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Abstract

We analyze the recent imbalances in external accounts that have his-
torically affected most of the developed countries from the point of view
of trade balance. Following previous empirical studies (Husted (1992),
Arize (2002) and Hamori(2009)) we analyzed the long-run relationship
linking exports and imports, using quarterly data for Australia, Canada,
Denmark, Sweden, United Kingdom, Norway, Switzerland, Japan, France,



Italy, Netherlands, Finland and Spain. We use periodic integration and
cointegration to deal with the seasonality and nonstationarity present in
our time series and to analyze the long-run relationship between exports
and imports. Finally in the case of France, Italy, Netherlands, Finland
and Spain a clear change in the mean associated to the change of cur-
rencies it is observed in the data, hence we extend the test of periodic
integration proposed by Boswijk and Franses (1996) allowing for a change
in the mean.
VERY PRELIMINARY VERSION

1 DMotivation

This paper analyzes the recent imbalances in external accounts that have his-
torically affected most of the developed countries from the point of view of trade
balance. The relevance of the disequilibria in the external balances during the
last decade has renewed the academic interest for this issue. In particular, the
case of the EMU countries deserves special attention as the union’s net external
position is close to equilibrium but many of their members present very large
and persistent deficits or surpluses.

The approach of this paper follows the traditional theory that postulates
the trade channel as the external adjustment mechanism. For this reason, the
variables of interest are exports and imports of the countries analyzed.

Previous empirical studies, such as Husted (1992), Arize (2002) and, more
recently, Hamori(2009) have analyzed the long-run relationship linking exports
and imports using the cointegration methodology. Although the majority of the
empirical evidence is based on annual or quarterly data and the latter can be
affected by seasonal effects, to the best of our knowledge, the empirical literature
has neglected the presence of seasonal non-stationary components giving rise to
instabilities in the long-run relationships.

A simple way to deal with the instability of the relationships between el-
ements of the current account, without assuming the existence of unobserved
components, is the use of seasonal and periodical cointegration techniques. Sea-
sonality is a phenomenon that has not received sufficient attention in the eco-
nomic literature in general. The standard treatment is either to assume that the
seasonality that appears in the time series is deterministic or, alternatively, to
use a method to remove the seasonal component of the variables and estimate
the models using seasonally-adjusted variables.

When it is assumed that the seasonality is deterministic, the normal prac-
tice is to use seasonal dummies, which implicitly assumes that seasonality is a
deterministic phenomenon. In this case, the methods of seasonal adjustment
commonly used are variants of the X-11 procedure (X-12 ARIMA and X-13
ARIMA SEATS) of the U.S. Census Bureau as well as procedures based on
ARIMA-SEATS SPAN models developed at the Bank of Spain. However, these
procedures usually corrupt the stochastic structure of the variables.

Ghysels (1990), Ghysels and Perron (1993) and del Barrio Castro et (2002)
show that the removal of seasonality with X-11 and SEATS standard proce-



dures introduces excessive persistence in the series, which reduces the power
of unit root tests. Maravall (1993) shows how seasonal adjustment procedures
induce non inverted moving average processes in the filtered series, invalidating
the inference made in most of the unit root and cointegration tests. Olekalns
(1994) extends this result to cases in which dummies or band-pass filters are
used to remove seasonality. Abeysinghe (1994) shows that treatment of sea-
sonal stochastic dummies leads to a spurious regression problem. In order to
avoid these problems we intend to use a seasonal treatment that includes sea-
sonal unit roots (Hylleberg, 1990, Hylleberg et al, 1995, Rodrigues and Taylor
2007) as well as periodical integration tests (Boswijk and Franses 1995, del Bar-
rio Castro and Osborn, 2010) to determine the type of seasonality present in
the non-stationary series analyzed. As shown in Ghysels and Osborn (2001),
this point is crucial as it determines the type of cointegration between the set
of variables analyzed. Specifically, if the series are seasonally integrated, long-
term relationships can occur at each frequency, that is, “seasonal cointegration”,
(Lee, 1992 and Johansen and Schaumburg, 1999) or between the seasonal com-
ponents of the series, namely “periodic cointegration” (Boswijk and Franses,
1995). However, if the series are periodically integrated, they can only be pe-
riodically cointegrated (del Barrio Castro and Osborn 2008). Moreover, if one
does not take into account all the above mentioned and ignores the univariate
properties of the series analyzed, it may originate problems of spurious cor-
relations and unstable parameterization. Therefore, an important part of the
instability observed in the estimates of traditional export-import relationships
could be due to the omission of the above phenomena. Finally, another factor
to consider is the modeling process where there is seasonal or periodical coin-
tegration in the context of error correction models because the role that both
types of cointegration can perform in improving the quality of the estimates and
the stability of the parameters can be very relevant. The omission of common
trends in seasonal frequencies or shared by the seasons of the series analyzed can
lead to problems of omitted variables and instability in the estimated models.

Therefore, in this paper the econometric analysis consists of first determining
the order of integration of the trade flows and then, if nonstationary, to test and
estimate the existence of a long-run relationship between a country’s exports
and imports. Researchers confronted with nonstationary seasonal time series
have two alternatives methods to deal with non-stationary seasonality Seasonal
integration (ST) and or Periodic Integration (PI). Periodic Integration is more
attractive than Seasonal Integration for the following reasons, first PI can arise
naturally from the application of economic theory when the underlying economic
driving forces, such as preferences or technologies, vary seasonally, as shown by
Gersovitz and McKinnon (1978), Osborn (1988) and Hansen and Sargent (1993).
Secondly, from an econometric perspective, PI is attractive because it implies
that the seasons of the year are cointegrated with each other (Osborn (1991),
Franses (1994)), and hence ensures that the patterns associated with the various
seasons are linked in the long-run.

Finally we also extend the test of periodic integration proposed by Boswijk
and Franses (1996) allowing for a changing mean in order to obtain the results



for France, Italy, Netherlands, Finland and Spain, where a change in the mean
in observed for exports and imports relative to the gross domestic product (see
pictures 9 to 13)

The rest of the paper is organized as follows. Section 2 presents the theoret-
ical background while section 3 states a review of the most relevant empirical
literature. The econometric tests and the empirical results are reported in sec-
tion 4 for the countries not affected by a change in the mean. Section 5 present
the extension of the test for periodic integration allowing for a change in the
mean, and also the empirical results for France, Italy, Netherlands, Finland and
Spain. Finally, section 6 concludes.

2 Theoretical model

In this paper we follow Huster (1992) who presents a simple theoretical model of
a small open economy with no government where there is a representative con-
sumer. This economy produces and exports a composite good. The consumer
can borrow and lend in the international markets using one-period instruments.
His resources are output and profits from firms. that are used for consumption
and savings. The consumer’s budget constraint in the current period is:

Co=Yo+Bo—1Ip— (14+170)Bi—1 (1)

where Cj is current consumption; Y is output, Iy is investment, 7 is the one
period world interest rate, By is international borrowing that can be positive or
negative, whereas (1+1q)B;_1 is the stock of debt by the agent (or the country’s
external debt). The budget constraint must hold for every period. Therefore,
they can be combined to obtain the intertemporal budget constraint by iterating
(1) forward:

By = Z wT A+ lim pu, B, (2)

t=1

where TA; = Xy — My(=Y; — C; — 1) represents the trade balance in period
t (that is, income minus absorption), X; are exports, M; imports, A\g = ﬁ
and p, is the discount factor (the product of the first ¢ values of A\. When the
last term in equation (2) equals zero, the amount that a country borrows (lends)
in international markets equals the present value of the future trade surpluses
(deficits).
Assuming that the world interest rate is stationary, Husted(1992) expresses
(1) as:
Zt+(].+7")Bt71 :Xt+Bt (3)

where Z; = My + (r — r)Bi—1. Solving forward as Hakkio and Rush (1991)



do the next expression is obtained:

Mt -+ ’I’tBt,1 = Xt -+ Z )\j_h [AXt+J — AZtH»J] -+ hm At+jBt+j, (4)
7=0

where \ = ﬁ The left-hand side consists of spending on imports and inter-
est payments (receipts) on net foreign debt (assets). If we substract X; from
both sides and multiply by minus one, the left hand side becomes the economy’s
current account. Assuming that both Z, and X; are I(1), (4) can be rewritten
as:
Xy =a+ MM, — lim X" B, ; +¢ (5)
j—o0

where M M; = M; + r¢B;_1.Assuming that the limit term equals zero, (5) we
can obtain a testable equation:

Xt:a—i—b*MMt—l—et (6)

where under the null hypothesis that the economy satisfies its intertemporal
budget constraint, we expect b = 1 and e; is stationary. Thus, if both vari-
ables are I(1), under the null, they are cointegrated, with a cointegrating vector
(1,-1).

We have also assumed earlier than the world interest rate is stationary.
Therefore, the term r;B;_1 would also be stationary. In practice, we can test
for cointegration between exports and imports when we believe that the adjust-
ment works essentially through the trade channel. Alternative theories, such
as Gourinchas and Rey (2007) consider that changes in assets valuations have
been very important in the last twenty years. If this is the case, we should also
account for valuation effects and our regression would suffer from an omitted
variables bias.

3 Literature review

There are a few empirical studies that, in the last twenty years, have analyzed
the trade channel adjustment of the external accounts. A summary is presented
in the table below.

The evidence on cointegration is mixed. For a large group of countries there
is cointegration between exports and imports, as in Hamori(2009) and Nayaran
and Nayaran (2005), although the vector found is not frequently (1, —1). The
papers use either quarterly or annual data, in nominal and in real terms. Other
papers analyze relative exports and imports over GDP. In none of the papers
the authors consider the issue of seasonality, with the exception of Irandoust
and Ericsson (2002), that use seasonally adjusted variables in their analysis.



Authors Countries analyzed Period Variables

Azire(2002) 50, all continents quart., 73-98 nom. X/GDP and M/GDP dom. cu
Fountas and Wu (1999) UsS quart., 67-94 X, M, real, nominal, relative

Hamori (2009) G-7 countries annu, 60-2005 X and M, mill. US $, trade bal
Herzer and Nowak-L. (2006) Chile annu, 75-2004  real X and M domest. currency
Husted (1992) US quart. 67-89 nom., real, differenced ratios X and ]
Irandoust and Sjoo(2000) Sweden quart. 80-95 nom., real, X, M/GDP dom. currenc
Irandoust and Ericsson (2002)  Fr, G, I, Sw, UK, USA  quart. 71-97 real, log, seasonally adj.

Narayan and Narayan (2005)

22, least developed

annu. 60-2000

nominal X and M




4 Econometric techniques and results for time
series without change in the mean

As in Azire (2002) we have decided to analyze the nominal ratio exp/gdp and
imp/gdp in levels and in natural logs. In our case we have collected quarterly
data (not seasonally adjusted) for the following countries: Australia, Canada,
Denmark, Sweden, United Kingdom, Norway, Switzerland, Japan, France, Italy,
Netherlands, Finland and Spain. The evolution of the ratios is depicted in
figures 1 to 13. In all the cases the sample ends in 2009Q1 but it starts in
1960Q1 for Australia, 1961Q1 for the UK, 1975Q1 for Finland, 1977Q1 for
Canada and Netherlands, 1978Q1 for Denmark and France and finally 1980Q1
for the remaining countries.

Note that in the case France, Italy, Netherlands, Finland and Spain we
clearly observe a level shift (or change in the mean) that start in 1999Q1 associ-
ated with the change of the national currency for the Euro, hence we are going
to analyze the evolution of these countries in a separate section as we need to
deal with a structural break or a change in the mean

From pictures 1 to 8 we can observe that the ratios exp/gdp and imp/gdp
show clear seasonal variation but without huge seasonal oscillations. Note also,
that from the evolution of the time series presented in pictures 1 to 8, we do
not observe a deterministic trending behavior in our data, hence we are going
to consider only seasonal dummies in the deterministic part.

Researchers confronted with apparently nonstationary seasonal time series
require methods of analysis that concurrently deal with the seasonal and non-
stationary features of their data. Particularly within an economic context, the
concept of Periodic Integration (PI) often provides a useful framework for such
analysis for two reasons. Firstly, as shown by Gersovitz and McKinnon (1978),
Osborn (1988) and Hansen and Sargent (1993), PI can arise naturally from the



application of economic theory when the underlying economic driving forces,
such as preferences or technologies, vary seasonally. Secondly, from an econo-
metric perspective, PI can be attractive because it implies that the seasons of
the year are cointegrated with each other (Osborn (1991), Franses (1994)), and
hence ensures that the patterns associated with the various seasons are linked
in the long-run. Indeed, the conventional class of integrated, or I(1), time series
form a special case of PI processes where the cointegrating vectors between
adjacent (seasonal) observations have the form (1, -1).

Taking into account the previous arguments and the evolution of the ratios
exp/gdp and imp/dgp for each country (figures 1 to 8), we are going to focus
on periodic integration as a possible source of non-stationarity in our data. In
order to explicitly recognize the role of seasonality, it is often convenient to
represent a univariate time series as ys,, where the first subscript refers to the
season (s) and the second subscript to the year (7), as we have quarterly data
s =1, 2, 3, 4. For simplicity of exposition, we assume that data are available
for precisely N years, so that the total sample size is T' = 4N. Note that,
throughout the paper, it is understood that ys_j r = ya_syr,—1 for s —k <0.

Applications of periodic processes within economics have focused on the
autoregressive case, with the zero-mean p'* order periodic autoregressive, or
PAR(p) process, defined by

Ysr = Oy + ¢15y571,7' + ¢23y572,7' + -+ ¢p5ysfp,7' + €sry s = ]-7 27 37 4 (7)

where e, is white noise. In (7) we only consider seasonal intercepts as due
to the ratio nature of the analyzed data. Note that all the coefficients in this
process may vary over seasons s = 1,...,4. The conventional (nonperiodic)
AR(p) process is a special case with ¢,, = ¢, (s = 1,2,3,4) foralli = 1,2,...,p.
However, in the presence of seasonality, it is important to consider the possibility
that the process may be periodic, with at least some AR coefficients in (7)
varying over the year.

Under the assumption that y,, is integrated of order 1, and using a similar
notation to Boswijk and Franses (1996), (7) can also be written as

(Ysr — @sysfl,'r) = a++¢Yq, (ysfl,,r — cpsflysz;r) 4+
+¢P—178 (yS—P"Fl»T - @s—p—&-lys—pﬂ) + esr (8)

4
where H P = 1. In the special case ps = 1 (s = 1,2,3,4), (8) may be a
periodic I(1) process, such that the first difference is a stationary PAR(p — 1)

process. On the other hand, when Hil ps = 1 but not all ps =1 (s =
1,2,3,4), (8) is a periodically integrated, or PI(1), process with the quasi-
difference ysr — ¢ ys—1,~ being stationary; see Ghysels and Osborn (2001, pp.153-
155) for further discussion of these possibilities. In the latter case ysr — @ ys—1,+
may have constant coefficients over seasons, although for convenience we refer
to it as a stationary PAR process.

Boswijk and Franses (1996) analyze the distribution of the Likelihood Ra-

s
tio test statistic for the null of periodic integration | I [Ps = 1 versus the
s=



S
alternative of I | L Ps < 1 in (8), with this statistic defined by
5=

LRT1n<RSS°) (9)

RSS,

where RS Sy and RS'S; denote the residual sum of squares under the null hypoth-
esis and from the unrestricted form (7), respectively. Under the null hypothesis
of a PI(1) or I(1) process, they show that this statistic has the same asymp-
totic distribution as the squared Dickey-Fuller t—statistic for a conventional
(nonperiodic) I(1) process.
In order to implement the previous test (31) we need to determine the order
p for the unrestricted and restricted models (7) and (8). To do that we follow
Franses and Paap (2004) and use the AIC criteria to determine p using 5 as the
maximin value. Franses and Boswijk (1997) also proposed a F-type statistic Fje,
to test the null of non periodic variation in the coefficients of (7) Ho : ¢;5 = ¢;
for 5 = 1,---p. The results of these tests are reported in tables 1.a to 8.a.
Note that models (7) and (8) tend to have a lot of parameters, and also that in
order to fit model (8) we will need non linear methods of estimation. Recently
del Barrio Castro and Osborn (2011) have proposed two non-parametric tests
(based on the Breitung (2002) and Stock (1999) unit roots tests) that allow
us to circumvent the limitations of the Boswijk and Franses (1996) test. They
propose to compute a variance ratio statistic for a given season s as
N £r2
VRT, = N*2%

712
r=1 Wsr

s=1,..,4 (10)

where U,, is the season-specific partial sum Us1 + Ug2 + -+ - + Usr, With Ugr
obtained as the OLS residuals 45, = ysr —BISZT from a regression of observations
for season s, ysr (7 = 1,...,N), on z, that collects the deterministic part, in
our case z, = 1. In order to test the PI(1)/I(1) null hypothesis, they use the
average variance ratio statistic

4
VRT =47") "VRT, (11)

s=1

where each V R, is defined in (10).

Additionally, based on Perron and Ng (1996) and Stock (1999) they pro-
pose to apply for a single season s, the corresponding season-specific M S B test
statistic:

(12)

1

-2 N 92 2

N 27:1 us,'rfl s=1 4

~ T Ay
Vst

MSB; = (

which requires an appropriate long-run variance estimator 7,; for the annual
difference Augr = usr — us -1 relating to season s. 7, is obtained based
on sample autocovariances using the Barlett and quadratic spectral kernels,



following Newey and West (1994, equations (3.8) to (3.15) and Table 1) data-
dependent bandwidth procedure.
As in the previous case they propose the use of the average M S B statistic

4
MSB=4"">"MSB,. (13)

s=1

del Barrio Castro and Osborn (2011) show that the distributions of the VRT
(11) and M SB (13) is the same as those reported for the original tests proposed
by Breitung (2002) and Stock (1999) respectively. The results obtained for these
tests are also reported in tables 1.a to 8.a. Finally, M SByand M SB, denote
the statistic M.SB with the Barlett and quadratic spectral kernels, respectively.

From the results of the Fj., test we find clear evidence of periodicity in both
exp/gdp and imp/gdp ratios as well as in their natural logs for the majority of
the countries. Exceptions are the case of Norway for exp/gpd and In(exp/gdp),
Switzerland for imp/gdp and In(imp/gdp), and Japan for In(imp/gdp). For
Canada, Sweden and Japan all the periodic integration tests (LR, MSB and
V RT) do not reject the null of periodic integration. In the case of Australia we
do no reject the null of periodic integration with the M.SB and V RT tests. Con-
cerning the LR test, we do not reject the null of periodic integration for imp/gdp
and In(imp/gdp) but we do reject the null with the LR for both exp/gdp and
In(exp/gdp). In the case of Denmark we only reject the null of periodic integra-
tion with the LR test for exp/gdp imp/gdp and Iln(imp/gdp). In the UK the
null is rejected only for imp/gdp with the LR and at 5% level of significance and
with the M SB, at 10% and for In(imp/gdp) also at 10% for the LR and the
M S B tests. For Norway we only reject the null with the M.SB tests at 10% for
exp/gdp and imp/gdp. Finally, in the case of Switzerland the null is rejected
with the VRT test for exp/gdp and imp/gdp at 10% level of significance and
for the natural logarithms of the variables at 10%. Overall we can conclude that
we have found reasonable empirical evidence in favour that both ratios follow
periodically integrated processes for all the counties.

As shown in Ghysels and Osborn (2001, pp.168-171) and del Barrio Castro
and Osborn (2008), when the series follow PI processes, the only cointegration
possibilities are periodic cointegration or nonperiodic cointegration, with coin-
tegration for any one season implying cointegration for all seasons, that is, full
cointegration. They also show that in order to have full nonperiodic cointegra-
tion the involved processes must share the same @ coefficients in (8). Note that
full nonperiodic cointegration is equivalent to conventional cointegration. Hence
if exp/gdp and imp/gdp or their natural logs are cointegrated with a (1,—1)
vector both processes must share the same ¢, coefficients in (8). In tables 1.b to
8.b we report these coefficients for the analyzed time series for all the countries.
In tables 1.a to 8.a we also report the results obtained with the LR, M SB and
VRT when applied to the difference between exp/gdp and imp/gdp , that is
labelled dif, as well as to the difference between In(exp/gdp) and In(imp/gdp),
that we label difln.

Finally, del Barrio Castro and Osborn (2008) propose a residual based LR

10



to test the null of not full periodic cointegration between periodically integrated
processes and obtain their asymptotic distribution, in particular they show that
the LRcg statistics follow the squared distribution reported by Phillips and
Ouliaris (1988) for the residual based ADF cointegration test. The results for
the former test are also reported in tables 1.b to 8.b.

In the case of Canada and the UK we find clear evidence of cointegration
with a (1, —1) vector for the levels and the logs. Note that the coefficients in
tables 2.b and 5.b are quite similar. Moreover, with the LRcgr test we also
find evidence of full periodic cointegration as expected. In the case of Australia
the results point to cointegration with vector (1, —1) except for the variable dif
with the V RT test. As in the previous cases, the coefficients in table 1.b are
quite similar in levels and natural logs, and as expected we also find evidence
of full periodic cointegration with the LRcg test. In the case of Norway there
is no evidence in favour of (1,—1) cointegration but we detect full nonperiodic
cointegration at a 10% level. Also note that in this case the coefficients ¢,
are quite different. For Japan we find weak evidence of (1, —1) cointegration,
but strong full nonperiodic cointegration. Finally for Denmark, Sweden and
Switzerland we do not find nonperiodic cointegration with vector (1,—1) nor
full periodic cointegration.

5 Testing for periodic integration in time series
with a changing mean

In this section we extend the Periodic integration test proposed by Boswijk
and Franses (1996) to the case where we allow for a change in the mean in
the deterministic part of the periodic autorregressive process. In particular we
consider the following four cases, that are the periodic counterpart of the case
considered by Perron(1990) and Perron and Vogelsang (1992a) under the null
hypothesis of periodic integration. Maekawa (1997) consider structural breaks
in a periodically integrated processes but he only pay attention to the PAR(1)
model and do not consider case the following model:

Ysm = 'YsD (NB)S-,— + P Ys—1,7 + Usr

where:
s = 1,2,3,4 7=1,2,3,.....N
D(NB),. = 1if 7= Np+1 otherwise 0

DU,, = 1if 7> Npg otherwise 0

S

[Tes = 1

s=1

(1= L =g P =+ =, LP e = &4



where Np (1 < Ng < N) is the date of break and we are going to assume that
Np = AN, where X is the fraction of break. As it is pointed out in Boswijk
and Franses (1996) and In Ghysels and Osborn (2003) the key to explore the
long run properties of PI processes is the vector of quarters representation and
in particular the vector moving-average (VMA) representation:

Y,-Y,_1 = (0+6.:B)¥(B) "E,
with
/ li
YT - [ Yir Y2+ Y3+ Yar } ET - [ €1r €21 €31 E4r ] (]-4)
1 0 0 0 0 w3401 @a Y1
0y = P2 1 0 0 0, = 0 0 PsP1¥P2 P1P2
P2¥3 ¥3 10 0 0 0 P1¥2¥3
Pap3Ps P3Py Py 1 0 0 0 0
where B is the annual lag operator. Following the lines of Boswijk and
Franses (1996) from (14) it is possible to write:
Y, =Yy +ab U (1)) E;+CT (1) E;, (15)
j=1
with:
C(l) = (@0 + @1) = ab’ (16)
where
/
a = [ L @y pop3 Pap3p4 } )
li
= [1 ¢ios0s 0100 01 ] - (17)
Which is the common trend representation of the PI process without con-
sidering deterministic terms, to obtain a equivalent representation to our case we .
only have to replace E; in (15) by (YD (NB), + E,), wherey = [ vy 75 7v3 74 ]

and D (NB)_ is the 4x1 vectors associated to D (NB), . Hence after some
rewriting we have:

Y, = Yy+ab¥ (1) 'yDU, + C* (1)yD (NB)_+ X,
with
X, = aV¥ (1)) E;j+C*(L)E,
j=1

Note that in the previous expression the term C* (1)yD (NB)_ plays a role
equivalent to the correction added by Perron and Vogelsang (1992a,1992b) to
the initial analysis developed by Perron (1990) when testing for unit roots with
a changing mean

Finally it is possible to summarize the main stochastic characteristics of a
PI(1) process in the following Lemma due to Boswijk and Franses (1996).

12



5.1 The test.

In this section we present the test for PI that allows the presence of struc-
tural breaks in the deterministic part. Hence we are testing the null hypothesis
P1Papap, = 1 against the alternative hypothesis ¢ 00504 < 1, we have the
following PAR(p) unrestricted models:

Jsr = Ysr— ft; — Vs DUs;
p p
gST = Z szD (NB)SijT + Z ¢jsg8*ja7 téesr (18)
j=0 Jj=1

Under the alternative the time series follows a stationary PAR(p) process.
And the restricted models:

p—1 p—1
gST = (ps—lgs—lﬂ' + ijsD (NB)s—j7T + ijs (gs_.iﬂ' - @S_jgs—j—lﬂ') +esr
j=0 j=1

(19)

with the restriction 9o, = 1 imposed, but t;, unrestricted, with the

estimation achieved using nonlinear least squares. We employ the test Likeli-
hood Ratio test proposed by Boswijk and Franses (1996):

LR;, (\) = Nn (63/5%)

In the following proposition we present the distribution of the test is the four
different cases.

Proposition 1 Under the null hypothesis of periodic integration the distribu-
tion of the likelihood ratio test statistic obtained from (18)/(19) is the following:

LR;,(\) = [DEWN)] ' (INU())? (20)

where

’ 1 A
[NU(N\)] = /Ow(r)dw(r)f)\_lw()\)/o w(r)dr +
+<1—A>‘1[w<1>—w<x>}A w(r) dr

1 A 2
[DE()\)] = /O[w(r)]2dr—)\_1 [/1 w(r)dr]

—(1-)) [/:w(r)drr

Note results (20) is the square of the distribution reported in Perron and
Vogelsang (1992a,1992b)

13



In table 9.a we report the empirical quantiles of the LR;, (A) test based
on 20.000 replications and for a sample size of 7 = 1000 with S = 4. For
A=0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. It is clear that the quantiles associated
(20) is equivalent to the square of the quantiles reported in Perron (1988).

In order to check size and power performance of the LR;, () test we run a
small monte-carlo experiment based in the following data generating process:

Ysr = PYs—1r+Usr s5=1,2,3,4 (21)
with
a) o1 = 09 @y=1 @3=125 ¢,=1/(p19023)
b) p1 = 09 @y=1 @3=125 o, =038/(p1p0503)
o o1 = 09 @=1 p3=125 ¢, =0.5/(p10293)

with the combination of parameters a) we are under the null of periodic in-
tegration, hence we will measure the empirical size of the test, and with the
combinations b) and ¢) we are under the alternative and we will measure the
empirical power of the test. We consider 3 alternative possibilities for ug,:

i) Usr = s Esr Niid(0,1)
1) usr = €sr— 05651, €57 Niid(0,1)
iii) s = 0.5Us_1r+Eer £or Niid(0,1).

The results are obtained for a sample size of 4N = 200 and based on 5000
replications, we report the results obtained when the order of the fitted models
(18)/(19) goes form 1 to 5. The results obtained for i), 4i) and #i¢) are collected
in tables 9.b, 9.c and 9.d respectively. Clearly the best performance in terms of
size and power it is obtained with and PAR(1) for ), with a PAR(5) for ii) and
with a PAR(2) for ii). Note that we obtain a reasonable performance in terms
of empirical size and power in small sample for the data generating process (21)
without the presence of a structural break as in Perron and Vogelsang (1992)
we also consider a monte carlo experiment with a change in the mean using the
following data generating process:

Tor = —0.975—-0.42DUs; +ysr s=1,2,3,4 (22)
Yst = Ps¥s—1,r + Usr
usy = 0.5us_1,+esr €57 Niid(0,1)
with
a) @1 = 09 @y=1 3=125 ¢4 =1/(p1p25)
b) o1 = 09 @y=1 p3=125 ¢, =0.8/(p1p203)-

The results for this case are collected in table 9.e. Note that in this case we
also obtain the best performance in terms of empirical size and power when the
correct order of augmentation it is used, that is when a PAR(2) order it is used
to fit models (18)/(19). In this case we also obtain a reasonable performance in
terms of empirical size and power.
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Remark 2 Following Carrion-i-Silvestre and Berenguer (2010), Zivot and An-
drews (1992) ,Gregory and Hansen (1996) and Perron (1997) based on the re-
sults of Proposition 1 it is possible to establish for LR, = sup:LR;, (\) :

AEA

LR;, = sup {[DE(\)] ™ (INU (V))*} (23)
AEA

where A is closed subset of the interval (0,1).

In this case using the supremum (sup) it is also possible to obtain a test that
do not depend on A and hence it is possible to use the critical values reported in
table 1 of Perron and Vogelsang (1992b). Finally in the case of (20) the critical
values are reported in Perron (1990) table 4.

5.2 Empirical results

In this subsection we collect the empirical results for France, Italy, Netherlands,
Finland and Spain. It is clear for pictures 10 to 14 that for all the mentioned
countries we observe a clear change in the mean associated with the change
of the national currencies by the Euro. Hence in this section we use LR;, ()
as we know the break date. We determine the order on the unrestricted and
restricted PAR(p) models (18)/(19) with the AIC and BIC criteria starting for
a maximum order of p = 5. In this case we also report the result obtained with
the statistic Fper to test the null of non periodic variation in the coefficients
in the model (18) Hy : ¢;; = ¢; for j = 1,---p. We also report the results
obtained for the LR;, (\) test described in the previous subsection and finally
assuming that there is a co-break we report the results obtained with the LRc g
to test the null of the absence of cointegration between the ratios exp/gdp and
imp/gdp. These results could be found in tables 10 to 14. Note first that with
the Fje, test we obtain evidence against the null for Italy, Finland and in levels
for Netherlands. We only clearly reject the null of periodic integration with the
LR;, ()\) test in the case of France. We find evidence of cointegration between
the exp/gdp and imp/gdp in logs for the case of Netherlands and Finland, and
reject the null of no cointegration for Spain but only at the 10%.

Finally it will be interesting to extend the approach of Gregory and Hansen
(1996) to the case of periodic cointegration, in order to allow for breaks in the
cointegration vector, but the this is part our future agenda...

6 Concluding remarks.
7 References.
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Table 1.a: Australia

Fper LR MSB, | MSB, VRT
exp/gdp | 9,2262%F | 12,4398%F | 0,2741 | 0,2876 | 0,0576
imp/gdp | 7,7790%F | 6,3479 0,3841 | 0,4076 | 0,0649
In(exp/gdp) | 6,9374%% | 12,6438 | 0,2798 | 0,2825 | 0,0600
In(imp/gdp) | 11,2127%% | 7,1483 0,3329 | 0,3462 | 0,0618
dif 1,0388 | 18,3054%* | 0,1838%* | 0,1894%* | 0,0149
difln 1,8039 | 18,7643%* | 0,1817%* | 0,1044% | 0,0098%*

** and * statistically significant at a 5% and 10% respectively.

Table 1.b: Australia

exp/gdp | imp/gdp | In(exp/gdp) | In(imp/gdp)

) 0,785 0,791 0,713 0,758

Dy 0,967 1,045 1,006 1,062

B3 1,324 1,138 1,251 1,098

P4 0,994 1,062 1,115 1,132

LRcr 23,3558%F 33,1368%*
Table 2.a: Canada
Fer LR MSB, | MSB, VRT
exp/gdp 9,2664%* 3,5365 0,4179 0,4175 0,0765
imp/gdp 6,7301%F 3,3886 0,4202 0,4195 0,0790
In(exp/gdp) | 7,0393%* 3,6664 0,4465 0,4474 0,0797
In(imp/gdp) | 26,0935%* | 3,8353 0,4291 0,4283 0,0814
dif 3,4386**F | 9,5601%F | 0,1663** | 0,1708%* | 0,0208
difin 2,6053%F | 13,0961%F | 0,1826%F | 0,1792%F | 0,0095**
Table 2.b: Canada
exp/gdp | imp/gdp | In(exp/gdp) | In(imp/gdp)

o, 1,1384 1,0853 1,1376 1,0690

Oy 0,9160 | 0,9110 0,8967 0,8756

O3 0,9867 | 1,0424 1,0797 1,2053

b4 0,972 0,970 0,908 0,886

LRcr 20,9052%* 290,5145%*
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Table 3.a: Denmark

Fper LR MSB, | MSB, | VRT
exp/gdp 4,7637**% | 9,4217%F | 0,3013 | 0,3047 | 0,0641
imp/gdp 3,9823*%* | 14,4301** | 0,1941 | 0,2103 | 0,0149
In(exp/gdp) | 3,4351%% | 6,9169 | 0,3046 | 0,3077 | 0,0624
In(imp/gdp) | 3,4995** | 13,5095** | 0,1981 | 0,2115 | 0,0149
dif 32743 | 6,9876 | 0,4410 | 0,4329 | 0,0681
difin 3,1794** | 8,1569* 0,4362 | 0,4385 | 0,0637
Table 3.b: Denmark
exp/gdp | imp/gdp | In(exp/gdp) | In(imp/gdp)
P 0,9624 1,3365 0,9613 1,3120
o 1,0177 0,8306 0,9996 0,8743
@3 1,2462 1,0054 1,3155 1,0011
Py 0,8192 0,8960 0,7911 0,8708
LRcgr 7,5035 7,3776
Table 4.a: Sweden
Fper LR | MSB, | MSB, | VRT
exp/gdp 3,5257*%* | 3,8686 | 0,2777 | 0,2721 | 0,0368
imp/gdp 4,0235%* | 6,3992 | 0,2505 | 0,2491 | 0,0343
In(exp/gdp) | 3,9594** | 3,5997 | 0,2732 | 0,2675 | 0,0348
In(imp/gdp) | 3,9580** | 6,2928 | 0,2523 | 0,2501 | 0,0331
dif 4,3273** | 5,4004 | 0,3202 | 0,3387 | 0,0250
difin 5,2382** | 2.2068 | 0,3021 | 0,3313 | 0,0217
Table 4.b: Sweden
exp/gdp | imp/gdp | In(exp/gdp) | In(imp/gdp)
P 1,1255 1,1227 1,0823 1,1039
Pq 0,9395 0,9824 0,9574 0,9999
o4 1,513 | 1,1266 1,2000 1,1273
Py 0,8214 0,8048 0,8042 0,8036
LRcr 7,1242 2,5414
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Table 5.a: United Kingdom

Fper LR MSBy, MSB, VRT
exp/gdp 0,2558 6,1229 0,2299 0,2483 0,0252
imp/gdp 3,5524** | 9,6687** 0,2171 0,2301* 0,0308
In(exp/gdp) 0,3915 5,8637 0,2752 0,2635 0,0274
In(imp/gdp) | 2,7003** 8,6335% | 0,1964* | 0,2038* 0,0351
dif 2,7003** | 13,5919** | 0,1785* | 0,1690** | 0,0131*
difin 3,7082%* | 15,3947** | 0,1555* | 0,1591** | 0,0115*
Table 5.b: United Kingdom
exp/gdp | imp/gdp | In(exp/gdp) | In(imp/gdp)
o1 0,9866 0,9618 0,9578 0,9077
Py 1,0675 1,1846 1,0768 1,1893
Pq 0,9547 0,9128 1,0082 0,9651
Py 0,9946 0,9616 0,9617 0,9598
LRcr 14,0012 15,4674%F
Table 6.a: Norway
Frer LR MSB, | MSB, | VRT
exp/gdp 1,4852 | 6,4036 | 0,1920* | 0,1932* | 0,0398
imp/gdp 2,1442*%*% | 27533 | 0,2944 | 0,2882 | 0,0650
In(exp/gdp) 1,5214 | 6,4674 | 0,1928* | 0,1944* | 0,0382
In(imp/gdp) | 1,7184* | 2,3716 | 0,2746 | 0,2721 | 0,0655
dif 2,9522%* | 39529 | 0,2589 | 0,2590* | 0,0648
difin 2,4200*%* | 3,3283 | 0,2762 | 0,2785 | 0,0670
Table 6.b: Norway
exp/gdp | imp/gdp | In(exp/gdp) | In(imp/gdp)
o1 1,0061 0,9471 1,0272 0,9604
Py 0,9080 0,9299 0,8724 0,9245
Pg 1,2785 0,8408 1,3097 0,8800
Py 0,8563 1,3506 0,8520 1,2798
LRcr 9,8643* 9,5170*
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Table 7.a: Switzerland

Fper LR MSB, | MSB, VRT
exp/gdp | 3,7263%F | 1,1613 | 0,2344 | 0,2351 | 0,0111%
imp/gdp 0,5875 | 4,3516 | 0,1997 | 0,1976* | 0,0084**
In(exp/gdp) | 4,6170%% | 1,1163 | 0,2320 | 0,2342 | 0,0111%
In(imp/gdp) 0,7261 | 4,0753 | 0,2037* | 0,2031* | 0,0085**
dif 5,0733%% | 21789 | 0,2294 | 0,2230 | 0,0121%
difin 6,2268*%* | 1,9552 | 0,2381 0,2330 | 0,0124*
Table 7.b: Switzerland
exp/gdp | imp/gdp | In(exp/gdp) | In(imp/gdp)
o, 1,1748 | 1,0669 1,2062 1,1041
o 1,0906 1,0369 1,0615 1,0119
Ps 1,0924 | 1,0500 1,1387 1,0928
Py 0,7145 0,8609 0,6859 0,8190
LRcr 1,9734 1,7272
Table 8.a: Japan
Frer LR MSB, | MSB, | VRT
exp/gdp 4,3632%* 3,2341 0,2863 | 0,2851 | 0,0246
imp/gdp 2,2274%* 4,7804 0,3256 | 0,3267 | 0,0257
In(exp/gdp) | 2,8044** 2,9987 0,3039 | 0,3022 | 0,0248
In(imp/gdp) 0,2432 3,2508 0,3208 | 0,3159 | 0,0255
dif 11161 | 15,8320%% | 0,2180 | 0,2190% | 0,0112*
difln 1,0003 8,1958%* 0,2420 | 0,2418 | 0,0173
Table 8.b: Japan
exp/gdp | imp/gdp | In(exp/gdp) | In(imp/gdp)
£} 00324 | 1,0434 0,9054 0,0786
?q 1,1829 1,0514 1,1573 1,0267
Ps 1,0332 | 1,0310 0,9961 1,0125
Py 0,8775 0,8841 0,9582 0,9831
LRcr 14,1942%% 12,1204%%
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Table 9.a: Empirical quantiles of LR;,.

A

0,9

0,95

0,975

0,99

0,2

8,5077

10,3599

12,1084

14,3974

0,3

9,0153

10,8519

12,5488

14,8566

0,4

9,3382

11,1417

12,9004

14,9936

0,5

9,3446

11,1893

12,9652

15,3002

0,6

9,3315

11,3013

13,0715

15,4670

0,7

8,0711

10,9550

12,7243

14,7483

0,8

8,4180

10,3099

12,1546

14,5669

Table 9.b: Empirical size and power of LR;, for (21) with 7).

II._ e | A|PARQ) | PAR(2) | PAR(3) | PAR4) | PAR(5)
1]02] 0037 0036 0040 0046 | 0,041
1]03] 0035] 0037 0039 | 0044 0042
1]04] 0036 0038 0038 0043] 0049
105 0036] 0037 0038 003 0040
1706 0035] 0038 003 0041 ] 0045
107 0038] 0038 003 0037 0033
1]08] 0039] 0034 003 003 0033

0802 0229] 0233 0243 0239 0,205
08]03] 0205] 0209 0213] 022 0185
0804 0193] 0201 0202 0203 0,180
0805 0177 0,18 | 0,187 0,194 0,169
0806 0178 0187 | 0,19 | 0,195 | 0,166
0807 0196 | 0,194 0,193 0,190 | 0,169
0808 ] 0223] 0219 0217 0198 0173
0502 0973 0934 0902 0855 0,763
05/03] 0961 0923 0877 0821 | 0,734
05 /04| 0951 0908 0858 0,798 0,709
0505 0947 0903 0847 | 0,87 | 0,694
05 /06| 0950 | 0908 0861 0,793 0,710
0507 0959 0921 0864 0806 0,714
05 /08| 0968 0932 0892 0830 0,738
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Table 9.c: Empirical size and power of LR;, for (21) with 4i).

1

I[._ o | A|PARQ) | PAR(2) | PAR(3) | PAR(4) | PAR(5)
1 02| 0611 | 0206 | 0,099 | 0074 | 0,050
1 03] 0651 | 0215 | 0,093 | 0068 | 0,052
1 04 0671 | 0201 | 0,085 | 0062 | 0,046
1 0,5 0,684 0,199 0,084 0,057 0,040
1 0,6] 0660 | 0199 | 0,082 | 0058 | 0,045
1 0,7 0,635 0,191 0,084 0,055 0,041
1 08| 058 | 0179 | 0081 | 0051 | 0,032

0,8 0,2 0,997 0,766 0,482 0,366 0,278
08 |03 099 [ 0,750 | 0451 | 0,338 | 0247
0,8 0,4 | 0,99 0,729 0,431 0,314 0,242
08 |05 099 [ 0718 | 0416 | 0,293 | 0217
0,8 0,6 | 0,99 0,730 0,419 0,296 0,218
08 |07 099 | 0724 | 0424 | 0298 | 0218
0,5 0,2 | 1,000 1,000 0,987 0,943 0,868
05 |03 1,000 [ 1000 | 0979 | 0926 | 0,826
05 |04 1,000 [ 1000 | 0975 | 0921 | 0819
05 |05 1,000 [ 0999 | 0974 | 0912 | 0,805
05 |06 1,000 [ 1000 | 0976 | 0910 | 0810
05 |07 | 1,000 [ 0999 | 0977 | 0,908 | 0,806
05 |08 1,000 | 1,000 | 0985 | 0930 | 0,840
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Table 9.d: Empirical size and power of LR;, for (21) with 4i).

1

I[._ o | A|PARQ) | PAR(2) | PAR(3) | PARW4) | PAR(5)
1[02] 0016 0043] 0053 0070 0,155
1[03] 0019 0044 005 | 0079 0,153
1[04 0019 0040 0054 | 0067 0,144
1]05 0,023 0,043 0,052 0,065 0,139
1706 0018 0043] 0052 0,064 0,141
1]0,7 0,017 0,037 0,044 0,058 0,136
1[08] 0017 0036 | 0044 0061 0,33
0,810, 0,003 0,229 0,229 0,217 0,203
08 03] 0002 0208 0214] 0202] 0,187
0,8 |04 0,002 0,199 0,201 0,190 0,172
0805 0003 019 | 0,194 0189 | 0,170
0,806 0,002 0,185 0,187 0,174 0,165
08]07] 0002 0191 0,189 [ 0176 | 0,160
0,808 0,001 0,207 0,198 0,180 0,167
05[02] 0067 0874 0831[ 0776 | 0,699
05 03] 0048 0835 0,789 [ 0726 0,650
0504 0040 0829 0781 [ 0717 | 0,633
0505 0038] 082 0,770 0707 0,621
05[06] 0041 0837 0,780 [ 0703 | 0,632
0507 0048 0829 0,776 | 0707 | 0,633
05[08] 0065 0863 0814[ 0743 | 0,660
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Table 9.e: Empirical size and power of LR;, for (22).

I[._ o | A|PARQ) | PAR(2) | PAR(3) | PARW4) | PAR(5)
1102 0,016 0,041 0,053 0,071 0,154
1103 0,017 0,037 0,046 0,061 0,143
1104 0,019 0,043 0,057 0,072 0,145
1105 0,019 0,041 0,053 0,063 0,145
1106 0,019 0,038 0,048 0,066 0,134
1107 0,017 0,034 0,041 0,050 0,125
1108 0,016 0,036 0,041 0,056 0,134
0,8 | 0,2 0,005 0,235 0,232 0,217 0,202
0,8 10,3 0,003 0,221 0,221 0,210 0,185
0,8 | 0,4 0,002 0,203 0,212 0,199 0,174
0,8 | 0,5 0,002 0,191 0,180 0,173 0,165
0,8 | 0,6 0,002 0,197 0,198 0,183 0,170
0,8 | 0,7 0,001 0,205 0,198 0,188 0,170
0,8 1 0,8 0,002 0,221 0,211 0,192 0,169

Table 10: France
Frer LR, (\) | LRcr
exp/dgp | 0,2956 | 13,7320%* | 2,7537
imp/dgp | 1,3455 | 15,6965**
In(exp/dgp) | 0,1015 | 13,7380** | 3,5439
In(exp/dgp) | 0,3885 | 13,9926**
Table 11: Italy
Fper LR;, (A) LRcr
exp/dgp | 4,2104*** 6,7669 | 4,2554
imp/dgp | 6,7757*** 8,7128
In(exp/dgp) 2,2115* 8,4031 | 4,7141
In(exp/dgp) | 2,8290** 8,9749
Table 12: Netherlands
Fper LR, (N) LRcr
exp/dgp | 6,1678*** | 12 7855%* 4,9678
imp/dgp | 6,8509%** 8,8625
In(exp/dgp) 1,1100 9,6861* | 15,3403**
In(exp/dgp) 0,3862 9,9918*
Table 13: Finland
Frer LR;, (N) LRcr
exp/dgp | 4,8178*** 2,6434 3,9836
imp/dgp | 3,1068%* | 13,8461**
In(exp/dgp) | 3,2237*** 4,1203 | 11,4335**
In(exp/dgp) 2,0870%* 6,9096
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Table 14: Spain
Fper LR;, (A) LRcr
exp/dgp | 0,9876 4,6657 | 10,7291*
imp/dgp | 0,3175 | 10,4385*
In(exp/dgp) | 0,6198 6,7820 | 10,0310%*
In(exp/dgp) | 0,6668 | 11,3004*

Proof. First note that from (14) it is possible to write:
Yr—Yr-1= (@0 + @1[/) \II(L)_leT =C (L) u, (24)

with u, = ¥(L) 'e,, them we have that:

yr YO+C(1>ZUJ+OP<1)
=1

y0+ab'2uj+0p(1).

j=1

Replace E; by (vD (NB)_+ u.), hence we have:

y- =yo+ab' Y u;+ab'yDU, + O, (1)

j=1

As in Perron and Vogelsang (1992a) it is possible to write for s, = ysr — 1, —

’?:DUsm where 7§ = Nb_l qu—vil Ysr = AN Z-Irvil Ysr and yls) = (N - Nb)il ZivabJ,.l Ysr =
-1 71 N

(1 - )\) N ! ZT:Nb+1 yST:

gST = Ysr — g? = aSST - asSa Zf T< NB
Ust = Ysr — gls) =a,5; — asgb - asb,’y (1 - )\/) / (1 o )\) Zf Np=s7< NIB (25)
gm— = Ysr — gf = aSST - asgb + asb,"y - asb,"y (1 - )‘l) / (1 - /\) Zf NIB <7< N

with S, = b'> u;, So = N'YM S, = A'NIY ™S, and S, =
j=1

(N=No) 'S 1 Sr=(1=N)"'N-1Y S Additionally we define

g% as the residuals from a projection of §s, on D (N B)S’T in the case where

we do not have serial correlation and as the the residuals from a projection of

Jsr on D (NB), _ and its p — 1 lags, assume for simplicity the absence of serial

correlation, hence:

Usr = asSr—asS, if 7<Np

Yoo = 0 if 7=Np+1 (26)
g = aSST—asgb—asb"y(l—)\/)/(l—)\) if Ng+1<7<Nj
U = aSr—aSy+aby—aby(1-XN)/(1-X) if Ny<7<N
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Following the lines of the proof of Theorem 1 in Boswijk and Franses (1996) it
is convenient to write (18)/(19) using conventional time subscripts and seasonal
dummy variable notation (Dg; taking the value unity when observation ¢ falls in
season s and zero otherwise). Employing this notation yields the representation
(see Boswijk and Franses, 1996, p. 238):

4 4 p—1

G = mDudi 1+ D 0 Dadi o+ )Y Wy (Daliij = 0o Dutli—j 1) + e
s=1 s=1 j=1

(27)

where the restrictions ¢p,¢p30, = 1 is imposed. Note that since the de-

terministic terms enter unrestrictedly then §; are the residuals as defined in
(25)/(26). Let 6 = [64,65, 0;]' denote the full parameter vector with 6, = 71,

0/2 = [(1027 ©3, 904] and 9?3 = [djll, e aqzzjl,p—la T 7w413 T 71/14,p71]~ Under the
null hypothesis m; = 0, hence this parameter is associated with the unit root
while, ¢,, ¢35 and @, are cointegration parameters (with ¢, defined from the
periodic unit root restriction as ¢; = (@2903904)71), and 03 collects the parame-
ters associated with the stationary regressors in (27). Let z = [2{, 27, zf’]/ be
defined conformably with 6 as z; = 97;/00, and hence

2zt = Dufi—, 2i=Hup up= [uig,uas, use, uar]
where
p—1
Ust = D1~ > Vi iDerinl—icn s=1,2,34 (28
1=1
—21 1 0 0
P2
o = —:‘j—; 010
-2 0 0 1
Pa

Note that for z; we have that

T T N

D 1 D . o A1 N

o °N E zieg = o °N E Dyji1ee =0"°N E Ya,r—1€17 =
=1 =1

= =1

Ny
= O'iQNilg 3457_1517——0'72]\[713.45@5 E1r —

T=1
N

—0?N"'ayS, Y e +0,(1)
T=Np+1
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and

T T N
o INT2Y (2D = 0NN (Dudie1)’ =0 NN (Gur1)’ =
t=1 t=1 T=1
= 0'_2]\7_2 Z (3457-_1)2 + O'_QN_lA (a4§a)2 + O'_QN_l (1 — )\) (a4§b)2 +
Ny N
—20'_2N_234§a Z (345.,-_1) — 20‘2N_2a45b Z (345.,-_1) + Op (1) .
T=1 T=Np+1

From lemma 1 in Boswijk and Franses (1996) it is possible to establish:
1
o 2Nt 2355771517 = o_zwas/ w(r)dEy (r)
0

1
071N73/2Za357.,1 = Uﬁlwas/w(r)dr
0

0_71N71/2Z€17 = 0’71E1 (1)
1

a_lN_?’/zZasST_l = a_lwa4/ w(r)dr
~ A

oTINTV2N e = o (B (1) - Er (V)
Np

1
o 2N"? 2(3357—1)2 = U*QwQaz/ [w (r)]? dr
0

Ny, A
o IN"V2a,5, = o 'ATINT3/2 ZaSST = cflwas)\_l/ w (r)dr
=1 0
N 1
o 'N"?a,8, = o H(1-N)T'N3? Z a,S; = o 'wa, (1 -\ / w(r)dr
r=N,+1 A

Hence we have that:

o 2N"1 i zier = 0 ‘way [/Olw (r)dE; (r) — 271 [/OAU) (r)dr| E1 (\) +
—(1-n [/}\110 (r) dr] (B, (1) - By ()\))} _
= o0 %way [NU (E})] (29)

where

1 A
[NU (Ey),(\)] = /0 w(r)dE; (r) — AL [/0 w(r)dr| By (\) +

—a- [ / w(r) dr] (1 (1) = By ()
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and:

T 1 A 2
o iN"? Z (23)2 = 0'72(,02(12/ [w(r)]® dr — o~ 2w?aA! </ w (1) dr) -
t=1 0 0

o202 (1 - A)! (/:w (r) dr>2

= o %w?a} [DE]

where

pEo = [ Wi ( [we dr>2
TRV (Alw(r)dr>2

Note also that using Lemma 1 and (28) it is possible to establish:
o PN 2le, = o PwH'AU(1) [NU (E)]
o PN 2l = oW H'AV (1) Ay [DE]
o INT2Y 272 = o wW?H'AV (1) W (1) AH [DE] (30)
where

INU(E),(\)] = / w(r) dE (r) -

At [/Okw (r)dr

—a-N [ / w(r) dr} (B(1)~ E(V)

A = diaglas, a1, a2,a3] = diag [pep304, 1, a5 203)
Al = dzag [a’4a 07 07 0] = dlag [9029035047 07 07 0] .

E(\)+

Under the periodic unit root null hypothesis the PAR(p-1) regressors Dy y;—j —

©s—jDstyt—j—1 collected in the vector 2} are stationary with

O'_QN_lzZ?ET = N (0,V3)
a_zN_Qsz’z?' — V.

Finally , reflecting the different rates of convergence for the parameter estimates
corresponding to the nonstationary PI regressors and those for the stationary
PAR(p-1) component in the augmented regression (7) or (??), we have that:

NEY S = 0,()
N72223z§ = 0,(1).
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The distribution of the LR test is established by Boswijk and Franses (1996)
using

N2
(V1)
LR= ———"——7 +0,(1). (31)
(Yy'QoYy")
where Yy = diag [N x I, N1/2 x I4(p_1)], (YingYJ\?l)n is the first element
of the principal diagonal of the inverse matrix (Y1\7 1Q9Y]\7 1)_1, N6, is the first

element of (YﬁlQQY]\?l)_l Y]\71Q.9, and gg and Qg are the score and negative
of the Hessian matrix, respectively, formulated in terms of 6. Note that, as in
Boswijk and Franses (1996),

_ vl o S\ e
(YNlQQYNl) YN1q9: (0‘ QYleZtZQYN1> g 2Ylezt8t.

From (29), (?7?) and (30) it is easy to see that

YJ\71Q9Y]\71 = [K,K[QEO‘)] ‘93}
o [CRREO]
where
K = Z{Alfxpa)AH]

Therefore,
_ T
(YN1Q0YN1) Yy'a = [

Note that [DE, ()\)] is a scalar and also that for o=! (K’K)f1 K'[NU (E), (M)
it is possible to write:

o~ (K'K) " K'[NU (E)] = /0 w(r)dS (r)

. [/OAw (r)dr

TR [/:wm ] (s - 5 )

S(\) (34)

where
S(r) = o Y K'K) 'K'E(r).

Now, partitioning K = [Klng] to focus on the first element of (YA?ngYJ\?l) -t Yglqe,
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namely N6y, (33) and (34) implies

Nél =

where
Si(r) =
My, =

[DE (V)] { / () s (r)

A
At VO w (r) dr] S (\) —

—a-n7f () ) (510 - 510 }

o N (K| MyKy) " KL MyE (r)
I — Ky (K,K») ™' Kb,

In Boswijk and Franses (1996) it is shown that Sy (r) = (K{MgKl)_l/Qw (r)

hence we have:

Nél =

with

[INUN)] =

note also that:

(Vy'Qovy")" =

1
! —1/2 -1 w (r) dw (r) —
(K{MoKy) ™2 [DE] {/ () du (r)

. [/O/\w (r)dr

T [/:ww i (o (1)~ w ()} -

(K{MaKy) 2 [DE (V)] 7! [NU (V)] (35)

/Olw (r)dw (r) = A1 [/OAw (r) dr] w(A) —

~a-nf w(r) arl w ) - w )

w(A) =

(K'K)" [DE) ™ = (K{MoK) "' [DE(W] ™. (36)

Then finally substituting (35) and (36) into (31) the required result is easily

obtained.
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Figure 1: Australia
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Figure 2: Canada
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Figure 3: Denmark
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Figure 4: Sweeden
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Figure 6: Norway
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Figure 7: Switzerland
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Figure 8: Japan
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Figure 9: France
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Figure 10: Italy
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Figure 11: Netherlands
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Figure 12: Finland
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