the work of Leeper (1991) where different
combinations of monetary and fiscal policy rule coefficients lead to different equilibrium
outcomes and local dynamics. There, the terms “active” and “passive” monetary and fiscal
policies are introduced to describe how the central bank adjusts interest rates with respect
to inflation deviations from target, and how fiscal policy adjusts taxes to changes in public
debt. A change more than proportional in nominal interest rates with respect to inflation
deviations from target is called “active” monetary policy (AM), while a Ricardian view of
fiscal policy, where taxes adjust enough to cover interest payments and to retire debt, is
called “passive” fiscal policy (PF). The alternative scenario with respect to monetary and
fiscal policies is called “passive” monetary policy (PM) and “active” fiscal policy (AF).4

Leeper finds that the model delivers a bounded unique rational expectations equilibrium as
long as monetary policy is active and fiscal policy is passive -Monetary (or M) Regime-, or
if monetary policy is passive and fiscal policy is active -Fiscal (or F) Regime-. Also, the
model delivers indeterminacy if both monetary policy and fiscal policy are passive, and no
bounded solution if both are active. Other works along this line are Sims (1994) and Leith
and Wren-Lewis (2000).

4Any positive response of taxes to debt constitutes a passive fiscal policy. If one only wants to consider
equilibria with bounded real debt, then real taxes have to respond to real debt deviations with increases
higher than the real interest rate.
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From a normative perspective, Nordhaus (1994) carries on a game theoretical approach
to understand monetary-fiscal policy coordination. He finds that a deficit-reduction pack-
age should be accompanied by a cooperative monetary policy to offset declines in aggregate
demand and increases in unemployment, so that the economy ends up in a recovery with
higher domestic and foreign investment. From an optimality perspective, Dixit and Lamber-
tini (2003) find that a second-best outcome can be achieved if the monetary and the fiscal
authorities both choose to be equally and optimally conservative with respect to the price
level.

As for a quantitative approach to measure the interdependence of monetary and fiscal
policies, Muscatelli et al. (2004) estimate a new Keynesian model with an interest rate rule
and government-spending and tax rules with U.S. data. Fiscal rules are specified to act as
automatic stabilizers, and do not incorporate feedback from debt or deficit. Their results
show that when an output shock hits the economy, monetary and fiscal policies tend to be
complements, while if an inflation shock hits the economy, policies tend to act as substitutes.
This channel of interactions occurs since the monetary policy rule reacts to inflation and
output, but fiscal policy rules react mainly to output.

In a time-varying coefficient setup, Davig and Leeper (2006) estimate Markov-switching
models of monetary and fiscal policy rules with U.S. data. Their results show that there
have been numerous switches in monetary and fiscal policy rule coefficients. Whenever the
interest rate rule pays more (less) attention to inflation deviations, less (more) weight is
given to output deviations. That corresponds to the AM (PM) regime. Also, when the
tax rule pays more (less) attention to debt deviations, more (less) weight is given to output
deviations (in line with an automatic stabilizers argument). That corresponds to the PF
(AF) regime. These switches have led to four regimes of interactions: AM/PF (M Regime),
PM/AF (F Regime), PM/PF, AM/AF. One of the conclusions of Davig and Leeper is that,
to better understand macroeconomic policy effects, it is essential to model policy rules as
governed by a stochastic process over which agents form expectations.

This paper explicitly introduces interactions between the coefficients of the monetary and
fiscal policy rules. This setup generalizes the Markov-switching setup in Davig and Leeper
(2006) and Davig and Leeper (2011) by introducing correlation in the evolution of policy
rule coefficients. With this addition, the model allows for direct interactions or coordinated
changes in policies that deliver a long-run scenario for agents to form expectations accord-
ingly, not only in terms of the individual future evolution of policy rule coefficients, but
as a framework of joint future policy making. To incorporate direct interactions between
policies I specify the latent factors driving the evolution of the monetary and fiscal policy
rule coefficients as follows:

zmt = ρzmz
m
t−1 + ξmt (6)

zft = ρzf z
τ
t−1 + ξft , (7)

where ξmt and ξft are normally distributed with zero mean, unit variance and corr(ξmt , ξ
f
t ) = κ.

Notice that under this specification, if κ is different from zero, there exist explicit interactions
or coordinated changes between monetary and fiscal policy.

In the present context, policies become active or passive depending on the values of the
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policy rule coefficients and the evolution of the latent factors zmt and zft , and there will
be combinations of policies depending on the relationship between these factors. The full
specification of the monetary and fiscal policy rule coefficients is as follows:

απ(zmt ) = απ
0 +

απ
1

1 + exp(−απ
2 (z

m
t − απ

3 ))

αy(zmt ) = αy
0 +

αy
1

1 + exp(−αy
2(z

m
t − αy

3))

γb(zft ) = γb0 +
γb1

1 + exp(−γb2(z
f
t − γb3))

γy(zft ) = γy0 +
γy1

1 + exp(−γy2 (z
f
t − γy3 ))

.

If the values of the parameters defining each of the policy rule coefficients and the correlation
between the latent factors are chosen in a way that whenever the monetary authority reacts
strongly enough to inflation deviations, the fiscal authority reacts strongly enough to debt
deviations (M Regime), or viceversa (F Regime), then a unique bounded long-run equilibrium
will be delivered with short-run deviations from this equilibrium. These interactions with
long-run determinacy of the equilibrium (as long as the coefficients satisfy the determinacy
conditions) are only well defined if κ > 0: a high value of απ(·) is likely to be associated
with a high value of γb(·), and viceversa. κ = 0 is the case present in the existent literature,
where interactions only emerge in equilibrium, depending on the values of the policy rule
coefficients. As can be seen, the specification proposed here allows a rich possibility of
combinations, and explicitly introduces interactions between monetary and fiscal policies.

Even though the latent factors are potentially correlated, I assume that they are inde-
pendent of the structural shocks and part of the information set of agents, as mentioned
above. This assumption is necessary to obtain a solution to the model that is based on the
minimum state variable solution approach as will be shown.

2.6 Symmetric Equilibrium

In a symmetric equilibrium, all the intermediate goods producing firms make identical
decisions, the money supply equals the money demand, the labor supply equals the labor
demand, and the net supply of government bonds is zero. Hence, the equilibrium conditions
for t ≥ 0 are given by

Yt = Ct +Gt +
ϕ

2

(
Πt

Π
− 1

)2

Yt, (8)

0 = 1− θt + θtψt − ϕ

(
Πt

Π
− 1

)
Πt

Π
+

+βϕEt

(
Ct/At

Ct+1/At+1

)σ
Yt+1/At+1

Yt/At

(
Πt+1

Π
− 1

)
Πt+1

Π
(9)

1 = βRtEt

(
Ct/At

Ct+1/At+1

)σ
At

At+1

1

Πt+1

, (10)

11



Wt

Pt

= χHL
φ
t At

(
Ct

At

)σ

, (11)

Mt

Pt

= χMAt

(
Ct

At

)σ (
Rt

Rt − 1

)
, (12)

with B−1, R−1 > 0, A−1 > 0 and M−1 > 0 given. The symmetric equilibrium is comple-
mented with the monetary and fiscal policy rules, and the exogenous processes for Gt, θt and
At.

2.7 Frictionless Equilibrium

The frictionless equilibrium is given by the above equilibrium with no frictions (ϕ = 0).
Aggregate output in the frictionless equilibrium is given by

Y ∗
t = At

(
θt−1
θt

χH

)1/(σ+φ)

g
σ/(σ+φ)
t . (13)

The above is the potential output over which the output gap in the monetary and fiscal
policy rules is defined.

2.8 Steady State Equilibrium

Since technology, At, is a non-stationary process, it introduces a stochastic trend in
output, consumption, real money balances, and the real wage. We define the stationary
variables as: yt = Yt/At, ct = Ct/At, wt = Wt/(AtPt) and vt = Yt/(Mt/Pt). The steady
state equilibrium is the stationary equilibrium in the absence of shocks, and is defined by
the following equations:

Π =
Rβ

δ
, (14)

y =

(
θ−1
θ

χH

)1/(σ+φ)

gσ/(σ+φ) = y∗, (15)

c =

(
θ−1
θ

χH

)1/(σ+φ)

gφ/(σ+φ), (16)

1

v
= χMy

(σ−1)g−σ

(
R

R− 1

)
, (17)

b =

(
β

β − 1

)(
1− 1

g
− τ − 1

v

(
1− 1

Π

1

δ

))
, (18)

where b is the steady state level of the debt-to-output ratio, Bt/(PtYt).
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2.9 Log-linearized Model and Solution Method

Since the coefficients of the policy rules are time varying, and the time variation depends
on the latent factors, the log-linearization is performed conditioning on the latent factors
being at their current values each period. That is the essence of the quasi-linearity of the
model. Similar approaches have been taken by Liu et al. (2009) and Davig and Doh (2009)
in a context of Markov-switching policies, where the linearization is performed conditioning
on a given regime. I present here the model in log-deviations from the non-stochastic steady
state, and show a way to solve it using a method in line with the minimum state variable
(MSV) solution approach (McCallum, 1983).

Conditioning on a value of the latent factors at period t, zmt and zft , the log-linearized
equations characterizing the economy in equilibrium are (x̂t = ln(xt/x) denotes the log-
deviation of variable xt with respect to its non-stochastic steady state, x):

ŷt = Etŷt+1 −
1

σ
(R̂t − EtΠ̂t+1) + (1− ρg)ĝt +

ρν
σ
ν̂t (19)

Π̂t = βEtΠ̂t+1 +
(θ − 1)(φ+ σ)

ϕ
(ŷt − ŷ∗t ) (20)

v̂t = (1− σ)ŷt + σĝt +

(
1

R− 1

)
R̂t (21)

b̂t =
1

bg
ĝt −

τ

b
τ̂t +

1

bv
v̂t −

1

bvΠδ
v̂t−1 −

(
1

bvΠδ
+

1

β

)
(Π̂t +∆Ŷt) +

1

β
(R̂t−1 + b̂t−1) (22)

ŷ∗t =
1

(φ+ σ)(θ − 1)
θ̂t +

σ

φ+ σ
ĝt (23)

R̂t = ρRR̂t−1 + (1− ρR)
(
απ(zmt )Π̂t + αy(zmt ) (ŷt − ŷ∗t )

)
+ εRt (24)

τ̂t = ρτ τ̂t−1 + (1− ρτ )
(
γb(zft )b̂t−1 + γy(zft ) (ŷt − ŷ∗t )

)
+ ετt , (25)

where ∆Ŷt = ŷt − ŷt−1 + ν̂t. The exogenous shocks that complete the equilibrium are the
government spending shock, the cost-push shock, and the technology shock, given by

ĝt = ρgĝt−1 + εgt (26)

θ̂t = ρθθ̂t−1 + εθt (27)

ν̂t = ρν ν̂t−1 + ενt . (28)

To solve the model, let ωt = [ŷt, π̂t]
′, kt = [v̂t, b̂t, R̂t, τ̂t,∆Ŷt, yt−1, ŷ

∗
t ]

′, ut = [ĝt, θ̂t, ν̂t, ε
R
t , ε

τ
t ]

′,
εt = [εgt , ε

θ
t , ε

ν
t , ε

R
t , ε

τ
t ]

′, zt = [zmt , z
f
t ]

′ and rewrite (19)-(28) as

0 = A(zt)kt +B(zft )kt−1 +C(zt)ωt +Dut (29)

0 = Gkt + JEtωt+1 +Kωt +Mut (30)

ut+1 = Nut + εt+1, (31)

where A,B(zft ),C(zt),D,G,J,K,M and N are appropriate coefficient matrices shown in
Appendix B.
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The proposed solution is given by

kt = P(zt)kt−1 +Q(zt)ut, (32)

ωt = R(zt)kt−1 + S(zt)ut, (33)

where, for F(zt) = P(zt),Q(zt),R(zt),S(zt), the i, j − th entry is given by

F (zt) =

(
F0m + F1m

1+exp (−F2m(zmt −F3m))

)(
1 +

F1f

1+exp (−F2f(zft −F3f))

)
1− F4

exp (−F2m(zmt −F3m))

1+exp (−F2m(zmt −F3m))

exp (−F2f(zft −F3f))
1+exp (−F2f(zft −F3f))

, (34)

with F4 ∈ [0, 1]. This functional form is known as a bivariate logistic function and was
introduced by Ali et al. (1978).5

Appendix C illustrates the procedure to obtain the parameters of the bivariate logistic
functions. Appendix D shows that the coefficients of the solution indeed follow a bivariate
logistic function.

The model is solved using an undetermined coefficients method approach where not
only the linear solution has to be guessed and verified, but also the functional form of the
coefficients of the solution has to be guessed and verified. Within the logistic specification
of policy rules, the bivariate logistic function (34) satisfies this requirement.

2.10 On Existence, Stability and Uniqueness of the Solution

Since the method used to obtain the solution is based on the undetermined coefficients
method, existence is guaranteed. Time-varying coefficients pose a potential difficulty at
guaranteeing stability and/or uniqueness of the solution, in particular if one thinks of stability
and/or uniqueness holding at each period of time. The method presented here finds a solution
that is based on the values of the time-varying policy rule coefficients at their limits or long-
run bounds. These limiting coefficient values are chosen to deliver stability and uniqueness
of the solution in a constant-coefficient version of the model, offering well defined bounds
between which the economy evolves and between which agents form expectations. Davig and
Leeper (2007) and Farmer et al. (2008) emphasize that stability and uniqueness of Markov-
switching rational expectations models have to be discussed in a framework of how agents
form expectations about the evolution of policy rule coefficients, and that is partially the
approach taken at deriving the solution of the model in this paper, with the difference that
here the conditional expectations are taken to logistic functions.

The debate on uniqueness of the solution of nonlinear models has attracted attention of
the DSGE modeling and estimation literatures in recent years, and it is still an open field to
future research (see Davig and Leeper, 2006, 2007; Chung et al., 2007; Fernandez-Villaverde
et al., 2010; Farmer et al., 2011; Bianchi, 2012).

5For identification of the latent factors and the coefficients of the policy rules in a estimation setting it
is necessary to impose that F ij

2m > 0, F ij
2f > 0, F ij

2mf > 0, and F ij
2fm > 0.
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3 Estimation Strategy

This section presents the estimation of the policy rules with time-varying coefficients
driven by latent factors as specified for the new Keynesian model presented in Section 2. The
estimation employs Bayesian methods that allow obtaining the set of parameters character-
izing the policy rules, denoted by Θy, the set of parameters of the latent factors, denoted by
Θz, and the latent factors themselves, using the approach proposed by Geweke and Tanizaki
(2001).

3.1 Time-varying Coefficients State-Space Model, Stochastic Volatil-
ity and Endogeneity

Let INTt denote the demeaned nominal federal funds rate in period t, TAXt the demeaned
ratio of federal receipts net of transfers to output in period t, INFt the demeaned annual
inflation rate in period t, GAPt the output gap in period t and DBTt the demeaned average
debt to output ratio over the last four quarter. The state-space model is composed of the
observation equations

INTt = ρRINTt−1 + (1− ρR) (α
π(zmt )INFt + αy(zmt )GAPt) + υRt (35)

TAXt = ρτTAXt−1 + (1− ρτ )
(
γb(zft )DBTt + γy(zft )GAPt

)
+ υτt , (36)

and the transition equations

zmt = ρzmz
m
t−1 + ξmt (37)

zft = ρzf z
τ
t−1 + ξft . (38)

The assumptions about the distributions of υRt and υτt are made explicit in the following
section.

3.1.1 Stochastic Volatility

The existence of stochastic volatility in the shocks of policy rules with time-varying
coefficients has been examined by Davig and Leeper (2006), Fernandez-Villaverde et al.
(2010), Bianchi (2010) and Fernandez-Villaverde et al. (2011b), who find that not only
switches in policy rule coefficients are detectable from estimations, but also a fair amount
of stochastic volatility.6 Hence, the distribution of the error terms in the policy rules is
specified as υRt ∼ N(0, σ2

R,t) and υ
τ
t ∼ N(0, σ2

τ,t), where

lnσR,t = (1− ρσR
) ln σR + ρσR

lnσR,t−1 + ηRξ
R
t (39)

lnστ,t = (1− ρστ ) ln στ + ρστ lnστ,t−1 + ητξ
τ
t (40)

with ξRt ∼ iidN(0, 1) and ξτt ∼ iidN(0, 1).

6Sims and Zha (2006), on the other hand, argue that only changes in volatility can be detected in
estimations, and not changes in coefficients.

15



In what follows, let ht = [ln σR,t, lnστ,t] and let the set of parameters of the stochastic
volatility processes be denoted Θh.

Equations (39) and (40) are added to the state-space model (35)-(38) to introduce
stochastic volatility to the specification of the policy rules with time-varying coefficients.

3.1.2 Endogeneity

Since the work of Clarida et al. (2000), the estimation of monetary policy rules with
constant coefficients, in particular the Taylor rule, has taken into account the endogeneity
that exists between the shocks of the policy rule and inflation and output. The instrument
set used in their GMM estimation contains four lags of: inflation, the output gap, the Federal
funds rate, the short-long spread, and commodity price inflation.

With respect to fiscal policy rules with constant coefficients, Li (2009) illustrates the
endogeneity/simultaneity problem that arises when estimating a fiscal policy rule like the
one presented in this work. In estimating a fiscal policy rule that reacts to contemporary
debt and the output gap, Claeys (2008) uses a set of instrumental variables in their GMM
estimation that contains lags of: the output gap, debt, unit labor costs, growth in labor
productivity, NAIRU, a broad money aggregate, a synthetic interest rate of the EURO area,
oil price index, and the SEK/DEM exchange rate.

In terms of estimating linear equations with time-varying coefficients, either in the con-
ventional random coefficients or Markov-switching setups, Kim (2006) and Kim (2009) es-
tablish a Heckman-type two-stage maximum likelihood estimation technique to deal with
the endogeneity problem to yield consistent estimates of the hyper-parameters, as well as
to provide correct inferences on the time-varying coefficients. Kim and Nelson (2006b) es-
timate a random coefficients monetary policy rule for the United States using as the set
of instruments four lags of: the Federal funds rate, output gap, inflation, commodity price
inflation, and M2 growth. On a related work, Bae et al. (2011) estimate a Markov-switching
coefficients monetary policy rule for the United States using as the set of instruments three
lags of: the Federal funds rate, GDP gap, inflation, commodity price changes, and spread
between the long-term bond rate, and the three-month Treasury Bill rate.

In the present work, the set of instruments for both, the monetary and the fiscal policy
rules, is given by four lags of: inflation, the output gap, government spending as proportion
of GDP, M2 growth, and commodity price inflation. In a constant coefficients version of
the policy rules, the GMM estimation obtains the following results with respect to the
instruments set: 1) The J test statistic of overidentification restrictions for both of the rules
does not reject the null hypothesis that the instrument set is appropriate at the 5% level of
significance. 2) The exogeneity C test statistic implies that different subsets of instruments
are exogenous at the 5% level of significance. 3) The Cragg-Donald test statistic rejects the
null hypothesis of weak instruments at the 5% level of significance for both policy rules.

Let GSPt the demeaned government spending to output ratio in period t, M2Gt the
annual rate of growth of M2 in period t, and CMPt the annual commodity price inflation. In
order to account for the existence of endogeneity, the observation equations (35)-(36) of the
state-space model have to be modified by introducing a system of simultaneous equations.
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To that end, let

y1,t = INTt,

y2,t = TAXt,

x1,t = [INFt,GAPt],

x2,t = [DBTt−1,GAPt],

α(zmt ) = [απ(zmt ), αy(zmt )]′,

γ(zft ) = [γb(zft ), γ
y(zft )]

′,

w1,t = [{INFt−s}4s=1, {GAPt−s}4s=1, {GSPt−s}4s=1, {M2Gt−s}4s=1, {CMPt−s}4s=1],

w2,t = [DBTt−1, {INFt−s}4s=1, {GAPt−s}4s=1, {GSPt−s}4s=1, {M2Gt−s}4s=1, {CMPt−s}4s=1].

Hence, conditional on zt, the state-space model (35)-(40) can be divided into two models:
one for the interest rate equation, and another for the tax rate equation. The observation
equations of each of the models are:

y1,t = ρRy1,t−1 + (1− ρR)x1,tα(zmt ) + υRt (41)

x1,t = w1,tΠ1 + v1,t, (42)

and

y2,t = ρτy2,t−1 + (1− ρτ )x2,tγ(z
f
t ) + υτt (43)

x2,t = w2,tΠ2 + v2,t. (44)

Here, Π1 and Π2 are conformable parameter matrices, and vi,t ∼ iid N(0,Ψi) for i = 1, 2.
We introduce endogeneity in (41)-(42) and (43)-(44) by specifying

υR∗
t = v1,tδ1 + eRt
υτ∗t = v2,tδ2 + eτt ,

where υjt = σj,tυ
j∗
t for j = R, τ , and

eRt |y1,t−1,v1,t ∼ iid N (0, 1− δ′1Ψ1δ1)

eτt |y2,t−1,v2,t ∼ iid N (0, 1− δ′2Ψ2δ2) .

Let yt = [y1,t, y2,t]
′ and Yt = {ys}ts=1. Appendix F shows how to obtain the conditional

likelihood function of YT . Details on the implementation of the Bayesian estimation of Θy,
Θz, Θh, {zs}Ts=0 and {hs}Ts=0 appear in Appendix G.

3.2 Data

I use quarterly data from 1960:1 to 2008:3. The sample is not extended beyond 2008:3
to avoid having to deal with the binding of the zero lower bound (ZLB) of interest rates. It
is still possible to estimate the interdependence between monetary and fiscal policy under
the ZLB, but that is object of future research. Inflation is the percentage change over the
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last four quarters of the price level given by the GDP price deflator. The nominal interest
rate is the quarterly average of the monthly rate of the 3-month T-Bill in the secondary
market. The output gap is the log difference between real GDP and the Congressional
Budget Office’s measure of potential real GDP. M2 growth is the percentage change over the
last four quarters of seasonally adjusted M2. Commodity price inflation is the percentage
change over the last four quarters of the commodity price index. Government spending is the
federal consumption expenditures and gross investment. These variables are obtained from
FRED. Lagged debt is the average debt-output ratio over the previous four quarters, where
debt is the TreasuryDirect par value of gross marketable federal debt held by the public.
Tax net of transfers corresponds to the seasonally adjusted quarterly current receipts of the
federal government from which the current transfer payments have been deducted. This
variable is obtained from the NIPA Table 3.2.

4 Estimation Results

The choice of prior distributions, hyper parameters, means of 5, 000 draws from the
posterior distribution after trimming the first 1, 000, 000 out of 2, 000, 000 draws and thinning
every 200th draw7, along with 90% confidence sets appear in Table 1. In order to keep
the estimation relatively simple, we impose two restrictions that do not change the results
quantitatively: 1) We assume that the output gap coefficients of both policy rules are not
time varying, which allows us to focus on capturing the interdependence between monetary
and fiscal policy making in terms of the co-movement of the Taylor rule coefficient of inflation
and the tax rule coefficient of lagged debt, and 2) We assume that the location coefficients
of the logistic policy rule coefficients, απ

3 and γb3, are zero.
Figure 2 shows that the estimated model does acceptably well at explaining the observed

time series of interest and tax rates. Figures 8 and 9 in Appendix H are indicative that the
Monte Carlo Markov Chain converged. The Geweke (1991) test shows convergence of the
Gibbs sampler at the 1% level of significance for all the estimated parameters.

4.1 Choice of Prior Distributions

To allow the Taylor rule coefficient on inflation to evolve between the active and passive
monetary policy regimes, the lower bound of the logistic function that characterizes this
coefficient must be roughly less than unity, while the upper bound must be roughly greater
than unity. On the other hand, to allow the tax rule coefficient to evolve between the active
and passive fiscal policy regimes, the lower bound of the logistic function that characterizes
this coefficient must be roughly lower than the real interest rate charged on debt, and the
upper bound greater than this threshold. There exist results in the literature about the
values of these coefficients take in different regimes. Clarida et al. (2000) estimate that the
inflation coefficient is 0.83 in the pre-Volcker era and 2.15 in the Volcker-Greenspan era.
Lubik and Schorfheide (2004) find that the coefficient on inflation is estimated at 0.77 or

7The Raftery and Lewis (1992) diagnostic test determines that 676,113 draws from the posterior distribu-
tion should be taken to estimate the 50th percentile within 0.1 with 95% confidence level. It also determines
that thinning to achieve an independent chain should occur every 100th draw.
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Table 1: Results from the Bayesian Estimation

Prior Posterior
Parameters Density Mean SD Mean 90% Conf. Set

απ
0 Gamma 0.8 0.2 0.53 [0.36, 0.71]
απ
1 Gamma 1.2 0.3 1.28 [0.68, 1.83]
απ
2 Gamma 10 8 7.11 [0.75, 18.18]
αy Gamma 0.5 0.4 0.17 [0.07, 0.27]
ρR Beta 0.9 0.05 0.91 [0.87, 0.96]
γb0 Normal -0.025 0.01 -0.024 [-0.04, -0.01]
γb1 Gamma 0.125 0.03 0.13 [0.08, 0.18]
γb2 Gamma 10 8 4.42 [0.05, 14.71]
γy Gamma 0.5 0.4 0.79 [0.44, 1.22]
ρτ Beta 0.9 0.05 0.94 [0.93, 0.96]
ρzm Beta 0.8 0.1 0.74 [0.48, 0.91]
ρzf Beta 0.8 0.1 0.80 [0.61, 0.93]
κ TransformedBeta 0.5 0.25 0.18 [-0.13, 0.48]
zm0 Normal 0 1 -0.83 [-2.96, 1.31]

zf0 Normal 0 1 0.07 [-2.24, 2.39]
lnσR -2.17 [-2.56, -1.80]
ρσR

0.78 [0.65, 0.89]
ηR 0.58 [0.42, 0.76]

lnσR,0 -3.18 [-5.05, -1.22]
lnστ -1.17 [-1.49, -0.91]
ρστ 0.46 [0.24, 0.62]
ητ 0.92 [0.68, 1.14]

lnστ,0 -6.31 [-13.39, 0.62]
The parameters of the stochastic volatility processes have flat priors.
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Figure 2: Observed and Predicted Series
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0.89, depending on the prior used, in the pre-Volcker era, and 2.19 in the post-1982 era.
Bianchi (2012) finds that the Taylor rule coefficient on inflation is estimated to be 0.94,
1.25, or 1.6 in a three-regime Markov-switching specification, while the tax rule coefficient
on debt is estimated to be 0.0006, -0.0007, or -0.0036 in the same regime specification. Davig
and Leeper (2011) estimate the Taylor rule coefficient on inflation to be 0.53 or 1.29 in a
two-regime Markov-switching specification, while the tax rule coefficient on debt is -0.025 or
0.071. The specification in this document sets the parameter that fixes the lower bound of
the logistic function of the inflation coefficient with a mean of 0.8, while the upper bound
is set with a parameter whose mean is 2 (the sum of 0.8 and 1.2). With respect to the
parameter that sets the lower bound of the logistic function of the debt coefficient, its mean
is specified to be -0.025, and the parameter that sets the upper bound of the logistic function
is specified to have a mean of 0.1 (the sum of -0.025 and 0.125).

The prior distribution specification of the transition coefficients of both logistic policy
rule coefficients is set to have a mean of 10 with a wide range. Recall that the larger the
coefficient, the more rapid the transition between states. Values of the coefficient greater
than 20 imply a specification that mimics closely a Markov-switching transition. The choice
of this prior distribution allows the coefficient to take low or high values.

The smoothing coefficients of the policy rules have prior distributions that are standard
in terms of the persistence that they represent for interest and tax rates in the data.

A coefficient that deserves attention in terms of its prior distribution is the correlation
coefficient between the shocks of the latent factors, that ultimately determines the degree of
interdependence between monetary and fiscal policy making. The distribution chosen has
its domain on [-1,1] and a mean of 0.5. Recall that a positive value of this parameter implies
that monetary and fiscal policy are coordinated in such a way that they tend to deliver
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outcomes in the M or the F regime more frequently than outcomes in the indeterminacy or
no solution regimes. The distribution chosen has enough dispersion to allow the likelihood
function to play its role more prominently.

Finally, following Fernandez-Villaverde et al. (2011a) we do not specify prior distributions
for the parameters of the stochastic volatility processes.

4.2 Parameter Estimates

The estimated parameters of the monetary and fiscal policy rule coefficients have expected
magnitudes and signs. In particular, for the monetary policy rule, the inflation coefficient
takes on values in (0.53, 1.81), while the output gap coefficient has a posterior mean of 0.17,
below the values obtained by Clarida et al. (2000), around 0.27 and 0.93 for the two eras
that they analyze, and below the values that Bianchi (2012) finds, around 0.58, 0.23, or
0.58 for the three regimes that he assumes. With respect to the fiscal policy rule, the debt
coefficient takes on values in (-0.024, 0.106), while the output gap coefficient has a posterior
mean of 0.79. Here the results with respect to the debt coefficient coincide closely with the
results in Davig and Leeper (2011). The posterior mean of the tax rule coefficient on output
is found to be larger than the results in the literature, where the values range between 0.11
and 0.5. The speed of transition of the policy rule coefficients is estimated to be higher
for the inflation coefficient of the monetary policy rule than for the debt coefficient of the
tax rule. This implies that the fiscal authority has a slower switching of taxes with respect
to deviations of debt than the monetary authority does of the interest rate with respect
to inflation. This result is consistent with the legislative and implementation lags of fiscal
policymaking and the argument that these lags imply that policy takes time to influence
macroeconomic aggregates.

The latent factors show relatively high persistence, with the fiscal policy latent factor
being more persistent than the monetary policy one. This result shows that fiscal policy
adjustments to stabilize debt are likely to last longer than monetary policy adjustments to
inflation deviations from target. This result finds an intuitive explanation if one realizes that
monetary policy changes do not require as many institutional constraints as changes in fiscal
policy do.

Finally, the correlation between the two latent factors has a estimated posterior mean
of 0.18, and a 90% confidence set given by (-0.13, 0.48). This result implies that there is
a degree of direct interactions between policies. Monetary tightenings to stabilize inflation
tend to be accompanied by fiscal policy that stabilizes debt, while fiscal policy that deviates
from debt stabilization tend to be accompanied by a loose monetary policy to keep debt
stable.

4.3 Evolution of Policy Rule Coefficients

Figure 3 shows the posterior mean evolution of the monetary policy rule coefficient for
inflation on the left axis, and of the fiscal policy rule coefficient for debt on the right axis.
Three situations are apparent from this figure: 1) The fiscal policy rule coefficient does not
show sudden changes as frequently as the monetary policy rule coefficient does, 2) The fiscal
policy rule coefficient on debt was lower during most of the 1970s, the 1980s, and the first
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Figure 3: Evolution of Policy Rule Coefficients and NBER Recession Periods

1965 1970 1975 1980 1985 1990 1995 2000 2005

1

1.5

απ

 

 

απ(zm
t
)

1965 1970 1975 1980 1985 1990 1995 2000 2005

0.02

0.03

0.04

0.05

0.06

0.07

γb

 

 

γb(zf
t
)

half of the 1990s, 3) Monetary policy was loose for a good portion of the 1990s,. I will start
with a discussion about the evolution of each of the policy rule coefficients to match the
econometric results with the narrative about policy making.

The evolution of the monetary policy rule coefficient reveals that the Federal Reserve
Board reduced its reaction to inflation during at least a few quarters of every NBER recession,
except the recession of 2001. The graph shows that during the 1960s, monetary policy was
tight during the second half of the decade as Davig and Leeper (2011), Bianchi (2010), Eo
(2009) and Fernandez-Villaverde et al. (2010) find. During the 1970s monetary policy did
not actively fight inflation, with the exception of a few periods in the first half and at the end
of the decade. With the exception of Boivin (2006), who finds that monetary policy was tight
during the first half of the 1970s, all the studies in the literature find a passive monetary policy
during this decade. At the end of the 1970s, and after the appointment of Fed Chairman Paul
Volcker, monetary policy switched rapidly to fight inflation. This abrupt switch is also found
by Davig and Doh (2009), Eo (2009) and Bianchi (2010) who find, based on estimations of
Markov-switching policy rule coefficients, that the active monetary policy periods started
around, or a little earlier than, the mid 1980s. The graph shows that monetary policy had
a “hawkish” regime during most of the 1980s. The 1990s show monetary policy that was
actively fighting inflation for a few periods at the beginning and at the end of the decade.
The only study that supports a finding of this nature is Fernandez-Villaverde et al. (2010).8

The 2000s show that monetary policy increased its reaction to inflation until 2005, when it
sharply decreases it. The empirical evidence is divided with respect to this result: On one
hand Eo (2009), Davig and Doh (2009) and Bianchi (2010) find that monetary policy was

8Kim and Nelson (2006a) find that their confidence interval starts including the passive monetary policy
region at the beginning of the 1990s.
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actively fighting inflation, while on another Fernandez-Villaverde et al. (2010) and Davig
and Leeper (2011) find the opposite. It has to be noted that during the first half of the
2000s the Federal Reserve Board was aggressively lowering interest rates while inflation did
not necessarily showed significant increases.

The evolution of the fiscal policy rule coefficient shows less variations than the evolution
of the monetary policy rule coefficient. Compared to the reaction of monetary policy to
recessions, the reaction of fiscal policy is not as strongly related to recessions, with the
exception of the first two decades of the sample where fiscal policy tried to loosen its reaction
to debt whenever a recession hit the economy. The tax incentives of President Kennedy
lowered the fiscal reaction to debt in the early 1960s, with an increase in the second half
of the decade due to President Johnson’s policies to face the Vietnam war. The 1970s saw
a loose fiscal policy due to the fiscal incentives to face the recessions of the beginning and
the middle of the decade. This loose fiscal policy stayed in place during the last years of
President Carter in the early 1980s to face the recession of those years. President Reagan
continued with an even looser fiscal policy during the first years of his mandate. President
Bush, in early 1990s, basically continued with his predecessor’s policies with no substantial
changes in the reaction of fiscal policy with respect to debt. President Clinton starts a new
regime where taxes start to respond strongly to debt in order to decrease it, taking debt from
nearly 44% of GDP in 1995 to nearly 27% in 2001. President Bush’s cuts imply a reduction
in the debt coefficient of the tax policy rule as expected.

It is important to point out that the sample was not extended beyond the third quarter
of 2008 because the zero lower bound constraint starts to bind after that quarter. Different
econometric techniques and models are required to deal with a situation of this nature,
in particular in a scenario of policy interdependence, and that constitutes an extension of
current research of this paper.

4.4 Evolution of Stochastic Volatilities

Figure 4 shows the evolution of the estimated stochastic volatility for the interest and
tax rate rules. The results show that the volatility of interest rates was significantly higher
during the beginning of the 1980s due to the important change in conducting monetary policy
during those years. Also, volatility is significantly lower after the second half of the 1980s and
stays lower until the end of the sample period. This result has also been found by Justiniano
and Primiceri (2008), Fernandez-Villaverde et al. (2010), Davig and Leeper (2006), Davig
and Doh (2009) and Bianchi (2010). On the other hand, fiscal policy volatility shows spikes
in the mid 1970s, the first half of the 2000s, and the beginning of the great recession. All
these events are triggered for some kind of fiscal stimulus. There is not significant increase
in volatility during the years of President Clinton. It is worth noticing that the volatility
of monetary policymaking (ρσR

) is significantly more persistent than the volatility of fiscal
policymaking (ρστ ).

23



Figure 4: Evolution of Stochastic Volatilities
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4.5 Nonlinear Impulse-Response Analysis for the New Keynesian
Model

With the estimated parameters of the policy rule coefficients and the parameterization
in Section 3.2, this section performs policy experiments with the new Keynesian model with
time-varying policy rule coefficients solved with the proposed solution method. The new
Keynesian model requires the specification of aditional parameters to perform the impulse-
response analysis. In particular, it requires the specification of the markup in steady state
and the price adjustment cost parameter. Keen and Wang (2007) show that, given a steady
state markup and a fraction of firms that re-optimize each period, there is a corresponding
value for the adjustment cost parameter. Here, we set the markup to 20% and the fraction of
re-optimizing firms to 25% each period (a firm re-optimizes every 12 months). These values
correspond approximately to θ = 6 and ϕ = 60. Additional parameters that need to be
specified are: 1) δ, the steady state gross quarterly rate of output growth, which is set to
1.0081, the average over the sample period that implies a steady state annual growth rate
of approximately 3.25%, which is the average over the sample period; 2) Π, the steady state
gross quarterly rate of price inflation, which is set to 1.0084, the average over the sample
period that implies a steady state annual inflation of approximately 3.4%; 3) b, the steady
state level of debt to output, which is set to 0.3354, the average over the sample period; 4) ζ,
the ratio of government spending to output is set to 0.081, also the average over the sample
period; 5) 1/vb, the ratio of outstanding money balances to debt, is set to 0.2 following Kim
(2003); β is set to 0.995.

Figure 5 shows the response of the variables of the model to a 1% increase in the interest
rate and to a 1% increase in the tax rate. Responses are calculated under three scenarios:
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1) Starting at the AM/PF regime and staying there forever, 2) Starting at the PM/AF
regime and staying there forever, and 3) Starting at the unconditional mean of the policy
rule coefficients and averaging out responses across future random draws of coefficients.

4.5.1 A Monetary Contraction

The effects of a monetary contraction in a new Keynesian model under the AM/PF
regime are well known: An open market operation that sells debt to households, and that
is expected to be corrected in the future via higher taxes, does not change their wealth and
only increases the nominal interest rate. With sticky prices, the real interest rate increases
reducing consumption and subsequently output, which reduces inflation. As the nominal
interest rate decreases as well as the real interest rate, output returns to steady state as well
as inflation. Taxes decrease due to the automatic stabilizers effect and then start to increase
due to their Ricardian response to lagged debt, which is now higher. Given the persistence in
taxes, the present value of expected future surpluses increases and slowly returns to steady
state, while the present value of expected future seignorage decreases at impact and then does
not experiment major variations due to the short and not pronounced changes in inflation.

In the PM/AF regime, the effects are as follows: An open market operation that sells
debt to households, and that is not expected to be corrected in the future via higher taxes,
increases agents’ wealth. With sticky prices, the increase in the nominal interest rate still
increases the real interest rate, making output and inflation decrease at impact. Then, higher
wealth and decreasing real rates increase output above its steady state level until the wealth
effect is corrected via higher prices. The “price puzzle” is present in this policy experiment
as it was in the Fisherian model.9 Taxes only react to the output gap, hence they decrease
during the first quarters and then increase above steady state until slowly returning to it.
This makes the present value of expected future surpluses increase at impact, while higher
and persistent inflation increases the present value of expected future seignorage after a small
decrease at impact due to the decrease of the demand of real money balances.

With the economy starting at the mean of the stationary distribution of policy rule
coefficients, the effects of a monetary contraction are between the two previously described
regimes. Agents’ expectations incorporate the behavior of the economy under the AM/PF
and PM/AF regimes so that: 1) There are still lower output and inflation at impact, and
2) There is still a wealth effect of higher debt in their hands that is not expected to be
completely corrected in the future via higher taxes. As long as the economy does not start
at one of the limiting regimes and stays there forever, the solution method allows to always
have some wealth effect derived from the PM/AF regime that will influence the economy’s
response to a monetary contraction. As in the Fisherian model, a monetary contraction
decreases inflation at impact, but the long-run effect is an increase of inflation above steady
state, or the “stepping on a rake” phenomenon.

9To determine the initial response of inflation under the PM/AF regime, an expression like equation (??)
can be used. In this case, the expression has to incorporate the effect of output growth:

R−1b−1
1

Π0

1

∆Y0
= E0

∞∑
t=0

MRS0,t (st +mt) ,

where st and mt are in output terms.
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Figure 5: Impulse-Response Functions
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(b) Response to a 1% Increase in the Tax Rate
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4.5.2 A Fiscal Contraction - Tax increase

In the AM/PF regime, a tax increase that retires debt does not have any effect on output
or inflation due to the Ricardian nature of the equilibrium: higher taxes today are expected
to be fully compensated in the future, with no wealth effect on households. The absence of
change in wealth can be seen from the absence of change in the present value of expected
future surpluses and seignorage at impact. Taxes decrease after impact following the debt
reduction and, given their persistence and the further reduction of debt, locate below steady
state at long horizons. Debt reduces anticipating the decrease in the present value of expected
future surpluses. There are not changes in seignorage due to unchanged inflation.

A tax increase in the PM/AF regime leaves agents with reduced wealth since the increase
is not expected to be corrected in the future. The decrease in wealth reduces demand for
goods and inflation. Since the nominal interest rate does not respond strongly to the change
in inflation, the real interest rate increases decreasing consumption and output. The present
value of expected future surpluses increases due to the higher and persistent taxes that will
not be corrected in the future. The present value of expected future seignorage reduces
at impact due to lower inflation. Overall, the change in the expected present value of
government net receipts implies that debt increases its value at impact and then returns to
steady state.

When the economy starts at the mean of the stationary distribution of policy rule coeffi-
cients, again the effects are between the two previously described regimes. That is, a change
in taxes has real effects due to the only partial correction that is implied by the active fiscal
regime. Also, as long as the economy does not start at one of the limiting regimes and stays
there forever, the dynamics of the economy will reflect the wealth effect of higher or lower
taxes.
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Appendix

A Model Setup

The representative household solves the following problem:

max
{Ct,Mt/Pt,Bt}∞t=0

E0

∞∑
t=0

βt

(
(Ct/At)

1−σ

1− σ
+ χM log

(
Md

t /Pt

)
− χH

H1+φ
t

1 + φ

)
subject to

Ct +
Md

t

Pt

+
Bt

Pt

+
Tt
Pt

≤ Ht
Wt

Pt

+
Dt

Pt

+
Md

t−1

Pt

+Rt−1
Bt−1

Pt

for t ≥ 0,

M−1 +R−1B−1

P−1

given,

lim
t→∞

MRS0,t
Mt +Bt

Pt

= 0,

where MRS0,t denotes the marginal rate of substitution between period 0 and period t. The
necessary first order conditions are:

Ct :
1

At

(
Ct

At

)−σ

− λt = 0 (45)

Ht : −χHH
φ
t + λt

Wt

Pt

= 0 (46)

Md
t

Pt

: χM

(
Md

t

Pt

)−1

− λt + βEtλt+1
Pt

Pt+1

= 0 (47)

Bt : −λt
Pt

+ βRtEt
λt+1

Pt+1

= 0, (48)

λt : Ct +
Md

t

Pt

+
Bt

Pt

+
Tt
Pt

−Ht
Wt

Pt

− Dt

Pt

−
Md

t−1

Pt

−Rt−1
Bt−1

Pt

= 0 (49)

where λt is the Lagrange multiplier associated to the budget constraint at time t.
From (45) and (48),

1 = βRtEt

(
Ct/At

Ct+1/At+1

)σ
At

At+1

Pt

Pt+1

. (50)

From (45) and (46)

χHH
φ
t At

(
Ct

At

)σ

=
Wt

Pt

. (51)
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From (45), (47) and (48),

Mt

Pt

= χMAt

(
Ct

At

)σ (
Rt

Rt − 1

)
. (52)

Profits of intermediate firm j are given by

Dt(j)

Pt

=
Pt(j)

Pt

Yt(j)−
Wt

Pt

Lt(j)−
ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2

Yt. (53)

Substituting (2) and (3) in (53) yields

Dt(j)

Pt

=

[(
Pt(j)

Pt

)1−θt

− ψt

(
Pt(j)

Pt

)−θt

− ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2
]
Yt.

Then, intermediate firm j chooses Pt(j) to maximize

Et

∞∑
k=0

MRSt,t+k

[(
Pt(j)

Pt

)1−θt

− ψt

(
Pt(j)

Pt

)−θt

− ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2
]
Yt.

The first order condition to this maximization problem is

0 = λtYt

[
(1− θt)

(
Pt(j)

Pt

)−θt 1

Pt

+ θt
ψt

Pt

(
Pt(j)

Pt

)−θt−1

− ϕ

(
Pt(j)

ΠPt−1

− 1

)
1

ΠPt−1(j)

]
+

+βλt+1Yt+1ϕ

(
Pt+1(j)

ΠPt

− 1

)
Pt+1(j)

ΠPt(j)2
. (54)

In a symmetric equilibrium, Pt(j) = Pt, Lt(j) = Lt and Yt(j) = Yt, hence

Dt(j)

Pt

=
Dt

Pt

=

[
1− ψt −

ϕ

2

(
Pt

ΠPt−1

− 1

)2
]
Yt. (55)

In equilibrium, Md
t =M s

t =Mt, Bt = 0 and Ht = Lt. Then, (5), (55) and (49) imply (8).
In the symmetric equilibrium, substituting (45) into (54) yields (9). Finally, the symmetric
equilibrium yields (11), (52) is (12), and (50) is (10).

Before proceeding to the log-linearization of the model, it is convenient to write (5) in
terms of nominal output. The resulting expression is

bt = 1− 1

gt
− τt −

1

vt
+

1

vt−1

1

Πt

1

∆Yt
+Rt−1bt−1

1

Πt

1

∆Yt
, (56)

where ∆Yt = Yt/Yt−1.

29



To obtain (13), start with (11) and recall the definition of ψT = Wt/PtAt to get

ψt = χHL
φ
t At

(
Ct

At

)σ

.

In the symmetric equilibrium, from (3), Yt = AtLt, and without price rigidities, ψt =
θt−1
θt

and Ct = Yt/gt, hence
θt − 1

θt
= χH

(
Y ∗
t

At

)φ+σ

g−σ
t .

Once the variables have been de-trended by dividing them by At, the absence of shocks
yields (14) from (10), (17) from (12), (15) from combining (8) and (13), (16) from (15) and
ct = yt/gt, and (18) from (56) with ∆y = δ.

B Matrices for Solving the Model

The matrices in system (29)-(31) are given by

G =

[
0 0 −1/σ 0 0 0 0
0 0 0 0 0 0 −(θ − 1)(φ+ σ)/ϕ

]
, J =

[
1 1/σ
0 β

]
,

K =

[
−1 0

(θ − 1)(φ+ σ)/ϕ −1

]
, M =

[
1− ρg 0 ρν/σ 0 0

0 0 0 0 0

]
,

A(zt) =



−1 0 1/(R− 1) 0 0 0 0
1/vb −1 0 −τ/b −(1/bvΠδ + 1/β) 0 0
0 0 −1 0 0 0 −(1− ρR)α

y(zmt )

0 0 0 −1 0 0 −(1− ρτ )γ
y(zft )

0 0 0 0 −1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1


,

B(zft ) =



0 0 0 0 0 0 0
−1/vΠδb 1/β 1/β 0 0 0 0

0 0 ρR 0 0 0 0

0 (1− ρτ )γ
b(zft ) 0 ρτ 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0


,

C(zt) =



1− σ 0
0 −(1/bvΠδ + 1/β)

(1− ρR)α
y(zmt ) (1− ρR)α

π(zmt )

(1− ρτ )γ
y(zft ) 0

1 0
0 0
0 0


,
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D =



σ 0 0 0 0
1/bg 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 0

σ/(φ+ σ) + 1/(φ+ σ) 0 0 0 0


,

N =


ρg 0 0 0 0
0 ρθ 0 0 0
0 0 ρν 0 0
0 0 0 0 0
0 0 0 0 0


C Obtaining the Coefficients of the Logistic Functions

Each of the elements in the matrices P(zt),Q(zt),R(zt),S(zt) have the bivariate logistic
functional form (34), which is reproduced here for convenience:

F (zt) =

(
F0m + F1m

1+exp (−F2m(zmt −F3m))

)(
1 +

F1f

1+exp (−F2f(zft −F3f))

)
1− F4

exp (−F2m(zmt −F3m))

1+exp (−F2m(zmt −F3m))

exp (−F2f(zft −F3f))
1+exp (−F2f(zft −F3f))

.

The shape of a bivariate logistic function is shown in Figure 6. The bivariate logistic
function yields univariate logistic functions (either of zmt or zft ) in the margins, i.e. when
zmt → l or when zft → l, for l = +∞,−∞. This feature of the bivariate logistic function gives
high flexibility to encompass a wide variety of linear and nonlinear combinations involving
this function.

To avoid computational costs, we find the solutions to the coefficients in R(zt) and
S(zt) only, solving for inflation and output, leaving the the full solution of the model to be
accounted for the structural equations of the state variables (21)-(28). Given the structure
of the vector of shocks, S(zt) is a matrix with 10 distinct elements. Given the structure of
the vector of state variables, R(zt) is a matrix with 10 distinct elements as well, although it
has 14 entries. Therefore, in total there are 20× 8 = 160 coefficients of the logistic functions
to be found to obtain a solution.

C.1 Finding F0m, F1m, F0f and F1f given F4

Notice that the time-varying policy rule coefficients have the following limiting combina-
tions (bounds):

• lim
zmt →−∞

απ(zmt ) = απ
0 , lim

zmt →−∞
αy(zmt ) = αy

0 and lim
zft →−∞

γb(zft ) = γb0, lim
zft →−∞

γy(zft ) = γy0 ,

• lim
zmt →∞

απ(zmt ) = απ
0+α

π
1 , lim

zmt →∞
αy(zmt ) = αy

0+α
y
1 and lim

zft →∞
γb(zft ) = γb0+γ

b
1, lim

zft →∞
γy(zft ) =

γy0 + γy1 ,
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Figure 6: Bivariate Logistic Function
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• lim
zmt →∞

απ(zmt ) = απ
0+α

π
1 , lim

zmt →∞
αy(zmt ) = αy

0+α
y
1 and lim

zft →−∞
γb(zft ) = γb0, lim

zft →−∞
γy(zft ) =

γy0 , and

• lim
zmt →−∞

απ(zmt ) = απ
0 , lim

zmt →−∞
αy(zmt ) = αy

0 and lim
zft →∞

γb(zft ) = γb0 + γb1, lim
zft →∞

γy(zft ) =

γy0 + γy1 .

Also, notice that F (zt) has the following limiting expressions:

• lim
zmt ,zft →−∞

F (zt) =
F0m

1− F4

,

• lim
zmt ,zft →∞

F (zt) = (F0m + F1m)(1 + F1f ),

• lim
zmt →∞,zft →−∞

F (zt) = F0m + F1m,

• lim
zmt →−∞,zft →∞

F (zt) = F0m(1 + F1f ).

Hence, given F4, to obtain F0m, F1m and F1f , we solve the constant-coefficient versions of
the model four times using Uhlig (1998), at the four different limiting combinations of the
latent factors zmt and zft . However, two of the solutions for R(zt) and S(zt) are equal in the
limits mentioned above, leaving three equations to find three coefficients. The reason is that
under active monetary policy, when zmt → ∞, the only difference that fiscal policy makes
has to do with the dynamics of debt (there is not bounded solution under active fiscal policy,
when zmt → ∞) and not with the dynamics of inflation or output.
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C.2 Finding F2m, F2f , F2mf , F2fm, F3m, F3f , F3mf , F3fm

Substitute (32)-(33) in (29)-(31) to obtain[
A(zt)P(zt) +C(zt)R(zt) +B(zft )

]
kt−1 + [A(zt)Q(zt) +C(zt)S(zt) +D]ut = 0,{[

JR̄(zt) +G
]
P(zt) +KR(zt)

}
kt−1 +

{[
JR̄(zt) +G

]
Q(zt) + JS̄(zt)N+KS(zt) +M

}
ut = 0,

where R̄(zt) ≡ EtR(zt+1) and S̄(zt) ≡ EtS(zt+1). By the undetermined coefficients method,
we have

A(zt)P(zt) +C(zt)R(zt) +B(zft ) = 0

A(zt)Q(zt) +C(zt)S(zt) +D = 0[
JR̄(zt) +G

]
P(zt) +KR(zt) = 0[

JR̄(zt) +G
]
Q(zt) + JS̄(zt)N+KS(zt) +M = 0.

Then, solving for R(zt) and S(zt), we have

[K+ [G+ JR̄(zt)][−A(zt)]
−1C(zt)]R(zt) = −[G+ JR̄(zt)][−A(zt)]

−1B(zft ) (57)

[K+ [G+ JR̄(zt)][−A(zt)]
−1C(zt)]S(zt) = −JS̄(zt)N−M− [G+ JR̄(zt)][−A(zt)]

−1D.
(58)

Let

T(zt) ≡ K+ [G+ JR̄(zt)][−A(zt)]
−1C(zt)

U(zt) ≡ −[G+ JR̄(zt)][−A(zt)]
−1B(zft )

V(zt) ≡ −JS̄(zt)N−M− [G+ JR̄(zt)][−A(zt)]
−1D.

Then, using the relevant elements of R(zt) and S(zt), we can write[
T(zt) 0
0 T(zt)

] [
R(zt)
S(zt)

]
=

[
U(zt)
V(zt)

]
. (59)

Given F0m, F1m and F1f , F (zt) takes the following expressions that include F2m, F2f , F3m

and F3f :

• lim
zft →∞

F (0, zft ) = (1 + F1f )(F0m +
F1m

1 + exp(F2mF3m)
)

• lim
zmt →∞

F (zmt , 0) = (F0m + F1m)(1 +
F1f

1 + exp(F2fF3f )
)

• ∂

∂zmt
lim

zft →∞
F (zmt , z

f
t )

∣∣∣∣∣
zmt =0

= (1 + F1f )
F1mF2m exp(F2mF3m)

(1 + exp(F2mF3m))2

• ∂

∂zft
lim

zmt →∞
F (zmt , z

f
t )

∣∣∣∣
zft =0

= (F0m + F1m)
F1fF2f exp(F2fF3f )

(1 + exp(F2fF3f ))2
.
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Then, to find F2m, F2f , F3m and F3f we solve the following system of equations for the
relevant elements of R(zt) and S(zt): lim

zft →l
T(0, zft ) 0

0 lim
zft →l

T(0, zft )


 lim
zft →l

R(0, zft )

lim
zft →l

S(0, zft )

 =

 lim
zft →l

U(0, zft )

lim
zft →l

V(0, zft )

 ,

 lim
zmt →l

T(zmt , 0) 0

0 lim
zmt →l

T(zmt , 0)

 lim
zmt →l

R(zmt , 0)

lim
zmt →l

S(zmt , 0)

 =

 lim
zmt →l

U(zmt , 0)

lim
zmt →l

V(zmt , 0)

 ,


∂

∂zmt
lim
zft →l

T(zt)

∣∣∣∣∣
zmt =0

0

0
∂

∂zmt
lim
zft →l

T(zt)

∣∣∣∣∣
zmt =0

∂

∂zmt
lim
zft →l

C(zt)

∣∣∣∣∣
zmt =0


 lim
zft →l

R(0, zft )

lim
zft →l

S(0, zft )

+

+

 lim
zft →l

T(0, zft ) 0

0 lim
zft →l

T(0, zft )




∂

∂zmt
lim
zft →l

R(zt)

∣∣∣∣∣
zmt =0

∂

∂zmt
lim
zft →l

S(zt)

∣∣∣∣∣
zmt =0

 =

=


∂

∂zmt
lim
zft →l

U(zt)

∣∣∣∣∣
zmt =0

∂

∂zmt
lim
zft →l

V(zt)

∣∣∣∣∣
zmt =0

 ,


∂

∂zft
lim
zmt →l

T(zt)

∣∣∣∣
zft =0

0

0
∂

∂zft
lim
zmt →l

T(zt)

∣∣∣∣
zft =0


 lim
zmt →l

R(zmt , 0)

lim
zmt →l

S(zmt , 0)

+

+

 lim
zmt →l

T(zmt , 0) 0

0 lim
zmt →l

T(zmt , 0)




∂

∂zft
lim
zmt →l

R(zt)

∣∣∣∣
zft =0

∂

∂zft
lim
zmt →l

S(zt)

∣∣∣∣
zft =0

 =

=


∂

∂zft
lim
zmt →l

U(zt)

∣∣∣∣
zft =0

∂

∂zft
lim
zmt →l

V(zt)

∣∣∣∣
zft =0

 ,
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for l = −∞ or l = +∞, where

lim
zf
t →−∞

A(0, zft ) =



−1 0 1 0 0 0 0
1/vb −1 0 −τ/b −(1/vΠδ + 1/β) 0 0

0 0 −1 0 0 0 −(1− ρR)
(
αy
0 +

αy
1

1+exp(αy
2α

y
3)

)
0 0 0 −1 0 0 −(1− ρτ )γ

y
0

0 0 0 0 −1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1



lim
zf
t →+∞

A(0, zft ) =



−1 0 1 0 0 0 0
1/vb −1 0 −τ/b −(1/vΠδ + 1/β) 0 0

0 0 −1 0 0 0 −(1− ρR)
(
αy
0 +

αy
1

1+exp(αy
2α

y
3)

)
0 0 0 −1 0 0 −(1− ρτ )(γ

y
0 + γy

1 )
0 0 0 0 −1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1



lim
zm
t →−∞

A(zmt , 0) =



−1 0 1 0 0 0 0
1/vb −1 0 −τ/b −(1/vΠδ + 1/β) 0 0
0 0 −1 0 0 0 −(1− ρR)α

y
0

0 0 0 −1 0 0 −(1− ρτ )
(
γy
0 +

γy
1

1+exp(γy
2 γ

y
3 )

)
0 0 0 0 −1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1



lim
zm
t →−∞

A(zmt , 0) =



−1 0 1 0 0 0 0
1/vb −1 0 −τ/b −(1/vΠδ + 1/β) 0 0
0 0 −1 0 0 0 −(1− ρR)(α

y
0 + αy

1)

0 0 0 −1 0 0 −(1− ρτ )
(
γy
0 +

γy
1

1+exp(γy
2 γ

y
3 )

)
0 0 0 0 −1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1



lim
zf
t →−∞

C(0, zft ) =



1− σ 0
0 −(1/vΠδ + 1/β)

(1− ρR)
(
αy
0 +

αy
1

1+exp(αy
2α

y
3)

)
(1− ρR)

(
απ
0 +

απ
1

1+exp(απ
2α

π
3 )

)
(1− ρτ )γ

y
0 0

1 0
0 0
0 0



lim
zf
t →∞

C(0, zft ) =



1− σ 0
0 −(1/vΠδ + 1/β)

(1− ρR)
(
αy
0 +

αy
1

1+exp(αy
2α

y
3)

)
(1− ρR)

(
απ
0 +

απ
1

1+exp(απ
2α

π
3 )

)
(1− ρτ )(γ

y
0 + γy

1 ) 0
1 0
0 0
0 0


,
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lim
zf
t →−∞

C(zmt , 0) =



1− σ 0
0 −(1/vΠδ + 1/β)

(1− ρR)α
y
0 (1− ρR)α

π
0

(1− ρτ )
(
γy
0 +

γy
1

1+exp(γy
2 γ

y
3 )

)
0

1 0
0 0
0 0



lim
zf
t →∞

C(zmt , 0) =



1− σ 0
0 −(1/vΠδ + 1/β)

(1− ρR) (α
y
0 + αy

1) (1− ρR) (α
π
0 + απ

1 )

(1− ρτ )
(
γy
0 +

γy
1

1+exp(γy
2 γ

y
3 )

)
0

1 0
0 0
0 0


,

B(0) =



0 0 0 0 0 0 0
−1/vΠδ 1/β 1/β 0 0 0 0

0 0 ρR 0 0 0 0

0 (1− ρτ )
(
γb
0 +

γb
1

1+exp(γb
2γ

b
3)

)
0 ρτ 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0


,

lim
zf
t →−∞

B(zft ) =



0 0 0 0 0 0 0
−1/vΠδ 1/β 1/β 0 0 0 0

0 0 ρR 0 0 0 0
0 (1− ρτ )γ

b
0 0 ρτ 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0


,

lim
zf
t →∞

B(zft ) =



0 0 0 0 0 0 0
−1/vΠδ 1/β 1/β 0 0 0 0

0 0 ρR 0 0 0 0
0 (1− ρτ )

(
γb
0 + γb

1

)
0 ρτ 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0


.

∂

∂zmt
lim
zf
t →l

A(zt)

∣∣∣∣∣
zm
t =0

=



0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 −(1− ρR)
αy

1α
y
2 exp(αy

2α
y
3)

(1+exp(αy
2α

y
3))

2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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∂

∂zmt
lim
zf
t →l

C(zt)

∣∣∣∣∣
zm
t =0

=



0 0
0 0

(1− ρR)
αy

1α
y
2 exp(αy

2α
y
3)

(1+exp(αy
2α

y
3))

2 (1− ρR)
απ

1α
π
2 exp(απ

2α
π
3 )

(1+exp(απ
2α

π
3 ))

2

0 0
0 0
0 0
0 0



∂

∂zft
B(zft )

∣∣∣
zf
t =0

=



0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

0 (1− ρτ )
γ1γ2 exp(γ2γ3)
(1+exp(γ2γ3))2

0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

C.3 Finding F4

Given F0m, F1m, F1f , F2m, F2f , F3m, F3f , we have the following expression that includes
F4:

F (0) =

(
F0m + F1m

1+exp(F2mF3m)

)(
1 +

F1f

1+exp(F2fF3f)

)
1− F4

exp(F2fF3f)
1+exp(F2mF3m)

exp(F2mF3m)

1+exp(F2fF3f)

Then, to find F4 we solve the following system of equations:[
T(0) 0
0 T(0)

] [
R(0)
S(0)

]
=

[
U(0)
V(0)

]
.

D Verifying Guessed Functional Form

Having obtained the coefficients of the logistic functions that characterize the solution,
it is necessary to check that the guessed functional forms for P(zt), Q(zt), R(zt), S(zt) are
indeed logistic. Recall the system of equations in (??)

[G+ JR̄(zt)]P(zt) +KR(zt) = 0 (60)

[G+ JR̄(zt)]Q(zt) + JS̄(zt)N+KS(zt) +M = 0 (61)

A(zt)P(zt) +B(zft ) +C(zt)R(zt) = 0 (62)

A(zt)Q(zt) +C(zt)S(zt) +D = 0. (63)

Given that R̄(zt) and S̄(zt) can be approximated reasonably well by bivariate logistic
functions with the same functional form as (34) (see Appendix E), (60) shows that if R(zt)
is a bivariate logistic function, then P(zt) will also be a bivariate logistic function. From
(62), if P(zt) is a bivariate logistic function, then R(zt) will be a bivariate logistic function.
The same reasoning can be used to prove that both Q(zt) and S(zt) are bivariate logistic
functions by using (61) and (63).
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E Computation of R̄(zt) and S̄(zt)

Each of the elements of the matrices P(zt),Q(zt),R(zt),S(zt) of the proposed solution
takes the functional form

F (x, y; η, α, β, δ) = η +
α1

1 + α3e−α2x
+

β1
1 + β3e−β2y

+

+
δ1

1 + δ3xe−δ2xx + δ3ye−δ2yy + (1− δ4)δ3xδ3ye−δ2xx−δ2yy
,

where α = [α1, α2, α3]
′, β = [β1, β2, β3]

′ and δ = [δ1, δ2x, δ3x, δ2y, δ3y, δ4].
We need to compute

E [F (x′, y′; η, α, β, δ)|x, y] =
∫ +∞

−∞

∫ +∞

−∞
F (x′, y′; η, α, β, δ)p(x′, y′|x, y; ρx, ρy, κ) dx′dy′,

where x′ = ρxx+ εx and y′ = ρyy + εy, 0 ≤ ρx ≤ 1, 0 ≤ ρy ≤ 1, and εx and εy are bivariate
normal with zero mean, unit variance and correlation coefficient κ.

Following Maragakis et al. (2008), we can write

E
[

α1

1 + α3e−α2x′

∣∣∣∣x, y] ≈ α1

1 + α3e−a2x

E
[

β1
1 + β3e−β2y′

∣∣∣∣x, y] ≈ β1
1 + β3e−b2y

,

where

a2 =
ρx√
1
α2
2
+ π

8

(64)

b2 =
ρy√
1
β2
2
+ π

8

. (65)

Next, we need to approximate

G(x, y; δ2x, δ3x, δ2y, δ3y, δ4, ρx, ρy, κ) = (66)∫ +∞

−∞

∫ +∞

−∞
h(x′, y′)p(x′, y′|x, y; ρx, ρy, κ) dx′dy′, (67)

where h(x′, y′) =
(

1

1+δ3xe−δ2xx′+δ3ye
−δ2yy′+(1−δ4)δ3xδ3ye

−δ2xx′−δ2yy′

)
, with

H(x, y; d2x, d3x, d2y, d3y, d4) =
1

1 + d3xe−d2xx + d3ye−d2yy + (1− d4)d3xd3ye−d2xx−d2yy
,
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where

d2x =
ρx√
1
δ22x

+ π
8

d2y =
ρx√
1
δ22y

+ π
8

d3x = δ3x

d3y = δ3y

are obtained by using the approach in Maragakis et al. (2008) to (67) in the limits x = ∞
and y = ∞.

To find d4 we need the following results with respect to the bivariate logistic function
given by

F̃ (x, y; δ2x, δ2y, δ4) =
1

1 + e−δ2xx + e−δ2yy + (1− δ4)e−δ2x−δ2y
:

f̃xy(0, 0; δ2x, δ2y, δ4) =
∂2

∂x∂y
F̃ (x, y; δ2x, δ2y, δ4)

∣∣∣∣
x=y=0

= δ2xδ2y
4− 3δ4 + δ24
(4− δ4)3

f̃x(0; δ2x) =
∂

∂x
F̃ (x,∞; δ2x, δ2y, δ4)

∣∣∣∣
x=0

=
δ2x
4

f̃y(0; δ2y) =
∂

∂y
F̃ (∞, y; δ2x, δ2y, δ4)

∣∣∣∣
y=0

=
δ2y
4
.

To conduct the approximation, it is necessary to approximate f̃xy(x, y; δ2x, δ2y, δ4) with a
bivariate normal density function

p(x, y; σx, σy, κxy) =
1

2π

1

σxσy
√

1− κxy
exp

(
− 1

2
√

1− κ2xy

(
x2

σ2
x

+
y2

σ2
y

− 2
κxyxy

σxσy

))

whose variances and correlation coefficient are chosen such that both functions coincide at
the origin:

f̃xy(0, 0; δ2x, δ2y, δ4) = δ2xδ2y
4− 3δ4 + δ24
(4− δ4)3

=
1

2π

1

σxσy
√
1− κxy

f̃x(0; δ2x) =
δ2x
4

=
1√
2π

1

σx

f̃y(0; δ2y) =
δ2y
4

=
1√
2π

1

σy
.

These conditions yield

σx =
1

δ2x

√
8

π
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σy =
1

δ2y

√
8

π

κxy =

√
1− 1

256

(4− δ4)6

(4− 3δ4 + δ24)
2
.

A feature of H(x, y; δ2x, d3x, δ2y, d3y, d4) is

∂2

∂x∂y
H(x, y; δ2x, d3x, δ2y, d3y, d4)

∣∣
x=ln(δ3x)/d2x,y=ln(δ3y)/d2y

= d2xd2y
4− 3d4 + d24
(4− d4)3

.

Let

F̂ (x, y; δ2x, δ3x, δ2y, δ3y, δ4) =
1

1 + δ3xe−δ2xx + δ3ye−δ2yy + (1− δ4)δ3xδ3ye−δ2xx−δ2yy
.

Then, d4 is chosen to satisfy

∂2

∂x∂y
H(x, y; δ2x, d3x, δ2y, d3y, d4)|x=x0h,y=y0h

=

∂2

∂x∂y
G(x, y; δ2x, δ3x, δ2y, δ3y, δ4, ρx, ρy, κ)|x=x0g ,y=y0g

,

where x0h = ln(δ3x)/d2x and y0h = ln(δ3y)/d2y, and x0g = ln(δ3x)/δ2x and y0g = ln(δ3x)/δ2x.
That is,

d2xd2y
4− 3d4 + d24
(4− d4)3

=

=
∂2

∂x∂y

[∫ +∞

−∞

∫ +∞

−∞
F̂ (x′, y′; δ2x, δ3x, δ2y, δ3y, δ4)p(x

′, y′|x, y; ρx, ρy, κ) dx′dy′
]
x=x0g ,y=y0g

=
∂2

∂x∂y

[∫ +∞

−∞

∫ +∞

−∞
F̂ (ρxx+ εx, ρyy + εy; δ2x, δ3x, δ2y, δ3y, δ4)p(εx, εy;κ) dεxdεy

]
x=x0g ,y=y0g

= ρxρy

∫ +∞

−∞

∫ +∞

−∞
f̃xy(εx, εy; δ2x, δ2y, δ4)p(εx, εy;κ) dεxdεy

≈ ρxρy

∫ +∞

−∞

∫ +∞

−∞
p(εx, εy; σx, σy, κxy)p(εx, εy;κ) dεxdεy, (68)

where

p(εx, εy;σx, σy, κxy) =

(2π)−1
(
σ2
xσ

2
y(1− κ2xy)

)−1/2
exp

(
− 1

2
√
1− κ2xy

(
ε2x
σ2
x

+
ε2y
σ2
y

− 2
κxyεxεy
σxσy

))

p(εx, εy;κ) = (2π)−1(1− κ2)−1/2 exp

(
− 1

2
√
1− κ2

(ε2x + ε2y − 2κεxεy)

)
.
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The RHS of (68) can be written as

ρxρy(2π)
−2
(
σ2
xσ

2
y(1− κ2)(1− κ2xy)

)−1/2
∫

exp

(
−1

2
ε′Aε

)
dε,

where ε = (εx, εy)
′, and

A =

[
σ2
x κxyσxσy

κxyσxσy σ2
y

]−1

+

[
1 κ
κ 1

]−1

.

The gaussian integral yields∫
exp

(
−1

2
ε′Aε

)
dε = 2π(det(A))−1/2

= 2π

[
1− κ2 − 2κκxyσxσy + σ2

x + σ2
y + (1− κ2xy)σ

2
xσ

2
y

(1− κ2)(1− κ2xy)σ
2
xσ

2
y

]−1/2

.

Hence, the RHS of (68) is

ρxρy(2π)
−1
[
1− κ2 − 2κκxyσxσy + σ2

x + σ2
y + (1− κ2xy)σ

2
xσ

2
y

]−1/2
.

Since d2x, d2y, σx, σy and κxy are functions of δ2x, δ2y and δ4, (68) allows finding d4 using

4− 3d4 + d24
(4− d4)3

≈ ρxρy

2πd2xd2x
√
1− κ2 − 2κκxyσxσy + σ2

x + σ2
y + (1− κ2xy)σ

2
xσ

2
y

. (69)

Let g(d4) denote the function on the LHS of (69). Figure 7 shows g(d4).

Figure 7: g(d4)
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With all the parameters found, we can write

E [F (x′, y′; η, α, β, δ)|x, y] ≈ η +
α1

1 + α3e−a2x
+

β1
1 + β3e−b2y

+

+
δ1

1 + δ3xe−d2xx + δ3ye−d2yy + (1− d4)δ3xδ3ye−d2xx−d2yy
.

F The Likelihood Function of the Simultaneous Equa-

tions Model with Time-Varying Coefficients and Stochas-

tic Volatility

Notice that the joint density function of yi,t and vi, t, conditional on yi,t−1, for i = 1, 2,
and the latent factors and stochastic volatility (these last two omitted from the density
functions below) can be written as

p (yi,t,vi,t|yi,t−1,Θyi) = py (yi,t|yi,t−1,vi,t,Θyi ,Θvi
) pv(vi,t|Θvi

)

= py (yi,t|yi,t−1,xi,t,vi,t,Θyi ,Θxi
) px(xi,t|wi,t,Θxi

),

where, adding the conditionality on latent factors and stochastic volatility,

y1,t|y1,t−1,x1,t,v1,t, z
m
t , σR,t,Θy1 ,Θx1 ∼ N

(
ρRy1,t−1 + (1− ρR)x1,tα(zmt ) + σR,t

(
v1,tδ1 + eRt

)
, 1− δ′1Ψ1δ1

)
y2,t|y2,t−1,x2,t,v2,t, z

f
t , στ,t,Θy2 ,Θx2 ∼ N

(
ρτy2,t−1 + (1− ρτ )x2,tγ(z

f
t ) + στ,t (v2,tδ2 + eτt ) , 1− δ′2Ψ2δ2

)
xi,t|wi,t,Θxi ∼ N (wi,tδi,Ψi) , for i = 1, 2.

Let Yi,t = {yi,s}ts=1, and be Xi,t and Vi,t be defined in a similar fashion. Let Zk,t = {zks}ts=1

for k = m, f and let Hj,t = {σj,s}ts=1 for j = R, τ . Then, the conditional log-likelihood
functions of Y1,T given Y1,T−1, X1,t, V1,t, Zm,t, HR,t, and of Y2,T given Y2,T−1, X2,t, V2,t,
Zf,t, Hτ,t are, respectively,

LT

(
Θy1(Θ̂x1)

)
=

T∑
t=1

lt

(
Θy1(Θ̂x1)

)
,

LT

(
Θy2(Θ̂x2)

)
=

T∑
t=1

lt

(
Θy2(Θ̂x2)

)
,

where

Θ̂xi
= max

Θxi

T∑
t=1

log (px(xi,t|wi,t,Θxi
))

is the maximum likelihood estimator of Θxi
for i = 1, 2, and

lt

(
Θy1(Θ̂x1)

)
= log

(
py

(
y1,t|y1,t−1,x1,t,v1,t, z

m
t , σR,t,Θy1 , Θ̂x1

))
,

lt

(
Θy2(Θ̂x2)

)
= log

(
py

(
y2,t|y2,t−1,x2,t,v2,t, z

f
t , στ,t,Θy2 , Θ̂x2

))
.
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This is the two-stage conditional maximum likelihood estimation procedure suggested by
Vuong (1984). Let Xt = ∪2

i=1Xi,t, and let Vt be defined in a similar way. Let Zt = {zs}ts=1

and Ht = {hs}ts=1. The log-likelihood function of YT given YT−1,XT ,VT ,ZT ,HT is

LT

(
Θy(Θ̂x)

)
=

T∑
t=1

lt

(
Θy(Θ̂x)

)
,

where
lt

(
Θy(Θ̂x)

)
= lt

(
Θy1(Θ̂x1)

)
+ lt

(
Θy2(Θ̂x2)

)
,

and Θ̂x = Θ̂x1 ∪ Θ̂x2 .

G Bayesian Estimation

Let py(yt|Xt,Vt,Zt,Ht,Θy) denote the conditional density of yt given Xt, Vt, Zt, Ht

and Θy. Let pz(zt|zt−1,Θz) denote the conditional density of zt given zt−1 and Θz. Let
ph(ht|ht−1,Θh) denote the conditional density of ht given ht−1 and Θh. Define Z∗

t+1 =
{zs}Ts=t+1 and H∗

t+1 = {hs}Ts=t+1. Under this setup, the joint density of ZT , HT and YT

given XT , Vt, Θz, Θh and Θy is given by

p(ZT ,HT ,YT |XT ,VT ,Θz ,Θh,Θy) = pz(ZT |XT ,VT ,Θz)ph(HT |XT ,VT ,ZT ,Θh)py(YT |XT ,VT ,ZT ,HT ,Θy)

= pz(ZT |Θz)ph(HT |Θh)py(YT |XT ,VT ,ZT ,HT ,Θy),

where the last equality follows from the Markov property of {zs}ts=0 and {hs}ts=0. Then, if
z0 and h0 are assumed to be stochastic,

pz(ZT |Θz) = pz(z0|Θz)
T∏
t=1

pz(zt|zt−1,Θz),

ph(HT |Θh) = ph(h0|Θh)
T∏
t=1

ph(ht|ht−1,Θh),

py(YT |XT ,VT ,ZT ,HT ,Θy) =
T∏
t=1

py(yt|Xt,Vt,Zt,Ht,Θy),

p(zt|Zt−1,Z
∗
t+1,YT ,XT ,VT ,HT ,Θy,Θz,Θh) ∝ (70){

py(yt|Xt,Vt,Zt,Ht,Θy)pz(zt|zt−1,Θz)pz(zt+1|zt,Θz), if t ≤ T − 1

py(yt|Xt,Vt,Zt,Ht,Θy)pz(zt|zt−1,Θz), if t = T,

p(ht|Ht−1,H
∗
t+1,YT ,XT ,VT ,ZT ,Θy,Θz,Θh) ∝ (71){

py(yt|Xt,Vt,Zt,Ht,Θy)ph(ht|ht−1,Θh)ph(ht+1|ht,Θh), if t ≤ T − 1

py(yt|Xt,Vt,Zt,Ht,Θy)ph(ht|ht−1,Θh), if t = T,
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p(Θy|YT ,XT ,VT ,ZT ,HT ,Θz,Θh) ∝ py(YT |XT ,ZT ,HT ,Θy)pΘy(Θy), (72)

p(Θz|YT ,XT ,VT ,ZT ,Θy,Θh) ∝ pz(ZT |Θz)pΘz(Θz), (73)

p(Θh|YT ,XT ,VT ,HT ,Θy,Θz) ∝ ph(HT |Θh)pΘh
(Θh), (74)

where pΘy(Θy), pΘz(Θz) and pΘh
(Θh) are the prior densities of Θy, Θz and Θh, respectively.

From the posterior densities (70)-(74), the smoothing random draws are generated as
follows:

Step 0. Take appropriate initial values for Θy, Θz, {zt}Tt=0, Θh and {ht}Tt=0.
10

Step 1. Generate a random draw of zt from p(zt|Zt−1,Z
∗
t+1,YT ,XT ,VT ,HT ,Θy,Θz,Θh)

for t = 1, 2, . . . , T .

Draw z
(i)
t using the normal proposal density

z
(i)
t ∼ N(z

(i−1)
t , cKz

t )

where Kz
t is the filtered variance-covariance matrix of the random coefficients of a

random-coefficient specification of the policy rules, and c is a proper scale coefficient.
The algorithm accepts z

(i)
t with probability r:

r = min

 p
(
z
(i)
t |Z(i−1)

t−1 ,Z
∗(i−1)
t+1 ,YT ,XT ,VT ,H

(i−1)
T ,Θ

(i−1)
y ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
z
(i−1)
t |Z(i−1)

t−1 ,Z
∗(i−1)
t+1 ,YT ,XT ,VT ,H

(i−1)
T ,Θ

(i−1)
y ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1
 .

Step 2. Generate a random draw of Θy from p(Θy|YT ,XT ,VT ,ZT ,HT ,Θz,Θh).

(a) Partition Θy1 = Θy1.1 ∪ Θy1.2 , where Θy1.1 = ρR and Θy1.2 = {απ
0 , α

π
1 , α

π
2 , α

π
3 ,

αy
0, α

y
1, α

y
2, α

y
3}. Partition Θy2 = Θy2.1 ∪ Θy2.2 , where Θy2.1 = ρτ and Θy2.2 =

{γb0, γb1, γb2, γb3, γ
y
0 , γ

y
1 , γ

y
2 , γ

y
3}.

(b) Generate a random draw of Θ
(i)
y1 sequentially, as follows:

i. Generate a random draw of Θ
(i)
y1.1 using a Beta proposal density (expressed in

terms of mean and standard deviation)

ρ
(i)
R ∼ Beta(ρ̂R, σ̂ρ̂R)

where ρ̂R is the generalized least squares estimate of ρR in a constant-coefficient

version of (41) given H
(i−1)
T , and σ̂ρ̂R is its generalized least squares standard

10The initial latent factors, {zt}Tt=0, are smoothed estimates of a random coefficients model of the policy
rules with constant volatility. The initial volatility processes, {ht}Tt=0, are smoothed estimates of a stochastic
volatility model with constant coefficients. The initial values of the parameters of the policy rules, Θy, are
obtained from the maximization of the likelihood function given the initial processes for the latent factors
and stochastic volatilities. The initial values for Θz come from a least-squares regression of current against
lagged initial latent factors. The initial values for Θh come from a least-squares regression of current against
lagged initial log stochastic volatilities.
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error. The algorithm accepts Θ
(i)
y1.1 with probability r:

r = min

 p
(
Θ

(i)
y1.1 ∪Θ

(i−1)
y1.2 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i−1)
y1.1 ∪Θ

(i−1)
y1.2 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) g(ρ
(i−1)
R )

g(ρ
(i)
R )

, 1

 ,

where g(·) is the proposal density.

ii. Generate a random draw of a transformation of Θ
(i)
y1.2 , Θ̃

(i)
y1.2 , using the normal

proposal density
Θ̃(i)

y1.2
∼ N(Θ̃(i−1)

y1.2
, cSML),

where SML is the variance-covariance matrix of the maximum likelihood es-
timator of Θ̃y1.2 given the initial latent factors and stochastic volatilities, and
c is a scale coefficient. The algorithm accepts Θi

y1.2
with probability r:

r = min

 p
(
Θ

(i)
y1.1 ∪Θ

(i)
y1.2 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i)
y1.1 ∪Θ

(i−1)
y1.2 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1
 .

(c) Generate a random draw of Θ
(i)
y2 sequentially, as follows:

i. Generate a random draw Θ
(i)
y2.1 using a Beta proposal density (expressed in

terms of mean and standard deviation)

ρ(i)τ ∼ Beta(ρ̂τ , σ̂ρ̂τ ),

where ρ̂τ is the generalized least squares estimate of ρτ in a constant-coefficient

version of (43) given H
(i−1)
T , and σ̂ρ̂τ is its generalized least squares standard

error. The algorithm accepts Θ
(i)
y2.1 with probability r:

r = min

 p
(
Θ

(i)
y2.1 ∪Θ

(i−1)
y2.2 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i−1)
y2.1 ∪Θ

(i−1)
y2.2 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) g(ρ
(i−1)
τ )

g(ρ
(i)
τ )

, 1

 ,

where g(·) is the proposal density.

ii. Generate a random draw of a transformation of Θ
(i)
y2.2 , Θ̃

(i)
y2.2 , using the normal

proposal density
Θ̃(i)

y2.2
∼ N(Θ̃(i−1)

y2.2
, cSML),

where SML is the variance-covariance matrix of the maximum likelihood es-
timator of Θ̃y2.2 given the initial latent factors and stochastic volatilities, and
c is a scale coefficient. The algorithm accepts Θi

y2.2
with probability r:

r = min

 p
(
Θ

(i)
y2.1 ∪Θ

(i)
y2.2 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i)
y2.1 ∪Θ

(i−1)
y2.2 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1
 .

Step 3. Generate a random draw of ht from p(ht|Ht−1,H
∗
t+1,YT ,XT ,VT ,ZT ,Θy,Θz,Θh)
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for t = 1, 2, . . . , T . Draw h
(i)
t using the normal proposal density

h
(i)
t ∼ N(h

(i−1)
t , cKh

t )

where Kh
t is the filtered variance-covariance matrix of the volatility of a constant-

coefficient specification of the policy rules, and c is a proper scale coefficient. The
algorithm accepts h

(i)
t with probability r:

r = min

 p
(
h
(i)
t |H(i−1)

t−1 ,H
∗(i−1)
t+1 ,YT ,XT ,VT ,Z

(i)
T ,Θ

(i)
y ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
h
(i−1)
t |H(i−1)

t−1 ,H
∗(i−1)
t+1 ,YT ,XT ,VT ,Z

(i)
T ,Θ

(i)
y ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1
 .

Step 4. Generate a random draw of Θz from p(Θz|YT ,XT ,VT ,ZT ,Θy,Θh) sequentially,
as follows:

(a) Partition Θz = Θz1 ∪Θz2 where Θz1 = {ρzm , ρzf} and Θz2 = {κ}.

(b) Generate a random draw {ρ(i)zm , ρ
(i)

zf
} using two independent Beta proposal densities

(expressed in terms of means and standard deviations)

ρ
(i)
zm ∼ Beta(ρ̂zm , σ̂ρ̂zm )

ρ
(i)

zf
∼ Beta(ρ̂zm , σ̂ρ̂

zf
),

where ρ̂zm is the ordinary least squares estimate of ρzm in (37) using {zm(i)
t }Tt=1,

and σ̂ρ̂zm is its standard error. The same applies for ρ̂zf and σ̂ρ̂
zf
, which come

from the estimation of (38) using {zf(i)t }Tt=1. The algorithm accepts {ρ(i)zm , ρ
(i)

zf
}

with probability r:

r = min

 p
(
Θ

(i)
z1 ∪Θ

(i−1)
z2 |YT ,XT ,VT ,Z

(i)
T ,Θy,Θh

)
p
(
Θ

(i−1)
z1 ∪Θ

(i−1)
z2 |YT ,XT ,VT ,Z

(i)
T ,Θy,Θh

) g(ρ(i−1)
zm , ρ

(i−1)

zf
)

g(ρ
(i)
zm , ρ

(i)

zf
)

, 1

 .

(c) Generate a random draw κ(i) using a four-parameter Beta proposal density with
range on [-1,1] (expressed in terms of mean and standard deviation)

κ(i) ∼ TransformedBeta(κ̂, (1− κ̂2)/
√
n− 1),

where κ̂ is the correlation coefficient between the residuals of equations (37) and

(38) using as estimated coefficients ρ
(i)
zm and ρ

(i)

zf
where corresponds. The algorithm

accepts κ(i) with probability r:

r = min

 p
(
Θ

(i)
z1 ∪Θ

(i)
z2 |YT ,XT ,VT ,Z

(i)
T ,Θy,Θh

)
p
(
Θ

(i)
z1 ∪Θ

(i−1)
z2 |YT ,XT ,VT ,Z

(i)
T ,Θy,Θh

) g(κ(i−1))

g(κ(i))
, 1

 .
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Step 5. Generate a random draw of Θh from p(Θh|YT ,XT ,VT ,HT ,Θy,Θz).

(a) Partition Θh = Θh1∪Θh2 where Θh1 = {lnσR, ρσR
, lnστ , ρστ} and Θh2 = {ηR, ητ}.

(b) Generate a random draw {lnσ(i)
R , ρ

(i)
σR , lnσ

(i)
τ , ρ

(i)
στ} using the independent proposal

densities (expressed in terms of means and standard deviations)

ρ(i)σR
∼ Beta(ρ̂σR

, σ̂ρ̂σR )

ρ(i)στ
∼ Beta(ρ̂στ , σ̂ρ̂στ )

c
(i)
R ∼ N (ĉR, σ̂cR)

c(i)τ ∼ N (ĉτ , σ̂cτ ) ,

with ln σ
(i)
R = c

(i)
R /(1− ρ

(i)
σR) and ln σ

(i)
τ = c

(i)
τ /(1− ρ

(i)
στ ), where ĉR, ρ̂σR

are the least

squares estimates of (1− ρσR
) ln σR and ρσR

in (39), respectively, using {lnσ(i)
R,t},

and where ĉτ , ρ̂στ are obtained similarly from (40) using {lnσ(i)
τ,t}. The algorithm

accepts {lnσ(i)
R , ρ

(i)
σR , lnσ

(i)
τ , ρ

(i)
στ} with probability r:

r = min

 p
(
Θ

(i)
h1 ∪Θ

(i−1)
h2 |YT ,XT ,VT ,H

(i)
T ,Θy,Θz

)
p
(
Θ

(i−1)
h1 ∪Θ

(i−1)
h2 |YT ,XT ,VT ,H

(i)
T ,Θy,Θz

) g(lnσ
(i−1)
R , ρ

(i−1)
σR , lnσ

(i−1)
τ , ρ

(i−1)
στ )

g(lnσ
(i)
R , ρ

(i)
σR , lnσ

(i)
τ , ρ

(i)
στ )

, 1

 .

(c) Generate a random draw {η(i)R , η
(i)
τ } using the inverted gamma proposal densities

η
(i)
R ∼ IG(ξ̃′

R(i)
ξ̃R(i), df)

η(i)τ ∼ IG(ξ̃′
τ(i)
ξ̃τ(i), df),

where ξ̃
R(i)
t = ln σ

(i)
R,t − (1 − ρ

(i)
σR) ln σ

(i)
R − ρ

(i)
σR lnσ

(i)
R,t−1 and ξ̃

τ(i)
t = ln σ

(i)
τ,t − (1 −

ρ
(i)
στ ) ln σ

(i)
τ − ρ

(i)
στ lnσ

(i)
τ,t−1 are residuals, and ξ̃R(i) and ξ̃τ(i) are vectors that stack

the respective residuals. The algorithm accepts {η(i)R , η
(i)
τ } with probability r:

r = min

 p
(
Θ

(i)
h1 ∪Θ

(i)
h2|YT ,XT ,VT ,H

(i)
T ,Θy,Θz

)
p
(
Θ

(i)
h1 ∪Θ

(i−1)
h2 |YT ,XT ,VT ,H

(i)
T ,Θy,Θz

) g(η(i−1)
R , η

(i−1)
τ )

g(η
(i)
R , η

(i)
τ )

, 1

 .

Step 6. Repeat steps 1-4 N times to obtain N random draws of ZT , HT , Θy, Θz and
Θh.

In steps (ii)-(vi) the random draws of Z, H, ΘY , Θz and Θh are updated. This sampling
method is referred to as the Gibbs sampler. To generate the random draws of zt, ht for
t = 1, 2, . . . , T , Θy, Θz and Θh, I use the Metropolis-Hastings (M-H) algorithm. That is, the
Gibbs sampler and the M-H algorithm are combined to obtain the smoothing random draws
from the state-space model. Appendix G shows the choice of prior densities that determine
the posterior densities (72)-(73).
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H Markov Chain Plots

Figure 8: Markov Chain Policy Rule Parameters

0 1000 2000 3000 4000 5000
0

1

2

α
0
π

0 1000 2000 3000 4000 5000
0

2

4

α
1
π

0 1000 2000 3000 4000 5000
0

50

α
2
π

0 1000 2000 3000 4000 5000
0

1

2
αy

0 1000 2000 3000 4000 5000
−0.1

0

0.1

γ
0
b

0 1000 2000 3000 4000 5000
0

0.2

0.4

γ
1
b

0 1000 2000 3000 4000 5000
0

50

γ
2
b

0 1000 2000 3000 4000 5000
0

1

2
γy

0 1000 2000 3000 4000 5000
0.8

0.9

1

ρ
R

0 1000 2000 3000 4000 5000
0.8

0.9

1

ρτ

48



Figure 9: Markov Chain Parameters of Latent Factors and Stochastic Volatil-
ity
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