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Abstract

The main purpose of our paper is to give some clarifications to the
endogenous growth model with physical capital, human capital and
R&D, developed by Funke and Strulik, having as starting point the
basic model proposed by Grossman and Helpman.
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1 Introduction

A large number of papers has been published in the last years on this subject,
following the line developed by Grossman and Helpman [7, 1991]. Among
them, to our knowledge, the first one is the paper of Eriksson [4, 1996] where
he work out a model that is only a slight modification of those developed by
Grossman and Helpman.

Few years later, the balanced growth path of the endogenous growth
model with physical capital, human capital and R&D has been explored by
Funke and Strulik [5, 2000] (henceforth FS), and then by Arnold [1, 2000].
FS suggest that the typical advanced economy follows three development
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phases, characterized in a temporal order by: physical capital accumulation,
human capital formation and innovation.

Gomez [6, 2005] analyzes the equilibrium dynamics of this model and
correct the analysis of FS and Arnold. Sequeira [11, 2008] incorporates
an erosion effect into this model and claims that this effect significantly
improves the fit between the model and the data. Iacopetta [8, 2010], [9, 2011]
extends the earlier analysis of FS and argues that other sequences of the
phases of development are possible and shows that this model can generate
trajectories in which innovation precedes human capital formation. This
trajectory accords with the observation that the rise in formal education
followed with a considerable lag the process of industrialization.

In their paper, FS assume that consumption goods, investment goods
and intermediate goods are all produced with the same technology and can
be transformed one to one without further costs from output of the industrial
sector, which is produced under a Cobb-Douglas technology. In fact, only in-
vention of new intermediates is determined solely by the aggregate knowledge
devoted to R&D. Intermediate goods are produced by labor alone, under
monopolistic competition and therefore, in order to fulfill the conditions for
market clearing, we need to consider this kind of labor in the model.

In order to obtain our results, we follow the line developed by Grossman
and Helpman [7, 1991], more exactly, the model proposed in Chapter 5.
They consider the case of an economy where capital goods and intermediate
inputs each have only a single use and the final output is either consumed
or invested. In their model, labor is used in R&D, in the production of
intermediate and final goods.

We concentrate our analysis only on the case of an innovative economy
and the paper is organized as follows. In the next section we argue and
develop the differential equations that describe the dynamics of all variables
of the model. The third section gives a complete characterization of the
balanced growth path. Section four studies the stability conditions and the
final section presents some conclusions and numerical simulations.

2 A model of growth with innovation

In this section we develop a model of endogenous growth with innovation and
derive the differential equations that describe the dynamics of the economy.
Without loss of generality, we suppose that the economy is populated by a
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large and constant number of identical agents, normalized to one, so that
all the variables can be interpreted as per capita quantities. Each individual
is endowed with one unit of time. We assume that innovative products are
intermediate inputs into the production of a single, final good. The final
good y can be consumed by the households or purchased by firms as physical
capital. The technology for producing final output requires, besides inter-
mediates, as inputs, labor and physical capital. Intermediates are produced
by labor alone, and labor is the sole input into R&D. Final output y is
produced according to a Cobb-Douglas production function

y = γkβdηh1−β−ηk , (1)

where γ is a positive constant, β and η are positive elasticity parameters
with β + η ≤ 1, k is physical capital, hk denotes the share of human capital
employed to produce the final good and d represents an aggregate index
of intermediate goods. Grossman and Helpman have adopted an integral
alternative of the aggregate index of intermediate goods, but this index can
create some difficulties when we determine the derivative of it with respect
to a variable x(i), and decide to replace it. More precisely, we prefer to use
the original specification of Dixit and Stiglitz [3, 1977].

d (x1, x2, · · · , xn) =

[
n∑
i=1

xαi

] 1
α

, (2)

where n = n(t) is a measure of products invented before time t and can be
considered as the number of available varieties. xi represents the input of
component i in the production of final good, and 0 < α < 1 controls the
elasticity of substitution between intermediates, ε = 1

1−α . We also assume
that the number of products invented is solely determined by the share of
human capital devoted to the R&D activity, denoted by hd:

ṅ = δhd, (3)

where δ > 0 is an efficiency parameter. Furthermore, each individual can
spend a part of his time in the education sector, to rise the human capital
level and we suppose that this process is proportional to the share of human
capital devoted to education, denoted here by he

ḣ = ξhe, (4)

3



where ξ > 0 is an efficiency parameter.
The market for the final good y is assumed to be perfectly competitive and
therefore the price of this good py equals its marginal production cost. Ne-
glecting depreciation, the economy’s resource constraint will be given by

k̇ = y − c−
n∑
i=1

xipi, (5)

where pi is the price of an intermediate expressed in terms of y (see Barro
and Sala-i-Martin [2, 2004], pag. 288). This price will be determined later
in the paper. The derivative of function d, defined by Eq. (2), with respect
to xj is given by

d

dxj
[d] = d1−αxα−1j , j = 1, 2, · · · , n, (6)

and therefore
pjd = d1−αxα−1j pd, j = 1, 2, · · · , n, (7)

is the price of intermediate xj in terms of d, where pd is the unit price of d. By
assuming in a formal way that the marginal and average cost of production
is constant, normalized to one, the lemma of Shephard provides the following
prices, in terms of y

pd = η
y

d
, r = β

y

k
, wk = (1− β − η)

y

hk
, (8)

where wk is the price of labor employed for the production of capital good.
In the same terms, the price of any intermediate xj, denoted here by pj, will
then be given by

pj =
ηy

dα
xα−1j . (9)

This price is paid by the final output sector, for a unit of xj, to monopolist
producer. As we can observe, this price is dependent on xj. Therefore, the
demand function for an intermediate xj at price pj will be

xj =

[
dα

ηy

] 1
α−1

p
1

α−1

j . (10)

According to the technological hypothesis, production of the final output re-
quires intermediates and assuming that intermediates are produced by labor
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alone, and labor is the sole input into R&D, facing the demand function
(10), the monopolist supplier of variety xj maximizes operating profits

πj = (pj − wj)xj, (11)

where wj is the price of labor used to produce one unit of intermediate. The
equilibrium on the labor market requires that wj = wk and we denote by w
their common value. Substitution of xj from Eq. (10) in to Eq. (11), provides
this optimal price

pj =
w

α
. (12)

To simplify, we denote by px this unique price. In a symmetric equilibrium,
the quantity supplied for all intermediates is the same, that is xj = x and
therefore

d = Adnx = n
1−α
α nx. (13)

where Ad represents the factor productivity of intermediates. If X denotes
the aggregate volume of intermediate output, then dpd = Xpx implies

pd =
px
Ad
. (14)

This pricing strategy yields the total quantity of intermediates required by
the sector of production

nx =
αηy

w
. (15)

Any intermediate good can be produced using one unit of labor. Then,
regardless of its composition, X = nx measures the resources embodied in
final goods, that is the quantity of labor incorporated

nx =
αη

1− β − η
hk. (16)

Therefore, the total quantity of labor employed to produce the final good,
including interediates is then given by (see Grossman and Helpman cited
paper, pag. 119):

hy =
αη

1− β − η
hk + hk =

1− β − η(1− α)

1− β − η
hk, (17)

from where we get

hk =
1− β − η

1− β − η(1− α)
hy, (18)
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and therefore, Eq. (16) becomes

nx =
αη

1− β − η(1− α)
hy. (19)

Successively substitution of Eqs (10), (12) and (13) into Eq. (11), provides
a profit equal to

π =
η(1− α)

n
y. (20)

If ν is the market price of an intermediate, then, in a general equilibrium,
free entry into R&D requires

w = δν ⇔ gν =
ν̇

ν
=
ẇ

w
= gw. (21)

The equilibrium in the capital market requires that the interest rate equals
the dividend rate π

ν
plus the rate of capital gain ν̇

ν
and thus we can write

gν =
ν̇

ν
= r − π

ν
= gw.

Substituting π from Eq. (20), ν from Eq. (21), w from Eq. (8) and hk from
Eq. (18), we obtain

gw = r − δη(1− α)

1− β − η(1− α)

hy
n
. (22)

Substituting px from Eq. (12) and nx from Eq. (15), we can rewrite the
economy’s resource constraint (5) as

k̇ = (1− η)y − c. (23)

Substitution of d from Eq. (13), nx from Eq. (19) and hk from Eq. (18) into
Eq. (1) provides the final form of production function

y = Akβh1−βy n
η(1−α)
α , A =

γ (αη)η (1− β − η)1−β−η

[1− β − η(1− α)]1−β
. (24)

and the two prices, of the total labor employed to produce the final good and
of physical capital

w = (1− β)
y

hy
r = β

y

k
. (25)
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Let (uy, ud, ue) be the amount of time allocated to produce the final good,
to innovation and respectively to education. Then, we have: hy = huy,
hd = hud and he = hue and the full employment requires:

uy + ud + ue = 1. (26)

The next equation describes the dynamics of the budget constraint

ȧ = ra+ w (1− ue)h− c. (27)

Subject to the budget constraint Eq. (27), to the development of skill Eq.
(4) and using as state variables (h, a) and as control variables (c, ue), we can
write the following optimization problem

max
{c,ue}

∞∫
0

c1−θ − 1

1− θ
e−ρtdt, (28)

where ρ > 0 denotes the time preference rate and θ > 0 denotes the intertem-
poral elasticity of substitution. The Hamiltonian is given by

J =
c1−θ − 1

1− θ
+ λ [ra+ w (1− ue)h− c] + µξhue. (29)

The first derivatives of Hamiltonian with respect to c, ue, h and a provide
the following system of differential equations

gc = ċ
c

= r−ρ
θ
,

gw = ẇ
w

= r − ξ,

gµ = µ̇
µ

= ρ− ξ,

gλ = λ̇
λ

= ρ− r.

(30)

where gz denotes the growth rate of variable z. Combining the second equa-
tion of the above system, with Eq. (22), we can determine the following
relation for uy

uy =
ξ [1− β − η(1− α)]

δη(1− α)

n

h
, (31)
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from where it immediately follows

guy = gn − gh. (32)

After log-differentiating Eq. (24) with respect to time, the output growth
rate is then determined by

gy = βgk + (1− β)
(
gh + guy

)
+
η(1− α)

α
gn, (33)

and substitution of the above result provides

gy = βgk +
α(1− β) + η(1− α)

α
gn, (34)

The Eqs. (3) and (23) can also be written

gn = δ
h

n
ud, (35)

and

gk =
1− η
β

r − c

k
. (36)

Log-differentiation of r and w from Eq. (25) provides

gr = −(1− β)(1− η)

β
r + (1− β)

c

k
+
α(1− β) + η(1− α)

α
gn (37)

and
gw = gy −

(
gh + guy

)
= gy − gn ⇒ gn = gy − gw, (38)

and after some algebraic manipulations yields

gn =
α

η(1− α)− αβ

[
ηr + β

c

k
− ξ
]
. (39)

Substituting Eq. (39) into the Eq. (37) and denoting by χ = c
k

and ψ = n
h
,

enable us to write down the following system of differential equations in terms
of (χ, r, ψ): 

gχ = β−θ(1−η)
βθ

r + χ− ρ
θ
,

gr = A1r + A2χ− A3,

gψ = gn + ξ
δ

(B2 + gn)ψ − ξ,

gn = B1 [ηr + βχ− ξ] ,

(40)
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where

A1 =
αβ(1− β)− η(1− α)(1− β − η)

β [η(1− α)− αβ]
,

A2 =
η(1− α)

η(1− α)− αβ
, A3 =

ξ [α(1− β) + η(1− α)]

η(1− α)− αβ
,

B1 =
α

η(1− α)− αβ
, B2 =

ξ [1− β − η(1− α)]

η(1− α)
.

To understand the dynamics of our system, a supplementary differential equa-
tion will be necessary, that is the first equation of system (30).

A remark is absolutely necessary here.

Remark 1 The functions r and w are independent of variables h and uy.

Proof of Remark 1. Substituting Eq. (31) into Eqs. (25) yield

r = Ark
β−1n

α(1−β)+η(1−α)
α w = Awk

βn
η(1−α)−αβ

α ,

where

Ar = βA

{
ξ [1− β − η(1− α)]

δη(1− α)

}1−β

,

and

Aw = (1− β)A

{
ξ [1− β − η(1− α)]

δη(1− α)

}−β
.

Now it is clear why in the above optimization problem the first derivatives
of Hamiltonian with respect to variables h and ue do not act on the two
functions w and r.

3 Balanced growth equilibrium

In this section, we focus our analysis on the balanced growth equilibrium,
characterized by the fact that all variables grow at constant, but possible dif-
ferent rates, and the shares of human capital in its different uses are constant.
The system described above reaches the balanced growth path (BGP ) if there
exists t∗ (possibly infinite), such that for all t ≥ t∗, guy = gud = gue = 0 and
gk = gc = gy = g 6= gh = gn, where gz denotes the growth rate of variable
z. The following proposition gives our first main result that characterize the
balanced growth path.
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Proposition 1 Let ξ > ρ, α > α1 and θ > θm. Then the above system
reaches the BGP and the following statements are valid

r∗ =
θξ [α(1− β) + η(1− α)]− ηρ(1− α)

θ [α(1− β) + η(1− α)]− η(1− α)
> ξ, (41)

χ∗ =
[θ(1− η)− β] r∗ + βρ

βθ
> 0, (42)

gn∗ =
α(1− β)(ξ − ρ)

αθ(1− β) + η(1− α)(θ − 1)
> 0, (43)

ψ∗ =
δ (ξ − gn∗)

ξ (B2 + gn∗)
> 0, (44)

uy∗ =
1− β − η(1− α)

η(1− α)

ξ − gn∗

B2 + gn∗

> 0, (45)

ud∗ =
ψ∗gn∗

δ
> 0, (46)

ue∗ =
gn∗

ξ
> 0, (47)

g∗ =
r∗ − ρ
θ

=
[α(1− β) + η(1− α)] (ξ − ρ)

αθ(1− β) + η(1− α)(θ − 1)
> 0, (48)

where

θm =
1

ξ

[
ηρ(1− α)

α(1− β) + η(1− α)
+
β(ξ − ρ)

1− η

]
and

α1 =
η(1− β − η)

η(1− β − η) + β(1− β)
.

Proof of Proposition 1. According to Eq. (32), constancy of uy implies
that, at equilibrium, the growth rate of n equals the growth rate of h, that
is, gn∗ = gh∗ and therefore gψ∗ = 0. Constancy of gc∗ implies the constancy
of r∗, i.e., gr∗ = 0. Therefore gy∗ = gk∗ , and thus χ is also constant in the
steady state, i.e., gχ∗ = 0 and therefore we have g∗ = gy∗ = gk∗ , where we
denote by gz∗ the equilibrium’s growth rate of variable z. Positivity of r∗ and
r∗ > ξ is ensured for any

θ >
η(1− α)

α(1− β) + η(1− α)
= θ1 < θm
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for all α > α1. A sufficient condition that ensure the positivity of χ∗ is
θ(1− η)−β > 0, but this condition is too restrictive. By direct computation
we obtain that χ∗ > 0 for all θ > θm. Because uy∗ > 0, ud∗ > 0, ue∗ > 0
and uy∗ + ud∗ + ue∗ = 1 we obviously have {uy∗ , ud∗ , ue∗ , } ∈ (0, 1). The
other relations follow immediately by direct computation and thus the proof
is completed.

4 Stability property of the BGP

In this section we investigate the stability properties of the BGP found in
the previous section. For our analysis we need to consider only the first three
equations of (40):

ṙ = [A1r + A2χ− A3] r = f1,

χ̇ =
[
β−θ(1−η)

βθ
r + χ− ρ

θ

]
χ = f2,

ψ̇ =
[
gn + ξ

δ
(B2 + gn)ψ − ξ

]
ψ = f3.

(49)

We will prove that the competitive equilibrium solution is locally unique, i.e.,
the BGP is determinate, if the Jacobian of the reduced system has at least
one eigenvalue with negative real part. The study of stability equilibrium,
i.e. around the BGP , has nothing to do with the fact that we know or we do
not know the starting values of some variables. All what we need to know
are their values at BGP and the eigenvalues of Jacobian. This assertion is
true because the equilibrium point is unique and known, and this claim was
proved in the previous section.

There are two elements that are irrelevant for our analysis. We denote
these two elements by a and respectively by b. The Jacobian evaluated at
BGP is given by:

J∗ =

 J11 J12 0
J21 J22 0
a b J33

 (50)

where:

J11 = A1r∗, J12 = A2r∗, J21 =
β − θ(1− η)

βθ
χ∗,

J22 = χ∗, J33 = ξ − gn∗ > 0.
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The following proposition gives the necessary and sufficient conditions which
ensure the local saddle-point stability of the BGP .

Proposition 2 Let ξ > ρ, α > α1 and θ > θm. Then the following state-
ments are valid

i. If α > αm, then the BGP is a saddle-point equilibrium, where

αm =
η

η + β
> α1.

ii. If α1 < α < αm, then the BGP is an unstable equilibrium.

Proof of Proposition 2. The matrix J∗ has as an immediate property, the
fact that two of its eigenvalues, are the eigenvalues of the matrix J1∗.

J1∗ =

(
J11 J12
J21 J22

)
and the third eigenvalue of J∗ is equal to ξ− gn∗ > 0. By direct computation
we obtain

Det(J1∗) =
αθ(1− β) + η(1− α)(θ − 1)

θ [η(1− α)− αβ]
r∗χ∗ and Tr(J1∗) = A1r∗ + χ∗,

where Det(J1∗) is the determinant of J1∗ and Tr(J1∗) is the trace of J1∗.
In order to understand the trajectories of variables in the neighborhood of
BGP we introduce the following notations: z1 = r − r∗, z2 = χ − χ∗ and
z3 = ψ − ψ∗. Therefore we can write: ż1

ż2
ż3

 =

 J11 J12 0
J21 J22 0
a b J33

 z1
z2
z3

 . (51)

Let ω1, ω2, ω3 be the three eigenvalues of Jacobian J . The solutions of the
above system can therefore be written

r(t) = r∗ + ϕ1π11e
ω1(t−t∗) + ϕ2π12e

ω2(t−t∗) + ϕ3π13e
ω3(t−t∗),

χ(t) = χ∗ + ϕ1π21e
ω1(t−t∗) + ϕ2π22e

ω2(t−t∗) + ϕ3π23e
ω3(t−t∗),

ψ(t) = ψ∗ + ϕ1π31e
ω1(t−t∗) + ϕ2π32e

ω2(t−t∗) + ϕ3π33e
ω3(t−t∗),

(52)
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where πij, i, j = 1, 2, 3 are constant elements of the eigenvectors and ϕ1, ϕ2,
ϕ3 are constants to be determined. First observe that ω3 > 0, and therefore
this equilibrium cannot be asymptotically stable. What we need now is to
take if ϕ3 = 0 to ensure the existence of a saddle-path stability. Under this
hypothesis, the above system becomes

r(t) = r∗ + ϕ1π11e
ω1(t−t∗) + ϕ2π12e

ω2(t−t∗),

χ(t) = χ∗ + ϕ1π21e
ω1(t−t∗) + ϕ2π22e

ω2(t−t∗),

ψ(t) = ψ∗ + ϕ1π31e
ω1(t−t∗) + ϕ2π32e

ω2(t−t∗).

(53)

The necessary and sufficient conditions which ensure this kind of stability are
achieved if at least one of the remaining two eigenvalues, has a negative real
part, or equivalently, Det(J1∗) < 0. The numerator of Det(J1∗) is positive
and therefore, what we need is η(1− α)− αβ < 0, that is α > αm.

If Det(J1∗) > 0 it immediately follows that the real parts of the two
eigenvalues have the same sign. This is true for any value α1 < α < αm.
Analyzing the trace of Jacobian we obtain Tr(J1∗) > 0 and consequently
the two eigenvalues can have only positive real parts, and thus the proof is
completed.

We conclude this section by noting that:

• Some of our results differ from those of the above cited authors.

• Our model clarifies some questionable aspects of the model developed
by FS, Arnold and later analyzed by Manuel Gomez, Iacopetta and
Tiago Sequeira.

5 Conclusions

In this paper we explored the equilibrium dynamics of an innovative economy,
via an endogenous growth model with physical capital, human capital and
R&D. In the second section we developed a model of endogenous growth with
innovation and derive the differential equations that describe the dynamics
of the economy. We proved in the third section that, under general fairly
conditions, the model reaches the balanced growth path and determined the
values of all variables at BGP . Finally, the previous section was dedicated
to investigate the stability properties of the BGP .
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The main results proposed by our paper are given in Propositions 1 and
2. As we can observe, these results make some light on the general properties
of the model. First observe that, in our model, θ does not have un upper
bound as it is the case of some cited papers.

We close this final section with some numerical simulations in order to
confirm the theoretical aspects presented in our paper. FS have used in
their numerical simulation section, the data available in the case of the US -
economy, from the dataset compiled by Jorgenson and Fraumeni [10, 1993].
Another remark is necessary here. As it was observed by Jorgenson and
Fraumeni (see cited paper, page 17), analysing the US−economy for the
period 1973 − 1986, physical capital input is the most important source
of growth and therefore η < β seems to be evident. For our simulation
procedure we consider the following benchmark values:

a. β = 0.25, η = 0.20, ξ = 0.05, δ = 0.1, ρ = 0.03, A = 1, θ = 2, α = 0.5.
This parametrization yields the following equilibrium:

r∗ = 0.0523, χ∗ = 0.1564, ψ∗ = 0.2467, g∗ = 0.0111, gn∗ = 0.0088,
uy∗ = 0.8018, ud∗ = 0.0218, ue∗ = 0.1764 and the eigenvalues are:
ω1 = 0.2983, ω2 = −0.4665 and ω3 = 0.0412. As we can observe, in
this case, the equilibrium is saddle-path stable.

b. β = 0.25, η = 0.20, ξ = 0.05, δ = 0.1, ρ = 0.03, A = 1, θ = 2, α = 0.4.
This parametrization yields the following equilibrium:

r∗ = 0.0533, χ∗ = 0.1590, ψ∗ = 0.3077, g∗ = 0.0117, gn∗ = 0.0083,
uy∗ = 0.8077, ud∗ = 0.0256, ue∗ = 0.1667 and the eigenvalues are:
ω1 = 0.1275 + 0.3693i, ω2 = 0.1275− 0.3693i and ω3 = 0.0417. As we
can observe, in this case, the equilibrium is unstable.
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