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Abstract

Using Chilean manufacturing plants data, we find: (1) the elasticity of substitu-
tion between capital and skilled labor is lower than the elasticity of substitution
between capital and unskilled labor, (2) the higher the technological component of
the capital stock the larger the size of complementarity between capital and skilled
labor, and (3) significant heterogeneity across group of industries. Our findings
allow reconciling the observed rise in the skill premium with trade liberalization in
developing countries. Additionally, they show that capital, as an aggregate input,
may under(over) state the complementarity between labor and the type of capital
these workers actually use.
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I. Introduction

Since Griliches (1969) first stated that capital is less substitutable for skilled labor than for
unskilled labor, several studies have attempted to test this hypothesis. Although some of
the literature on this topic supports the Griliches (1969) hypothesis, the evidence has been
almost exclusively concentrated in developed countries. Additionally, since most of the
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related articles regard capital as an aggregate input and do not consider that there are also
differences in the complexity of capital, they may under(over)state the complementarity
between skilled labor and the type of capital that these workers actually use.

This paper presents an input function model with skilled labor, unskilled labor, techno-
logical capital, and non-technological capital as production factors. Using cross-sectional
data from 4,500 Chilean manufacturing plants, we disaggregate the stock of capital, defin-
ing four different specifications for the technological stock of capital. We find that the
elasticity of substitution between capital and skilled labor is lower than the elasticity of
substitution between capital and unskilled labor, suporting the Griliches (1969) hypoth-
esis in a developing country.

The existence of capital-skill complementarity can help us understand growing earnings
inequality in developing countries. Traditional trade theories predict that as economies
open to international trade, developed countries will specialize in the production of goods
that are intensive in skilled labor, while developing countries will produce goods that
are intensive in unskilled labor. This prediction implies that the relative wage of skilled
workers should increase in developed countries but decrease in developing countries as
economies open to international trade.

However, the opposite phenomenon is observed in the data. As documented by Parro
(forthcoming), the skill premium has increased in several developing countries. Gallego
(2011) shows that the rise in the skill premium has also been present in the Chilean labor
market. The latter contradicts the main prediction of the standard Heckscher-Ohlin model
of trade. Therefore, it is difficult to reconcile the observed rise in the skill premium with
the trade liberalization that most developing countries have experienced during recent
decades.

Nevertheless, when capital-skill complementarity exists, there is an additional force
balancing the effect of the Stolper-Samuelson theorem. Trade openness may stimulate
investment in a developing country that opens its economy, since an important portion of
equipment in that country must be imported rather than be produced by the country’s
own technology (e.g., computers). Therefore, if the capital-skill complementarity hypoth-
esis holds, trade openness may increase the relative demand for more educated workers
and push the skill premium up in those economies. For instance, Parro (forthcoming)
shows evidence that the introduction of trade in capital goods, together with capital-skill
complementarity, generates a skill-biased trade effect and thus allows the possibility of an
important positive effect on the skill premium.

We also find that the higher the technological component of the capital stock the larger
the size of complementarity between capital and skilled labor. Our result suggests that as
the composition of imported capital moves toward more technological capital, the expected
rise in the skill premium might be higher. This issue has generally been overlooked
by the existing literature. However, our finding is important since this literature may
understate the impact of capital-skill complementarity on the skill premium in countries
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where the accumulation of technological capital is increasing rapidly. This result may
also be important for understanding not only the evolution of the skill premium in a
particular economy but also cross-sectional variations of the skill premium within a group
of countries at some moment in time.

Additionally, in most of our specifications, the elasticity of substitution between non-
technological capital and skilled labor is larger than the elasticity of substitution between
technological capital and unskilled labor; e.g., a machine can more easily substitute for
skilled workers than can software for unskilled workers. We denote this result as the
compensation effect, since it abates the unskilled labor demand decrease produced by the
capital accumulation when capital-skill complementarity holds.

Although it is more intuitive to expect that software is more substitutable for unskilled
workers than a machine is for skilled workers, our result can be explained by the idea that
the productivity gap between skilled and unskilled workers using non-technological capital
might not be large. For instance, skilled workers are not much more productive than
unskilled workers when driving trucks or operating a machine that performs routine tasks.
Therefore, the elasticity of substitution between non-technological capital and skilled labor
is smaller but close to the elasticity of substitution between non-technological capital and
unskilled labor. This phenomenon, combined with the fact that non-technological capital
substitutes for more workers than technological capital does (since machines can usually
replace a large number of unskilled workers in some industrial processes), explains why
the compensation effect is observed in the data. This effect is stronger when we consider
more high-tech definitions of technological capital. The reason behind this result is that
the elasticity of substitution between technological capital and unskilled labor strongly
decreases as soon as technological capital becomes more high-tech.

Another interesting finding from our results is that there is significant heterogeneity
across groups of industries in our data. Although the size of capital-skill complementarity
for some groups of industries in our database is similar to that found in developed coun-
tries, there are other groups of industries in which capital-skill complementarity is much
larger than that reported in the literature.

A. Related literature

Capital-skill complementarity has been extensively analyzed for developed countries.1

Nevertheless, there have been very few attempts, such as Yasar and Paul (2008) and
Akay and Yuksel (2009), to verify whether the capital-skill complementarity hypothesis
holds for developing countries.

Krusell et al. (2000) find that the elasticity of substitution between capital equipment
and unskilled labor is higher than the elasticity of substitution between capital equipment

1See, for instance, Bergstrom and Panas (1992) and Krusell et al. (2000).
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and skilled labor. Using a U.S. time series between 1963 and 1992,2 they find positive elas-
ticity of substitution between capital equipment and labor for both skilled and unskilled
labor; however, the estimated elasticity of substitution between capital and unskilled la-
bor is around 2.5 times that of capital and skilled labor. These results, though, have
been criticized by Polgreen and Silos (2008), who state that the elasticity of substitution
between capital equipment and unskilled labor is understated, as Krusell et al. (2000) use
a capital growth that “implies very rapid growth in the stock of capital equipment.”

Using a panel of countries, Duffy, Papageorgiou, and Perez-Sebastian (2004) find weak
evidence of capital-skill complementarity. In some of their specifications, they even find
the surprising result that the hypothesis of capital-skill complementarity is more sustain-
able with lower thresholds for the definition of skilled labor.3

Papageorgiou and Chmelarova (2005) find no evidence of capital-skill complementarity
in OECD countries. They state that capital-skill complementarity is relatively more
pronounced in countries with an initial medium income and a low literacy rate. They use
school attainment to construct the skilled and unskilled labor variables.

Bartel, Ichniowski, and Shaw (2007) posit that IT machines require operators with
engineering, programming, and problem-solving skills. Therefore, technological capital is
related more to specific skills than to school attainment. This point is consistent with
Krueger (1993) and Autor, Katz, and Kearney (2006), who find that computerization has
increased the wages of workers who perform non-routine tasks relative to the wages of
workers whose jobs involve routine tasks.4

Goldin and Katz (1998) argue that capital-skill complementarity may hold for some
industries but not for others. Bergstrom and Panas (1992), using a panel of Swedish
manufacturing industries, find that capital-skill complementarity holds most of the time.
However, the size of capital-skill complementarity that they find is different across indus-
tries. It is interesting to note that they find a large capital-skill complementarity size in
industries that manufacture food and beverages, wood, and nonmetallic mineral products.
In our results, however, capital-skill complementarity in this group of industries does not
even hold in some specifications.

Data sets from undeveloped economies lack of information on disaggregated measures
of capital; e.g., software and computers. Akay and Yuksel (2009), for instance, define
machines, tools, and other equipment as capital stock. Using panel data from Ghanaian
manufacturing firms, they find that the elasticity of substitution between capital and

2Krusell et al. (2000) construct the stock of capital using Gordon (1990) data.
3Duffy et al. (2004) work with five thresholds to define skilled labor: (1) “workers who have attained

some postsecondary education,” (2) “workers who have completed secondary education,” (3) “workers
who have attained some secondary education,” (4) “workers who have completed primary education,”
and (5) “workers who have attained some primary education.”

4Krueger (1993) finds that workers who use computers earn 10% to 15% higher wages than those who
do not use computers.
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unskilled labor is slightly higher than the elasticity of substitution between capital and
skilled labor. This evidence of capital-skill complementarity in Ghana is weaker than that
found by Krusell et al. (2000).

If we take into account non-technological capital only, our findings show a similar result
to that found by Akay and Yuksel (2009).5 However, when we consider technological
capital, our results suggest strong evidence of capital-skill complementarity, supporting
the idea that the composition of capital matters. We find that for the specification with
the strictest definition of technological capital, the elasticity of substitution between non-
technological capital and skilled labor is 0.68, while the elasticity of substitution between
technological capital and skilled labor is -0.08; therefore, technological capital and skilled
labor seem to be complements in our data.

The rest of the paper is organized as follows. Section II. presents the econometric model
and the construction of the elasticities of substitution. Section III. describes the data that
we are working with. Section IV. shows our results and a check of robustness supporting
the evidence of capital-skill complementarity and the compensation effect in most of our
specifications. Section V. concludes.

II. Econometric Model

A. Translog input function

In order to answer our main question, we have to estimate the elasticities of substitution
between the different labor and capital categories.

We first define a constant returns to scale and Hicks-neutral input function F (L, S, T,K),
where L denotes the working hours of unskilled workers, S the working hours of skilled
workers, T technological capital, and K non-technological capital. Following Berndt and
Christensen (1973) and Berndt and Christensen (1974), we assume that we can charac-
terize the input function in a translog form as

lnF = β0 + βL lnL+ βS lnS + βT lnT + βK lnK +
1

2
γLL(lnL)2 + γLS lnL lnS

+γLT lnL lnT + γLK lnL lnK +
1

2
γSS(lnS)2 + γST lnS lnT + γSK lnS lnK

+
1

2
γTT (lnT )2 + γTK lnT lnK +

1

2
γKK(lnK)2.

We also assume that markets are competitive; thus, ∂F
∂L

= PL, ∂F
∂S

= PS, ∂F
∂T

= PT , and
∂F
∂K

= PK , where Pi denotes the price of input i relative to the price of the aggregate input

5Akay and Yuksel (2009) find the ratio of the substitution elasticity of capital and unskilled labor to
that of capital and skilled labor to be 1.1, while Krusell et al. (2000) find this ratio to be 2.5. In our
results, the ratio is 1.2.
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function F . Knowing that ∂ lnF
∂ ln i

= Pii
F

, the cost share of input i (si), we have

sL = βL + γLL lnL+ γLS lnS + γLT lnT + γLK lnK,

sS = βS + γLS lnL+ γSS lnS + γST lnT + γSK lnK,

sT = βT + γLT lnL+ γST lnS + γTT lnT + γTK lnK,

sK = βK + γLK lnL+ γSK lnS + γTK lnT + γKK lnK.

Since the cost shares must sum up to 1, we assume the additional restrictions that
γij = γji and

∑
j γij = 0, with j ∈ {L, S, T,K}. Imposing these restrictions, dividing the

inputs by K, and therefore dropping the last row and column of the system, we have the
factor shares used in the estimation given by

sL = βL + γLL ln
L

K
+ γLS ln

S

K
+ γLT ln

T

K
,

sS = βS + γLS ln
L

K
+ γSS ln

S

K
+ γST ln

T

K
, (1)

sT = βT + γLT ln
L

K
+ γST ln

S

K
+ γTT ln

T

K
.

We can now solve this system using seemingly unrelated regressions (SUR),6 defining

y
′

i =
[
sL sS sT

]
,

β
′
=
[
βL γLL γLS γLT βS γSS γST βT γTT

]
,

and

Xi =


1 ln L

K
ln S

K
ln T

K
0 0 0 0 0

0 0 ln L
K

0 1 ln S
K

ln T
K

0 0

0 0 0 ln L
K

0 0 ln S
K

1 ln T
K

 .
We can estimate β̂ as

β̂ = (X
′
(Ω⊗ IN)−1X)−1X

′
(Ω⊗ IN)−1y, (2)

with Ω as the variance-covariance matrix and IN an identity matrix of size N .

6Any deviation of the cost shares from the logarithmic marginal products is assumed to be the result
of errors in optimizing behavior. Therefore, we specify a classical additive disturbance for each of the
equations in (1).
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B. Elasticities of substitution

Once we have β̂, we can estimate input shares ŝi and compute elasticities of substitution
using Allen-Uzawa elasticities defined as

σ̂ij =
γ̂ij + ŝiŝj
ŝiŝj

, (3)

σ̂ii =
γ̂ii + ŝi

2 − ŝi
ŝi

2 .

We then use σ̂ij to test whether capital-skill complementarity holds. We define relative
capital-skill complementarity as σ̂zL > σ̂zS and absolute capital-skill complementarity as
σ̂zL > 0 > σ̂zS, ∀z ∈ {T,K}.

When disaggregating capital, we can also check the order of the elasticity of substitution
between non-technological capital and skilled labor (σ̂KS), and the elasticity of substitu-
tion between technological capital and unskilled labor (σ̂TL). If σ̂KS > σ̂TL (σ̂KS < σ̂TL),
we can argue that a machine is more (or less) substitutable for skilled workers than soft-
ware is for unskilled workers. We denote this as the compensation (or augmenting) effect.

Whenever capital-skill complementarity holds, there are two cases of analysis to check
whether we have the compensation effect (σ̂KS > σ̂TL) or the augmenting effect (σ̂KS <
σ̂TL). The first case assumes that σ̂TS > σ̂KL; i.e., the elasticity of substitution be-
tween technological capital and skilled labor is larger than the elasticity of substitution
between non-technological capital and unskilled labor. Figure 1 shows the relative order
of the elasticities of substitution, where the value increases toward the right-hand side.
Although we cannot compare σ̂KS with σ̂TL directly, capital-skill complementarity im-
plies that σ̂TL > σ̂TS and σ̂KL > σ̂KS. Therefore, σ̂TL is unambiguously larger than σ̂KS

(augmenting effect).

However, if we assume the second case, that σ̂TS < σ̂KL, both effects are possible, as
we can see in figure 2. By capital-skill complementarity, we know that σ̂KL > σ̂KS and
σ̂TL > σ̂TS; thus, the order between σ̂TL and σ̂KS is ambiguous. In this case, whether we
have the compensation effect or the augmenting effect depends on the distance of σ̂KL to
σ̂KS and to σ̂TL.

Since σ̂TS > σ̂KL means that software is more substitutable for skilled workers than
machines are for unskilled workers (a case very unlikely to occur), without loss of gener-
ality, our analysis focuses on the assumption that σ̂TS < σ̂KL. Figure 3 shows isoquants
of the four different input relations that we are interested in. Vertical axes denote the
type of capital, while horizontal axes denote the type of labor. By capital-skill comple-
mentarity, we know that σ̂KL > σ̂KS and σ̂TL > σ̂TS. The latter is the reason why the
isoquant in subfigure 3b (subfigure 3d) is more L-shaped than the isoquant in subfigure 3a
(subfigure 3c). From σ̂TS < σ̂KL, we also know that the isoquant in subfigure 3d is more
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L-shaped than the isoquant in subfigure 3a. What we do not know is whether the isoquant
in subfigure 3b is more or less L-shaped than the isoquant in subfigure 3c.

Whenever the isoquant shape in subfigure 3a is more (less) similar to the isoquant
shape in subfigure 3b than to that in subfigure 3c; i.e., σ̂KL > σ̂KS > σ̂TL (σ̂KL > σ̂TL >
σ̂KS), the compensation effect (augmenting effect) holds. We can carry out the equivalent
exercise stating that whenever the isoquant shape in subfigure 3d is more (less) similar
to the isoquant shape in subfigure 3c than to that in subfigure 3b; i.e., σ̂TS < σ̂TL < σ̂KS

(σ̂TS < σ̂KS < σ̂TL), the compensation effect (augmenting effect) holds.

Therefore, figure 3 indicates that the compensation effect (augmenting effect) holds
whenever horizontal differences are smaller (larger) than vertical differences. The intuition
behind this can be seen as a combination of two factors: the user-friendliness of the type
of capital, which determines the level of capital-skill complementarity, and the size of the
labor substitution generated by the type of capital.

It is reasonable to assume that a user-friendly machine would be used by a lower ratio
of skilled to unskilled workers than a very complex machine. Therefore, the more user-
friendly the capital input, the smaller the degree of capital-skill complementarity. If a
process uses user-friendly machines, but these machines can perform tasks that would
otherwise be performed by a large number of workers, we expect the compensation effect
to hold. On the contrary, if machines are complex to use and do not substitute for too
many workers, the augmenting effect is more likely to hold.

III. Data and Variables

To perform the empirical analysis, we use the Annual Chilean Survey of Manufacturers
(ENIA) from 2008. Conducted by the Chilean Institute of Statistics, the ENIA is an
annual census of manufacturing plants with 10 or more employees. ENIA data have been
used in many relevant studies, such as Tybout, de Melo, and Corbo (1991), Liu (1993),
Levinsohn (1999), Pavcnik (2002), and Levinsohn and Petrin (2003), among others.

The ENIA 2008 collected information from 4,675 manufacturing plants, providing us
with a representative database of the Chilean manufacturing sector. We focus our analysis
on the plants that are linked to a particular industry.7 Thus, we include 4,500 plants op-
erating in 124 industries identified by the International Standard Industrial Classification
(ISIC) at the four-digit level.8

The data retrieved from the ENIA 2008 include gross fixed assets, depreciation of gross

7We do not include plants without an ISIC industry classification or plants with negative values of
T and/or K, which occurs when plants sell their fixed assets (negative investment) and the last-period
capital stock discounted by depreciation is not large enough to compensate for the negative investment
(only 20 plants are in this situation).

8We use the classifications provided by the third revision of the ISIC.
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fixed assets, investment in fixed assets, labor hours, number of workers, labor compensa-
tion, value added, financial cost, corporate taxes, exports, IT expenditure, intermediate
expenditure, ownership, location, and ISIC code.

The ENIA 2008 provides the previous year’s value and the current year’s investment
in eight types of fixed assets: land, buildings, machinery and equipment, furniture and
fixtures, vehicles, software, other tangible fixed assets, and other intangible assets.9 Using
the perpetual inventory method, we can therefore compute the capital stock for each type
of asset as

kit = (1− δk)kit−1 + Iit,

where kit is the type of fixed asset for plant i at time t, δk denotes the depreciation rate
of fixed asset k,10 and I is the investment in fixed asset k.11

We calculate the aggregate rental cost of capital r as

r =
B + δ

1− τ
,

with B as the discount rate and τ the effective corporate tax rate.12

In order to define both technological capital T and non-technological capital K, we
build four different specifications. In Specification 1, we define T as software and K as
the rest of fixed assets. Since there are both technological and non-technological assets
included in the other intangible assets, machinery and equipment, and other tangible fixed
assets categories, we define a weighting parameter built as

pi =
ITi

ITi +NITi
,

where ITi is the information and technology expenditure of plant i and NIT is the raw
material expenditure, plus the energy and water expenditure, plus other intermediate
expenditure. In Specification 2, we define T as software plus pi times other intangible
assets. In Specification 3, we define T as software plus pi times the addition of other
intangible assets, machinery and equipment, and other tangible fixed assets. Finally, in

9“Other tangible fixed assets” include tools and IT equipment, while “other intangible assets” include
patents, trademarks, goodwill, and water use permits.

10We use a depreciation rate of 2.5%, 13%, 25%, 13%, and 31.5% for buildings, machinery and equip-
ment, vehicles, intangible assets, and software, respectively, as documented by Oulton and Srinivasan
(2003). We use a depreciation rate of 18% for other tangible fixed assets, as reported by the U.S. Bureau
of Economic Analysis.

11Investment is defined as the purchase of new and used assets plus asset improvements minus the sales
of used assets.

12The depreciation rate δ used in this formula is the weighted average of the fixed assets’ depreciation
rates. We follow Cerda and Saravia (2009) to compute the discount rate B and the effective corporate
tax rate τ , where B is the weighted average of the ratio of financial cost to value added and τ is the
weighted average of the ratio of effective tax paid to value added.
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Specification 4, we define T as the sum of software, other intangible assets, machinery
and equipment, and other tangible fixed assets.

The ENIA contains detailed information on both labor hours and labor compensation
for non-specialized personnel, maintenance workers, clerks, personal service workers, spe-
cialized workers, administrative personnel, and managers. We define specialized workers,
administrative personnel, and managers as skilled workers S, and the rest of the cate-
gories as unskilled workers L. As a crude robustness check of our definition of skilled
and unskilled workers, we computed the average percentage of skilled hours over the total
hours in the data set. Around 31% of the total hours corresponds to skilled labor. This
number is roughly close to the fraction of workers who complete a college education in
Chile.

Since many industries in our data contain few plants,13 we construct three groups of
industries to test heterogeneity. Following Hatzichronoglou (1997), we define the group
“High” as the group of industries that are high or medium-high R&D intensive, “Medium”
as those that are medium-low R&D intensive, and “Low” as those that are low R&D
intensive. Table 1 shows the industries, at the ISIC-2 level, considered in each group.

IV. Empirical Results

We now estimate the model developed in section II. Our procedure consists first of an
OLS estimation of the system equation (1) to obtain each ŝi and their respective resid-
uals. We then construct the variance-covariance matrix Ω of the residuals and take the
Kronecker product of Ω and an identity matrix. After that, we compute β̂, determined by
equation (2). We then use β̂ to estimate ŝi and insert them in equation (3) to obtain the
Allen-Uzawa elasticities of substitution σ̂ij. Finally, we compute 95% confidence intervals
for σ̂ij using the bootstrap method.14 All outcome tables report the mean of the 95%
bootstrap confidence intervals, which are constructed using the 2.5% and 97.5% quantiles
from the bootstrap distribution.

We first test capital-skill complementarity considering the aggregate level of capital; i.e.,
without distinguishing between technological and non-technological capital. Defining Z =
T +K, as we can see in Table 3, the elasticity of substitution between aggregate capital
and skilled labor (σ̂ZS) is lower than the elasticity of substitution between aggregate
capital and unskilled labor (σ̂ZL), denoting relative capital-skill complementarity.15 This
result constitutes novel empirical evidence of capital-skill complementarity for a develping
economy. As discussed in section I., this result is important since it allows to reconciliate
the observed rise in the skill premium with the trade liberalization that most developing

13This problem remains even when we aggregate at the ISIC 2-digit level.
14We perform the nonparametric bootstrap method (resampling with replacement) with 1,000 replica-

tions.
15Table 2 shows the coefficients of equation (1) for the aggregate specification.
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countries have experienced in recent decades.

We now compare the aggregate and disaggregate elasticities of substitution, using the
four specifications described in section III.. Table 5 shows the elasticities of substitution
for the disaggregate specifications.16 We can see that there is both technological and non-
technological capital-skill complementarity for the four specifications. However, as soon
as we use more disaggregate definitions of technological capital, the size of technological
capital-skill complementarity (defined as |σ̂TL − σ̂TS|) increases, while the size of non-
technological capital-skill complementarity remains roughly the same. We can even see
that there is absolute technological capital-skill complementarity in Specifications 1 and 2,
whereas technological and non-technological capital-skill complementarity are very similar
in Specification 4.

Another interesting result, which can be analyzed from Table 5, is that the compensa-
tion effect holds in three of the four specifications (σ̂KS > σ̂TL). We can also see that as
soon as we consider a more aggregate definition of technological capital, the compensation
effect decreases. We can even observe that the augmenting effect holds in Specification 4
(σ̂KS < σ̂TL). As both σ̂KL and σ̂KS remain very similar in the four specifications, what
drives this result is that as soon as we consider more aggregate definitions for technolog-
ical capital, σ̂TS increases faster than σ̂TL does. Therefore, the elasticity of substitution
between technological capital and skilled labor is relatively more sensitive to the techno-
logical level of capital.

To show how heterogeneous the industry groups are, we test capital-skill complemen-
tarity considering the Hatzichronoglou (1997) groups defined in the previous section. As
shown in Table 6, we find capital-skill complementarity in most of the cases. However,
in Specifications 1, 2, and 3, technological capital-skill complementarity does not hold in
the Low group of industries.17 We can also see that, in Specification 4, non-technological
capital-skill complementarity does not hold in the High group of industries. An interesting
pattern of these results is that while σ̂TL is roughly the same across the four specifica-
tions in the High group of industries, it increases in both the Medium and Low groups of
industries as soon as we use more aggregate definitions of technological capital.

Bergstrom and Panas (1992) show capital-skill complementarity heterogeneity across
nine Swedish manufacturing industries. It is interesting to observe that some of their
results contrast with ours. They find a large capital-skill complementarity size in some
industries, such as “Manufacture of paper and paper products” and “Manufacture of food
products and beverages.” However, these industries are in the Low group, which shows the
smaller size of non-technological capital-skill complementarity and even no technological
capital-skill complementarity at all, in most of our specifications.

We check the robustness of our results, including some control variables: plant size,18

16Table 4 shows the coefficients of equation (1) for the disaggregate specifications.
17Although σ̂TL > σ̂TS , the 95% bootstrap confidence intervals overlap.
18We control for five different plant sizes: 15 workers or fewer, more than 15 workers and fewer than
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region where the plant is located, exports, and percentage of foreign ownership.

As we can see in tables 7, 8, and 9, the results are roughly the same when control
variables are included the results are roughly the same for the aggregate and disaggregate
specifications and for the groups of industries.

V. Conclusion

Using data from Chilean manufacturing plants, we find that the elasticity of substitution
between capital and skilled labor is lower than the elasticity of substitution between
capital and unskilled labor, supporting the Griliches (1969) capital-skill complementarity
hypothesis in a developing country. This result allows us to understand why the skill
premium in some developing countries has increased after the trade liberalization process
of the 1980s and 1990s. Capital-skill complementarity counterbalances the negative effect
of trade openness on the skill premium that traditional trade theories predict.

Additionally, we find that the technological capital-skill complementarity is significantly
larger than the non-technological capital-skill complementarity, for different specifications
of technological capital. That is, the higher the technological component of the capital
stock the larger the size of complementarity between capital and skilled labor. This
finding is important for two reasons. First, it shows that the composition of capital
imports matters. As the share of technological capital imports increases, ceteris paribus,
an increase in capital imports may raise the skill premium to a greater extent. This
issue has been overlooked by the literature so far and it may help us understand not
only the evolution of the skill premium over time but also cross-sectional variations of
the skill premium at some moment in time. Second, our results show that related articles
regarding capital as an aggregate input, and disregarding that there are also differences
in the complexity of capital, may under(over)state the complementarity between skilled
labor and the type of capital that these workers actually use.

Another interesting result from our estimations is that the elasticity of substitution
between non-technological capital and skilled labor is larger than the elasticity of sub-
stitution between technological capital and unskilled labor. We call this phenomenon a
compensation effect, since it compensates for the decrease in the unskilled labor demand
when capital-skill complementarity holds. This finding may sound counterintuitive, as
it suggests, for example, that software is less substitutable for unskilled workers than
are machines for skilled workers. However, we show that the compensation effect may
occur when the productivity of skilled workers using non-technological capital is higher
but close to the productivity of unskilled workers using that kind of capital. This is in-
deed the intuitive case. For instance, the productivity gap between skilled and unskilled

31 workers, more than 30 workers and fewer than 51 workers, more than 50 workers and fewer than 101
workers, and more than 100 workers.
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workers driving a car or operating machines that perform routine tasks should be rela-
tively small. If this is accompanied by the fact that non-technological capital substitutes
for many more unskilled workers than technological capital does for skilled workers, the
compensation effect is likely to hold. We find that the compensation effect is stronger
when the technology level of the capital stock increases. This phenomenon occurs because
the elasticity of substitution between technological capital and unskilled labor strongly
decreases as soon as technological machines become more high-tech.

Finally, we present evidence of significant heterogeneity across group of industries.
Although the size of capital-skill complementarity for some groups of industries in our
database is similar to that found in developed countries, there are other groups of in-
dustries in which capital-skill complementarity is much larger than that reported in the
literature. An empirical evaluation of the forces that make larger the capital-skill comple-
mentarity in some industries but smaller in others constitutes an interesting avenue for
future research.
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Figure 1: Augmenting effect when σ̂TS > σ̂KL

(-) (+)σ̂TS σ̂KL

�
�
�
�
�
�
�
�

�
�̂σTL

�
�
�

�
�

�
�
�

�
�

σ̂KS

Figure 2: Ambiguous effect when σ̂TS < σ̂KL
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(a) Non-technological capital and unskilled la-
bor

(b) Non-technological capital and skilled labor

(c) Technological capital and unskilled labor (d) Technological capital and skilled labor

Figure 3: Capital and labor isoquants
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Table 1: Groups of Industries

ISIC Industry

High
24 Manufacture of chemicals and chemical products
29 Manufacture of machinery and equipment n.e.c.
30 Manufacture of office, accounting and computing machinery
31 Manufacture of electrical machinery and apparatus n.e.c.
32 Manufacture of radio, television and communication equipment and apparatus
33 Manufacture of medical, precision and optical instruments, watches and clocks
34 Manufacture of motor vehicles, trailers and semi-trailers

35 - 351 Manufacture of other transport equipment except building and repairing of
ships and boats

Medium
23 Manufacture of coke, refined petroleum products and nuclear fuel
25 Manufacture of rubber and plastics products
26 Manufacture of other non-metallic mineral products
27 Manufacture of basic metals
28 Manufacture of fabricated metal products, except machinery and equipment
351 Building and repairing of ships and boats

Low
15 Manufacture of food products and beverages
16 Manufacture of tobacco products
17 Manufacture of textiles
18 Manufacture of wearing apparel; dressing and dyeing of fur
19 Tanning and dressing of leather; manufacture of luggage, handbags, saddlery,

harness and footwear
20 Manufacture of wood and of products of wood and cork, except furniture;

manufacture of articles of straw and plaiting materials
21 Manufacture of paper and paper products
22 Publishing, printing and reproduction of recorded media
36 Manufacture of furniture; manufacturing n.e.c.
37 Recycling
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Table 2: Coefficients of Equation (1) for the Aggregate Specification

sL sS

ln(L/Z) 0.0566 -0.0396
(0.000662)∗∗∗ (0.000533)∗∗∗

ln(S/Z) -0.0396 0.0621
(0.000533)∗∗∗ (0.000720)∗∗∗

β 0.466 0.429
(0.00274)∗∗∗ (0.00274)∗∗∗

Observations 4,500 4,500
R-squared 0.635 0.654

Standard errors in parentheses. ()∗∗∗ Significant at the 1% level.

Table 3: Elasticities of Substitution for the Aggregate Specification

Mean 95% Confidence Interval

σ̂ZL 0.8034 0.7873 0.8177

σ̂ZS 0.6784 0.6545 0.7012

σ̂LS 0.7528 0.7456 0.7593

σ̂ZZ -3.0826 -3.2176 -2.9569

σ̂LL -0.9608 -0.998 -0.9268

σ̂SS -1.3000 -1.3451 -1.2554
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Table 4: Coefficients of Equation (1) for the Disaggregate Specifications

sL sS sT
Specification 1

ln(L/K) 0.0566 -0.0396 -0.000413
(0.000664)∗∗∗ (0.000534)∗∗∗ (0.0000690)∗∗∗

ln(S/K) -0.0396 0.0622 -0.000604
(0.000534)∗∗∗ (0.000722)∗∗∗ (0.0000853)∗∗∗

ln(T/K) -0.000413 -0.000604 0.00130
(0.0000690)∗∗∗ (0.0000853)∗∗∗ (0.0000731)∗∗∗

β 0.462 0.423 0.0128
(0.00278)∗∗∗ (0.00280)∗∗∗ (0.000716)∗∗∗

Specification 2
ln(L/K) 0.0566 -0.0396 -0.000405

(0.000664)∗∗∗ (0.000534)∗∗∗ (0.0000689)∗∗∗

ln(S/K) -0.0396 0.0622 -0.000585
(0.000534)∗∗∗ (0.000722)∗∗∗ (0.0000849)∗∗∗

ln(T/K) -0.000405 -0.000585 0.00127
(0.0000689)∗∗∗ (0.0000849)∗∗∗ (0.0000726)∗∗∗

β 0.462 0.423 0.0124
(0.00278)∗∗∗ (0.00280)∗∗∗ (0.000705)∗∗∗

Specification 3
ln(L/K) 0.0566 -0.0396 -0.000447

(0.000663)∗∗∗ (0.000534)∗∗∗ (0.0000658)∗∗∗

ln(S/K) -0.0396 0.0622 -0.000662
(0.000534)∗∗∗ (0.000720)∗∗∗ (0.0000816)∗∗∗

ln(T/K) -0.000447 -0.000662 0.00175
(0.0000658)∗∗∗ (0.0000816)∗∗∗ (0.0000961)∗∗∗

β 0.463 0.424 0.0115
(0.00274)∗∗∗ (0.00274)∗∗∗ (0.000590)∗∗∗

Specification 4
ln(L/K) 0.0574 -0.0417 -0.0105

(0.000657)∗∗∗ (0.000534)∗∗∗ (0.000434)∗∗∗

ln(S/K) -0.0417 0.0617 -0.0138
(0.000534)∗∗∗ (0.000707)∗∗∗ (0.000480)∗∗∗

ln(T/K) -0.0105 -0.0138 0.0284
(0.000434)∗∗∗ (0.000480)∗∗∗ (0.000562)∗∗∗

β 0.451 0.405 0.0983
(0.00252)∗∗∗ (0.00243)∗∗∗ (0.00187)∗∗∗

Standard errors in parentheses. ()∗∗∗ Significant at the 1% level.
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Table 5: Elasticities of Substitution for the Disaggregate Specifications

Specification 1 Specification 2 Specification 3 Specification 4
σ̂KL 0.8067 0.8066 0.8059 0.8102

[0.7922 0.8207] [0.7921 0.8207] [0.7914 0.8198] [0.7903 0.8308]

σ̂KS 0.6831 0.6829 0.6818 0.7214
[0.659 0.7065] [0.6588 0.7064] [0.6579 0.7052] [0.6903 0.7479]

σ̂TL 0.4077 0.4356 0.6956 0.8042
[0.3067 0.4974] [0.3398 0.5240] [0.6465 0.7415] [0.7864 0.8203]

σ̂TS -0.0767 -0.0153 0.4409 0.6814
[-0.2984 0.1306] [-0.2233 0.1754] [0.3492 0.5180] [0.6574 0.7042]

σ̂KT 0.0974 0.1379 -0.0250 0.4280
[-0.6941 0.6542] [-0.6010 0.6551] [-0.5688 0.3414] [0.3065 0.5311]

σ̂LS 0.7528 0.7528 0.7528 0.7499
[0.7463 0.7594] [0.7463 0.7593] [0.7457 0.7595] [0.7432 0.7561]

σ̂KK -3.1407 -3.1411 -3.1446 -11.3211
[-3.2647 -3.0092] [-3.2652 -3.0095] [-3.2833 -3.0057] [-11.8886 -10.7647]

σ̂TT -118.7888 -142.7035 -142.2497 -5.4338
[-232.3992 -33.2848] [-256.0731 -53.6016] [-190.5978 -89.3749] [-5.6894 -5.1749]

σ̂LL -0.9599 -0.9599 -0.9620 -0.9251
[-0.9945 -0.9271] [-0.9944 -0.9271] [-0.9940 -0.9287] [-0.9605 -0.8926]

σ̂SS -1.2961 -1.2962 -1.2990 -1.2627
[-1.3465 -1.2539] [-1.3466 -1.2540] [-1.3465 -1.2540] [-1.3094 -1.2166]

σ̂KL/σ̂KS 1.18 1.18 1.18 1.12
σ̂TL/σ̂TS -5.32 -28.47 1.58 1.18
σ̂KS/σ̂TL 1.68 1.57 0.98 0.90
σ̂KL/σ̂TS -10.52 -52.72 1.83 1.19
95% bootstrap confidence intervals in square brackets.
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Table 6: Industry Group Elasticities of Substitution for the Disaggregate Specifications

Group σ̂KL σ̂KS σ̂TL σ̂TS

Specification 1
High 0.7542 0.5311 0.7648 0.1717

[0.6864 0.8134] [0.4233 0.6168] [0.6455 0.8842] [-0.0849 0.4014]

Medium 0.8349 0.6516 0.5192 -0.6346
[0.8108 0.8583] [0.6000 0.6969] [0.3555 0.6591] [-1.1197 -0.223]

Low 0.7954 0.7136 0.2267 -0.0108
[0.7760 0.8153] [0.6826 0.7413] [0.0648 0.3856] [-0.3046 0.2672]

Specification 2
High 0.7541 0.5311 0.7944 0.2376

[0.6861 0.8133] [0.4235 0.6168] [0.6778 0.9112] [0.0024 0.4473]

Medium 0.8348 0.6515 0.5301 -0.5471
[0.8107 0.8582] [0.6000 0.6969] [0.3683 0.6654] [-1.0042 -0.1508]

Low 0.7953 0.7133 0.2671 0.0438
[0.7759 0.8153] [0.6820 0.7412] [0.1133 0.4223] [-0.2315 0.2884]

Specification 3
High 0.7526 0.5312 0.7962 0.4241

[0.6856 0.8129] [0.4177 0.6194] [0.6801 0.8914] [0.2805 0.5608]

Medium 0.8347 0.6506 0.7581 0.2951
[0.8095 0.8562] [0.5922 0.6932] [0.6711 0.8342] [0.0712 0.4691]

Low 0.7943 0.712 0.6177 0.4623
[0.7738 0.8126] [0.6837 0.7390] [0.5359 0.7005] [0.3285 0.5683]

Specification 4
High 0.7641 0.6602 0.7815 0.5503

[0.6880 0.8318] [0.5417 0.7545] [0.7189 0.8363] [0.4515 0.6384]

Medium 0.8321 0.7235 0.8351 0.6103
[0.7857 0.8735] [0.6639 0.7763] [0.8052 0.8632] [0.5581 0.6582]

Low 0.7955 0.7310 0.7886 0.7213
[0.7707 0.8200] [0.6943 0.7652] [0.7676 0.8083] [0.6936 0.7492]

95% bootstrap confidence intervals in square brackets.
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Table 7: Check of Robustness for Table 3 Results

Mean 95% Confidence Interval

σ̂ZL 0.8165 0.8015 0.8303

σ̂ZS 0.7037 0.6808 0.7244

σ̂LS 0.7503 0.7433 0.7568

σ̂ZZ -3.1592 -3.2959 -3.0308

σ̂LL -0.9645 -1.0009 -0.9308

σ̂SS -1.3107 -1.3559 -1.2665

Table 8: Check of Robustness for Table 5 Results

Specification 1 Specification 2 Specification 3 Specification 4
σ̂KL 0.8197 0.8196 0.8188 0.8200

[0.8055 0.8333] [0.8053 0.8332] [0.8048 0.8313] [0.8003 0.8401]

σ̂KS 0.7081 0.7080 0.7075 0.7373
[0.6855 0.7297] [0.6853 0.7295] [0.6853 0.7287] [0.7069 0.7641]

σ̂TL 0.3760 0.4129 0.7117 0.8256
[0.2640 0.4782] [0.3123 0.5077] [0.6619 0.7591] [0.8100 0.8413]

σ̂TS -0.0300 0.0345 0.4494 0.7172
[-0.2773 0.1973] [-0.2067 0.2460] [0.3416 0.5342] [0.6935 0.7402]

σ̂KT -0.0953 -0.0304 -0.1054 0.3945
[-0.9030 0.4994] [-0.7739 0.5276] [-0.7414 0.2996] [0.2775 0.4982]

σ̂LS 0.7505 0.7504 0.7503 0.7467
[0.7439 0.757] [0.7439 0.7570] [0.7432 0.7568] [0.7402 0.7525]

σ̂KK -3.2159 -3.2165 -3.2212 -11.4259
[-3.3416 -3.089] [-3.3424 -3.0897] [-3.3621 -3.0893] [-11.9981 -10.8818]

σ̂TT -95.6004 -126.4567 -140.7711 -5.6104
[-205.7389 -17.6514] [-236.2533 -47.2766] [-190.4369 -84.5678] [-5.8737 -5.3447]

σ̂LL -0.9635 -0.9635 -0.9657 -0.9294
[-0.9984 -0.9301] [-0.9983 -0.9301] [-0.9971 -0.9331] [-0.9643 -0.8971]

σ̂SS -1.3068 -1.3069 -1.3096 -1.2729
[-1.3549 -1.2649] [-1.3550 -1.2650] [-1.3568 -1.2639] [-1.3192 -1.2268]

σ̂KL/σ̂KS 1.16 1.16 1.16 1.11
σ̂TL/σ̂TS -12.53 11.97 1.58 1.15
σ̂KS/σ̂TL 1.88 1.71 0.99 0.89
σ̂KL/σ̂TS -27.32 23.76 1.82 1.14
95% bootstrap confidence intervals in square brackets.
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Table 9: Check of Robustness for Table 6 Results

Group σ̂KL σ̂KS σ̂TL σ̂TS

Specification 1
High 0.7880 0.5587 0.7132 0.2406

[0.7188 0.8504] [0.4546 0.6418] [0.5742 0.8830] [0.0267 0.4466]

Medium 0.8488 0.6734 0.4228 -0.4779
[0.8229 0.8724] [0.6189 0.7153] [0.2278 0.5764] [-0.9488 -0.0639]

Low 0.8101 0.7465 0.2201 0.0176
[0.7931 0.8281] [0.7205 0.7705] [0.0392 0.3937] [-0.3305 0.3454]

Specification 2
High 0.7878 0.5586 0.7577 0.3019

[0.7185 0.8504] [0.4542 0.6419] [0.6216 0.9088] [0.1097 0.4935]

Medium 0.8488 0.6733 0.4430 -0.3938
[0.8228 0.8724] [0.6188 0.7153] [0.2442 0.5917] [-0.8563 0.0058]

Low 0.8100 0.7463 0.2649 0.0780
[0.7929 0.8281] [0.7202 0.7704] [0.0935 0.4241] [-0.2509 0.373]

Specification 3
High 0.7877 0.5601 0.8327 0.4175

[0.7215 0.8503] [0.4548 0.6454] [0.7276 0.9418] [0.2547 0.567]

Medium 0.8487 0.6717 0.7547 0.3593
[0.8241 0.8705] [0.6139 0.7153] [0.6662 0.8364] [0.1563 0.5235]

Low 0.8092 0.7458 0.6270 0.4662
[0.7909 0.8255] [0.7205 0.7696] [0.5425 0.7101] [0.3127 0.5791]

Specification 4
High 0.7974 0.6821 0.8428 0.5904

[0.7129 0.8721] [0.5686 0.777] [0.7839 0.9019] [0.4916 0.6767]

Medium 0.8428 0.7181 0.8580 0.6456
[0.7969 0.8854] [0.6582 0.7743] [0.8285 0.8872] [0.5936 0.6932]

Low 0.8078 0.7571 0.8110 0.7681
[0.7826 0.8317] [0.7189 0.7913] [0.7909 0.83] [0.7399 0.794]

95% bootstrap confidence intervals in square brackets.
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