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Abstract

We analyze the recent imbalances in external accounts that have his-
torically a¤ected most of the developed countries from the point of view
of trade balance. Following previous empirical studies (Husted (1992),
Arize (2002) and Hamori(2009)) we analyzed the long-run relationship
linking exports and imports, using quarterly data for Australia, Canada,
Denmark, Sweden, United Kingdom, Norway, Switzerland, Japan, France,
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Italy, Netherlands, Finland and Spain. We use periodic integration and
cointegration to deal with the seasonality and nonstationarity present in
our time series and to analyze the long-run relationship between exports
and imports. Finally in the case of France, Italy, Netherlands, Finland
and Spain a clear change in the mean associated to the change of cur-
rencies it is observed in the data, hence we extend the test of periodic
integration proposed by Boswijk and Franses (1996) allowing for a change
in the mean.

VERY PRELIMINARY VERSION

1 Motivation

This paper analyzes the recent imbalances in external accounts that have his-
torically a¤ected most of the developed countries from the point of view of trade
balance. The relevance of the disequilibria in the external balances during the
last decade has renewed the academic interest for this issue. In particular, the
case of the EMU countries deserves special attention as the union�s net external
position is close to equilibrium but many of their members present very large
and persistent de�cits or surpluses.
The approach of this paper follows the traditional theory that postulates

the trade channel as the external adjustment mechanism. For this reason, the
variables of interest are exports and imports of the countries analyzed.
Previous empirical studies, such as Husted (1992), Arize (2002) and, more

recently, Hamori(2009) have analyzed the long-run relationship linking exports
and imports using the cointegration methodology. Although the majority of the
empirical evidence is based on annual or quarterly data and the latter can be
a¤ected by seasonal e¤ects, to the best of our knowledge, the empirical literature
has neglected the presence of seasonal non-stationary components giving rise to
instabilities in the long-run relationships.
A simple way to deal with the instability of the relationships between el-

ements of the current account, without assuming the existence of unobserved
components, is the use of seasonal and periodical cointegration techniques. Sea-
sonality is a phenomenon that has not received su¢ cient attention in the eco-
nomic literature in general. The standard treatment is either to assume that the
seasonality that appears in the time series is deterministic or, alternatively, to
use a method to remove the seasonal component of the variables and estimate
the models using seasonally-adjusted variables.
When it is assumed that the seasonality is deterministic, the normal prac-

tice is to use seasonal dummies, which implicitly assumes that seasonality is a
deterministic phenomenon. In this case, the methods of seasonal adjustment
commonly used are variants of the X-11 procedure (X-12 ARIMA and X-13
ARIMA SEATS) of the U.S. Census Bureau as well as procedures based on
ARIMA-SEATS SPAN models developed at the Bank of Spain. However, these
procedures usually corrupt the stochastic structure of the variables.
Ghysels (1990), Ghysels and Perron (1993) and del Barrio Castro et (2002)

show that the removal of seasonality with X-11 and SEATS standard proce-
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dures introduces excessive persistence in the series, which reduces the power
of unit root tests. Maravall (1993) shows how seasonal adjustment procedures
induce non inverted moving average processes in the �ltered series, invalidating
the inference made in most of the unit root and cointegration tests. Olekalns
(1994) extends this result to cases in which dummies or band-pass �lters are
used to remove seasonality. Abeysinghe (1994) shows that treatment of sea-
sonal stochastic dummies leads to a spurious regression problem. In order to
avoid these problems we intend to use a seasonal treatment that includes sea-
sonal unit roots (Hylleberg, 1990, Hylleberg et al, 1995, Rodrigues and Taylor
2007) as well as periodical integration tests (Boswijk and Franses 1995, del Bar-
rio Castro and Osborn, 2010) to determine the type of seasonality present in
the non-stationary series analyzed. As shown in Ghysels and Osborn (2001),
this point is crucial as it determines the type of cointegration between the set
of variables analyzed. Speci�cally, if the series are seasonally integrated, long-
term relationships can occur at each frequency, that is, �seasonal cointegration�,
(Lee, 1992 and Johansen and Schaumburg, 1999) or between the seasonal com-
ponents of the series, namely �periodic cointegration� (Boswijk and Franses,
1995). However, if the series are periodically integrated, they can only be pe-
riodically cointegrated (del Barrio Castro and Osborn 2008). Moreover, if one
does not take into account all the above mentioned and ignores the univariate
properties of the series analyzed, it may originate problems of spurious cor-
relations and unstable parameterization. Therefore, an important part of the
instability observed in the estimates of traditional export-import relationships
could be due to the omission of the above phenomena. Finally, another factor
to consider is the modeling process where there is seasonal or periodical coin-
tegration in the context of error correction models because the role that both
types of cointegration can perform in improving the quality of the estimates and
the stability of the parameters can be very relevant. The omission of common
trends in seasonal frequencies or shared by the seasons of the series analyzed can
lead to problems of omitted variables and instability in the estimated models.
Therefore, in this paper the econometric analysis consists of �rst determining

the order of integration of the trade �ows and then, if nonstationary, to test and
estimate the existence of a long-run relationship between a country�s exports
and imports. Researchers confronted with nonstationary seasonal time series
have two alternatives methods to deal with non-stationary seasonality Seasonal
integration (SI) and or Periodic Integration (PI). Periodic Integration is more
attractive than Seasonal Integration for the following reasons, �rst PI can arise
naturally from the application of economic theory when the underlying economic
driving forces, such as preferences or technologies, vary seasonally, as shown by
Gersovitz and McKinnon (1978), Osborn (1988) and Hansen and Sargent (1993).
Secondly, from an econometric perspective, PI is attractive because it implies
that the seasons of the year are cointegrated with each other (Osborn (1991),
Franses (1994)), and hence ensures that the patterns associated with the various
seasons are linked in the long-run.
Finally we also extend the test of periodic integration proposed by Boswijk

and Franses (1996) allowing for a changing mean in order to obtain the results
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for France, Italy, Netherlands, Finland and Spain, where a change in the mean
in observed for exports and imports relative to the gross domestic product (see
pictures 9 to 13)
The rest of the paper is organized as follows. Section 2 presents the theoret-

ical background while section 3 states a review of the most relevant empirical
literature. The econometric tests and the empirical results are reported in sec-
tion 4 for the countries not a¤ected by a change in the mean. Section 5 present
the extension of the test for periodic integration allowing for a change in the
mean, and also the empirical results for France, Italy, Netherlands, Finland and
Spain. Finally, section 6 concludes.

2 Theoretical model

In this paper we follow Huster (1992) who presents a simple theoretical model of
a small open economy with no government where there is a representative con-
sumer. This economy produces and exports a composite good. The consumer
can borrow and lend in the international markets using one-period instruments.
His resources are output and pro�ts from �rms. that are used for consumption
and savings. The consumer�s budget constraint in the current period is:

C0 = Y0 +B0 � I0 � (1 + r0)Bt�1 (1)

where C0 is current consumption; Y0 is output, I0 is investment, r0 is the one
period world interest rate, B0 is international borrowing that can be positive or
negative, whereas (1+r0)Bt�1 is the stock of debt by the agent (or the country�s
external debt). The budget constraint must hold for every period. Therefore,
they can be combined to obtain the intertemporal budget constraint by iterating
(1) forward:

B0 =
1X
t=1

�tTAt + lim
n!1

�nBn (2)

where TAt = Xt �Mt(= Yt � Ct � It) represents the trade balance in period
t (that is, income minus absorption), Xt are exports, Mt imports, �0 = 1

(1+r0)

and �t is the discount factor (the product of the �rst t values of �. When the
last term in equation (2) equals zero, the amount that a country borrows (lends)
in international markets equals the present value of the future trade surpluses
(de�cits).
Assuming that the world interest rate is stationary, Husted(1992) expresses

(1) as:
Zt + (1 + r)Bt�1 = Xt +Bt (3)

where Zt = Mt + (rt � r)Bt�1. Solving forward as Hakkio and Rush (1991)
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do the next expression is obtained:

Mt + rtBt�1 = Xt +
1X
j=0

�j�1` [�Xt+j ��Zt+j ] + lim
j!1

�t+jBt+j ; (4)

where � = 1
(1+r) . The left-hand side consists of spending on imports and inter-

est payments (receipts) on net foreign debt (assets). If we substract Xt from
both sides and multiply by minus one, the left hand side becomes the economy�s
current account. Assuming that both Zt and Xt are I(1), (4) can be rewritten
as:

Xt = �+MMt � lim
j!1

�t+jBt+j + �t (5)

where MMt = Mt + rtBt�1:Assuming that the limit term equals zero, (5) we
can obtain a testable equation:

Xt = a+ b�MMt + et (6)

where under the null hypothesis that the economy satis�es its intertemporal
budget constraint, we expect b = 1 and et is stationary. Thus, if both vari-
ables are I(1), under the null, they are cointegrated, with a cointegrating vector
(1;�1).
We have also assumed earlier than the world interest rate is stationary.

Therefore, the term rtBt�1 would also be stationary. In practice, we can test
for cointegration between exports and imports when we believe that the adjust-
ment works essentially through the trade channel. Alternative theories, such
as Gourinchas and Rey (2007) consider that changes in assets valuations have
been very important in the last twenty years. If this is the case, we should also
account for valuation e¤ects and our regression would su¤er from an omitted
variables bias.

3 Literature review

There are a few empirical studies that, in the last twenty years, have analyzed
the trade channel adjustment of the external accounts. A summary is presented
in the table below.
The evidence on cointegration is mixed. For a large group of countries there

is cointegration between exports and imports, as in Hamori(2009) and Nayaran
and Nayaran (2005), although the vector found is not frequently (1;�1). The
papers use either quarterly or annual data, in nominal and in real terms. Other
papers analyze relative exports and imports over GDP. In none of the papers
the authors consider the issue of seasonality, with the exception of Irandoust
and Ericsson (2002), that use seasonally adjusted variables in their analysis.
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Authors Countries analyzed Period Variables Sources Techniques

Azire(2002) 50, all continents quart., 73-98 nom. X/GDP and M/GDP dom. curr. IMF, IFS Johansen, SW, Hansen

Fountas and Wu (1999) US quart., 67-94 X, M, real, nominal, relative EG, structural breaks

Hamori (2009) G-7 countries annu, 60-2005 X and M, mill. US $, trade bal IMF, IFS panel unit roots and coint., IPS, Pedroni

Herzer and Nowak-L. (2006) Chile annu, 75-2004 real X and M domest. currency Chile Gregory-Hansen, DOLS, ECM

Husted (1992) US quart. 67-89 nom., real, di¤erenced ratios X and M IMF, IFS EG, ADF, Perron-breaks

Irandoust and Sjoo(2000) Sweden quart. 80-95 nom., real, X, M/GDP dom. currency Sweden VECM, Johansen, stability tests

Irandoust and Ericsson (2002) Fr, G, I, Sw, UK, USA quart. 71-97 real, log, seasonally adj. IMF, IFS VECM, Johansen, stability tests

Narayan and Narayan (2005) 22, least developed annu. 60-2000 nominal X and M IMF, IFS bounds ARDL, ECM, Hansen, DOLS
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4 Econometric techniques and results for time
series without change in the mean

As in Azire (2002) we have decided to analyze the nominal ratio exp/gdp and
imp/gdp in levels and in natural logs. In our case we have collected quarterly
data (not seasonally adjusted) for the following countries: Australia, Canada,
Denmark, Sweden, United Kingdom, Norway, Switzerland, Japan, France, Italy,
Netherlands, Finland and Spain. The evolution of the ratios is depicted in
�gures 1 to 13. In all the cases the sample ends in 2009Q1 but it starts in
1960Q1 for Australia, 1961Q1 for the UK, 1975Q1 for Finland, 1977Q1 for
Canada and Netherlands, 1978Q1 for Denmark and France and �nally 1980Q1
for the remaining countries.
Note that in the case France, Italy, Netherlands, Finland and Spain we

clearly observe a level shift (or change in the mean) that start in 1999Q1 associ-
ated with the change of the national currency for the Euro, hence we are going
to analyze the evolution of these countries in a separate section as we need to
deal with a structural break or a change in the mean
From pictures 1 to 8 we can observe that the ratios exp/gdp and imp/gdp

show clear seasonal variation but without huge seasonal oscillations. Note also,
that from the evolution of the time series presented in pictures 1 to 8, we do
not observe a deterministic trending behavior in our data, hence we are going
to consider only seasonal dummies in the deterministic part.
Researchers confronted with apparently nonstationary seasonal time series

require methods of analysis that concurrently deal with the seasonal and non-
stationary features of their data. Particularly within an economic context, the
concept of Periodic Integration (PI) often provides a useful framework for such
analysis for two reasons. Firstly, as shown by Gersovitz and McKinnon (1978),
Osborn (1988) and Hansen and Sargent (1993), PI can arise naturally from the
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application of economic theory when the underlying economic driving forces,
such as preferences or technologies, vary seasonally. Secondly, from an econo-
metric perspective, PI can be attractive because it implies that the seasons of
the year are cointegrated with each other (Osborn (1991), Franses (1994)), and
hence ensures that the patterns associated with the various seasons are linked
in the long-run. Indeed, the conventional class of integrated, or I(1), time series
form a special case of PI processes where the cointegrating vectors between
adjacent (seasonal) observations have the form (1, -1).
Taking into account the previous arguments and the evolution of the ratios

exp/gdp and imp/dgp for each country (�gures 1 to 8), we are going to focus
on periodic integration as a possible source of non-stationarity in our data. In
order to explicitly recognize the role of seasonality, it is often convenient to
represent a univariate time series as ys� , where the �rst subscript refers to the
season (s) and the second subscript to the year (�), as we have quarterly data
s = 1; 2; 3; 4. For simplicity of exposition, we assume that data are available
for precisely N years, so that the total sample size is T = 4N . Note that,
throughout the paper, it is understood that ys�k;� = y4�s+k;��1 for s� k � 0.
Applications of periodic processes within economics have focused on the

autoregressive case, with the zero-mean pth order periodic autoregressive, or
PAR(p) process, de�ned by

ys� = �s + �1sys�1;� + �2sys�2;� + � � �+ �psys�p;� + es� ; s = 1; 2; 3; 4 (7)

where es� is white noise. In (7) we only consider seasonal intercepts �s due
to the ratio nature of the analyzed data. Note that all the coe¢ cients in this
process may vary over seasons s = 1; :::; 4. The conventional (nonperiodic)
AR(p) process is a special case with �is = �i (s = 1; 2; 3; 4) for all i = 1; 2; : : : ; p.
However, in the presence of seasonality, it is important to consider the possibility
that the process may be periodic, with at least some AR coe¢ cients in (7)
varying over the year.
Under the assumption that ys� is integrated of order 1, and using a similar

notation to Boswijk and Franses (1996), (7) can also be written as

(ys� � 'sys�1;� ) = ��s ++ 1s
�
ys�1;� � 's�1ys�2;�

�
+ � � �+

+ p�1;s
�
ys�p+1;� � 's�p+1ys�p;�

�
+ es� (8)

where
Y4

s=1
's = 1. In the special case 's = 1 (s = 1; 2; 3; 4), (8) may be a

periodic I(1) process, such that the �rst di¤erence is a stationary PAR(p� 1)
process. On the other hand, when

YS

s=1
's = 1 but not all 's = 1 (s =

1; 2; 3; 4), (8) is a periodically integrated, or PI(1), process with the quasi-
di¤erence ys��'sys�1;� being stationary; see Ghysels and Osborn (2001, pp.153-
155) for further discussion of these possibilities. In the latter case ys��'sys�1;�
may have constant coe¢ cients over seasons, although for convenience we refer
to it as a stationary PAR process.
Boswijk and Franses (1996) analyze the distribution of the Likelihood Ra-

tio test statistic for the null of periodic integration
YS

s=1
's = 1 versus the
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alternative of
YS

s=1
's < 1 in (8), with this statistic de�ned by

LR = T ln

�
RSS0
RSS1

�
(9)

whereRSS0 andRSS1 denote the residual sum of squares under the null hypoth-
esis and from the unrestricted form (7), respectively. Under the null hypothesis
of a PI(1) or I(1) process, they show that this statistic has the same asymp-
totic distribution as the squared Dickey-Fuller t�statistic for a conventional
(nonperiodic) I(1) process.
In order to implement the previous test (31) we need to determine the order

p for the unrestricted and restricted models (7) and (8). To do that we follow
Franses and Paap (2004) and use the AIC criteria to determine p using 5 as the
maximin value. Franses and Boswijk (1997) also proposed a F-type statistic Fper
to test the null of non periodic variation in the coe¢ cients of (7) H0 : �js = �j
for j = 1; � � � p. The results of these tests are reported in tables 1.a to 8.a.
Note that models (7) and (8) tend to have a lot of parameters, and also that in
order to �t model (8) we will need non linear methods of estimation. Recently
del Barrio Castro and Osborn (2011) have proposed two non-parametric tests
(based on the Breitung (2002) and Stock (1999) unit roots tests) that allow
us to circumvent the limitations of the Boswijk and Franses (1996) test. They
propose to compute a variance ratio statistic for a given season s as

V RTs = N�2
PN

�=1 Û
2
s�PN

�=1 û
2
s�

s = 1; :::; 4 (10)

where Ûs� is the season-speci�c partial sum ûs1 + ûs2 + � � � + ûs� ; with ûs�

obtained as the OLS residuals ûs� = ys��b�0sz� from a regression of observations
for season s, ys� (� = 1; :::; N), on z� that collects the deterministic part, in
our case z� = 1. In order to test the PI(1)=I(1) null hypothesis, they use the
average variance ratio statistic

V RT = 4�1
4X
s=1

V RTs (11)

where each V Rs is de�ned in (10).
Additionally, based on Perron and Ng (1996) and Stock (1999) they pro-

pose to apply for a single season s, the corresponding season-speci�c MSB test
statistic:

MSBs =

 
N�2PN

�=1 û
2
s;��1bsl

! 1
2

s = 1; :::; 4 (12)

which requires an appropriate long-run variance estimator bsl for the annual
di¤erence �us� = us� � us;��1 relating to season s. bsl is obtained based
on sample autocovariances using the Barlett and quadratic spectral kernels,
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following Newey and West (1994, equations (3.8) to (3.15) and Table 1) data-
dependent bandwidth procedure.
As in the previous case they propose the use of the average MSB statistic

MSB = 4�1
4X
s=1

MSBs: (13)

del Barrio Castro and Osborn (2011) show that the distributions of the V RT
(11) andMSB (13) is the same as those reported for the original tests proposed
by Breitung (2002) and Stock (1999) respectively. The results obtained for these
tests are also reported in tables 1.a to 8.a. Finally, MSBband MSBq denote
the statisticMSB with the Barlett and quadratic spectral kernels, respectively.
From the results of the Fper test we �nd clear evidence of periodicity in both

exp/gdp and imp/gdp ratios as well as in their natural logs for the majority of
the countries. Exceptions are the case of Norway for exp/gpd and ln(exp/gdp),
Switzerland for imp/gdp and ln(imp/gdp), and Japan for ln(imp/gdp). For
Canada, Sweden and Japan all the periodic integration tests (LR, MSB and
V RT ) do not reject the null of periodic integration. In the case of Australia we
do no reject the null of periodic integration with theMSB and V RT tests. Con-
cerning the LR test, we do not reject the null of periodic integration for imp/gdp
and ln(imp/gdp) but we do reject the null with the LR for both exp/gdp and
ln(exp/gdp). In the case of Denmark we only reject the null of periodic integra-
tion with the LR test for exp/gdp imp/gdp and ln(imp/gdp). In the UK the
null is rejected only for imp/gdp with the LR and at 5% level of signi�cance and
with the MSBq at 10% and for ln(imp/gdp) also at 10% for the LR and the
MSB tests. For Norway we only reject the null with the MSB tests at 10% for
exp/gdp and imp/gdp. Finally, in the case of Switzerland the null is rejected
with the V RT test for exp/gdp and imp/gdp at 10% level of signi�cance and
for the natural logarithms of the variables at 10%. Overall we can conclude that
we have found reasonable empirical evidence in favour that both ratios follow
periodically integrated processes for all the counties.
As shown in Ghysels and Osborn (2001, pp.168-171) and del Barrio Castro

and Osborn (2008), when the series follow PI processes, the only cointegration
possibilities are periodic cointegration or nonperiodic cointegration, with coin-
tegration for any one season implying cointegration for all seasons, that is, full
cointegration. They also show that in order to have full nonperiodic cointegra-
tion the involved processes must share the same 's coe¢ cients in (8). Note that
full nonperiodic cointegration is equivalent to conventional cointegration. Hence
if exp/gdp and imp/gdp or their natural logs are cointegrated with a (1;�1)
vector both processes must share the same 's coe¢ cients in (8). In tables 1.b to
8.b we report these coe¢ cients for the analyzed time series for all the countries.
In tables 1.a to 8.a we also report the results obtained with the LR, MSB and
V RT when applied to the di¤erence between exp/gdp and imp/gdp , that is
labelled dif, as well as to the di¤erence between ln(exp/gdp) and ln(imp/gdp),
that we label difln.
Finally, del Barrio Castro and Osborn (2008) propose a residual based LR
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to test the null of not full periodic cointegration between periodically integrated
processes and obtain their asymptotic distribution, in particular they show that
the LRCR statistics follow the squared distribution reported by Phillips and
Ouliaris (1988) for the residual based ADF cointegration test. The results for
the former test are also reported in tables 1.b to 8.b.
In the case of Canada and the UK we �nd clear evidence of cointegration

with a (1;�1) vector for the levels and the logs. Note that the coe¢ cients in
tables 2.b and 5.b are quite similar. Moreover, with the LRCR test we also
�nd evidence of full periodic cointegration as expected. In the case of Australia
the results point to cointegration with vector (1;�1) except for the variable dif
with the V RT test. As in the previous cases, the coe¢ cients in table 1.b are
quite similar in levels and natural logs, and as expected we also �nd evidence
of full periodic cointegration with the LRCR test. In the case of Norway there
is no evidence in favour of (1;�1) cointegration but we detect full nonperiodic
cointegration at a 10% level. Also note that in this case the coe¢ cients 's
are quite di¤erent. For Japan we �nd weak evidence of (1;�1) cointegration,
but strong full nonperiodic cointegration. Finally for Denmark, Sweden and
Switzerland we do not �nd nonperiodic cointegration with vector (1;�1) nor
full periodic cointegration.

5 Testing for periodic integration in time series
with a changing mean

In this section we extend the Periodic integration test proposed by Boswijk
and Franses (1996) to the case where we allow for a change in the mean in
the deterministic part of the periodic autorregressive process. In particular we
consider the following four cases, that are the periodic counterpart of the case
considered by Perron(1990) and Perron and Vogelsang (1992a) under the null
hypothesis of periodic integration. Maekawa (1997) consider structural breaks
in a periodically integrated processes but he only pay attention to the PAR(1)
model and do not consider case the following model:

ys� = sD (NB)s� + 'sys�1;� + us�

where:

s = 1; 2; 3; 4 � = 1; 2; 3; ::::; N

D (NB)s� = 1 if � = NB + 1 otherwise 0

DUs� = 1 if � > NB otherwise 0
SY
s=1

's = 1�
1�  1sL�  2sL2 � � � � �  p�1;sLp�1

�
us� = "s�

11



where NB (1 < NB < N) is the date of break and we are going to assume that
NB = �N , where � is the fraction of break. As it is pointed out in Boswijk
and Franses (1996) and In Ghysels and Osborn (2003) the key to explore the
long run properties of PI processes is the vector of quarters representation and
in particular the vector moving-average (VMA) representation:

Y� � Y��1 = (�0 +�1B)	 (B)
�1
E�

with :

Y� =
�
y1� y2� y3� y4�

�0
E� =

�
"1� "2� "3� "4�

�0
(14)

�0 =

2664
1 0 0 0
'2 1 0 0
'2'3 '3 1 0
'2'3'4 '3'4 '4 1

3775 �1 =

2664
0 '3'4'1 '4'1 '1
0 0 '4'1'2 '1'2
0 0 0 '1'2'3
0 0 0 0

3775
where B is the annual lag operator. Following the lines of Boswijk and

Franses (1996) from (14) it is possible to write:

Y� = Y0 + ab
0	(1)

�1
�X
j=1

Ej + C
� (1)E� (15)

with:
C(1) = (�0 +�1) = ab

0 (16)

where

a =
�
1 '2 '2'3 '2'3'4

�0
;

b =
�
1 '1'3'4 '1'4 '1

�0
: (17)

Which is the common trend representation of the PI process without con-
sidering deterministic terms, to obtain a equivalent representation to our case we
only have to replace E� in (15) by (D (NB)� + E� ), where  =

�
1 2 3 4

�0
and D (NB)� is the 4�1 vectors associated to D (NB)s� . Hence after some
rewriting we have:

Y� = Y0 + ab
0	(1)

�1
DU� + C

� (1)D (NB)� +X�

with :

X� = ab0	(1)
�1

�X
j=1

Ej + C
� (L)E�

Note that in the previous expression the term C� (1)D (NB)� plays a role
equivalent to the correction added by Perron and Vogelsang (1992a,1992b) to
the initial analysis developed by Perron (1990) when testing for unit roots with
a changing mean
Finally it is possible to summarize the main stochastic characteristics of a

PI(1) process in the following Lemma due to Boswijk and Franses (1996).
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5.1 The test.

In this section we present the test for PI that allows the presence of struc-
tural breaks in the deterministic part. Hence we are testing the null hypothesis
'1'2'3'4 = 1 against the alternative hypothesis '1'2'3'4 < 1, we have the
following PAR(p) unrestricted models:

~ys� = ys� � �̂s � ̂�sDUs�

~ys� =

pX
j=0

!jsD (NB)s�j;� +

pX
j=1

�js~ys�j;� + "s� (18)

Under the alternative the time series follows a stationary PAR(p) process.
And the restricted models:

~ys� = 's�1~ys�1;� +

p�1X
j=0

!jsD (NB)s�j;� +

p�1X
j=1

 js
�
~ys�j;� � 's�j ~ys�j�1;�

�
+ "s�

(19)
with the restriction '1'2'3'4 = 1 imposed, but  js unrestricted, with the

estimation achieved using nonlinear least squares. We employ the test Likeli-
hood Ratio test proposed by Boswijk and Franses (1996):

LRio (�) = N ln
�
�̂20=�̂

2
�

In the following proposition we present the distribution of the test is the four
di¤erent cases.

Proposition 1 Under the null hypothesis of periodic integration the distribu-
tion of the likelihood ratio test statistic obtained from (18)/(19) is the following:

LRio (�) ) [DE (�)]
�1
([NU (�)])

2 (20)

where :

[NU (�)] =

Z 1

0

w (r) dw (r)� ��1w (�)
Z �

0

w (r) dr +

+(1� �)�1 [w (1)� w (�)]
Z 1

�

w (r) dr

[DE (�)] =

Z 1

0

[w (r)]
2
dr � ��1

"Z �

1

w (r) dr

#2

� (1� �)
�Z 1

�

w (r) dr

�2
Note results (20) is the square of the distribution reported in Perron and

Vogelsang (1992a,1992b)
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In table 9.a we report the empirical quantiles of the LRio (�) test based
on 20:000 replications and for a sample size of � = 1000 with S = 4. For
� = 0:2; 0:3; 0:4; 0:5; 0:6; 0:7 and 0:8. It is clear that the quantiles associated
(20) is equivalent to the square of the quantiles reported in Perron (1988).
In order to check size and power performance of the LRio (�) test we run a

small monte-carlo experiment based in the following data generating process:

ys� = 'sys�1;� + us� s = 1; 2; 3; 4 (21)

with :

a) '1 = 0:9 '2 = 1 '3 = 1:25 '4 = 1= ('1'2'3)

b) '1 = 0:9 '2 = 1 '3 = 1:25 '4 = 0:8= ('1'2'3)

c) '1 = 0:9 '2 = 1 '3 = 1:25 '4 = 0:5= ('1'2'3)

with the combination of parameters a) we are under the null of periodic in-
tegration, hence we will measure the empirical size of the test, and with the
combinations b) and c) we are under the alternative and we will measure the
empirical power of the test. We consider 3 alternative possibilities for us� :

i) us� = "s� "s�~Niid(0; 1)

ii) us� = "s� � 0:5"s�1;� "s�~Niid(0; 1)

iii) us� = 0:5us�1;� + "s� "s�~Niid(0; 1):

The results are obtained for a sample size of 4N = 200 and based on 5000
replications, we report the results obtained when the order of the �tted models
(18)/(19) goes form 1 to 5. The results obtained for i), ii) and iii) are collected
in tables 9.b, 9.c and 9.d respectively. Clearly the best performance in terms of
size and power it is obtained with and PAR(1) for i), with a PAR(5) for ii) and
with a PAR(2) for iii). Note that we obtain a reasonable performance in terms
of empirical size and power in small sample for the data generating process (21)
without the presence of a structural break as in Perron and Vogelsang (1992)
we also consider a monte carlo experiment with a change in the mean using the
following data generating process:

xs� = �0:975� 0:42DUs� + ys� s = 1; 2; 3; 4 (22)

ys� = 'sys�1;� + us�

us� = 0:5us�1;� + "s� "s�~Niid(0; 1)

with :

a) '1 = 0:9 '2 = 1 '3 = 1:25 '4 = 1= ('1'2'3)

b) '1 = 0:9 '2 = 1 '3 = 1:25 '4 = 0:8= ('1'2'3) :

The results for this case are collected in table 9.e. Note that in this case we
also obtain the best performance in terms of empirical size and power when the
correct order of augmentation it is used, that is when a PAR(2) order it is used
to �t models (18)/(19). In this case we also obtain a reasonable performance in
terms of empirical size and power.
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Remark 2 Following Carrion-i-Silvestre and Berenguer (2010), Zivot and An-
drews (1992) ,Gregory and Hansen (1996) and Perron (1997) based on the re-
sults of Proposition 1 it is possible to establish for LR�io = sup

�2�
:LRio (�) :

LR�io ) sup
�2�

n
[DE (�)]

�1
([NU (�)])

2
o

(23)

where � is closed subset of the interval (0; 1).

In this case using the supremum (sup) it is also possible to obtain a test that
do not depend on � and hence it is possible to use the critical values reported in
table 1 of Perron and Vogelsang (1992b). Finally in the case of (20) the critical
values are reported in Perron (1990) table 4.

5.2 Empirical results

In this subsection we collect the empirical results for France, Italy, Netherlands,
Finland and Spain. It is clear for pictures 10 to 14 that for all the mentioned
countries we observe a clear change in the mean associated with the change
of the national currencies by the Euro. Hence in this section we use LRio (�)
as we know the break date. We determine the order on the unrestricted and
restricted PAR(p) models (18)/(19) with the AIC and BIC criteria starting for
a maximum order of p = 5. In this case we also report the result obtained with
the statistic Fper to test the null of non periodic variation in the coe¢ cients
in the model (18) H0 : �js = �j for j = 1; � � � p. We also report the results
obtained for the LRio (�) test described in the previous subsection and �nally
assuming that there is a co-break we report the results obtained with the LRCR
to test the null of the absence of cointegration between the ratios exp/gdp and
imp/gdp. These results could be found in tables 10 to 14. Note �rst that with
the Fper test we obtain evidence against the null for Italy, Finland and in levels
for Netherlands. We only clearly reject the null of periodic integration with the
LRio (�) test in the case of France. We �nd evidence of cointegration between
the exp/gdp and imp/gdp in logs for the case of Netherlands and Finland, and
reject the null of no cointegration for Spain but only at the 10%.
Finally it will be interesting to extend the approach of Gregory and Hansen

(1996) to the case of periodic cointegration, in order to allow for breaks in the
cointegration vector, but the this is part our future agenda...

6 Concluding remarks.
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Table 1.a: Australia

Fper LR MSBb MSBq V RT
exp=gdp 9,2262** 12,4398** 0,2741 0,2876 0,0576
imp=gdp 7,7790** 6,3479 0,3841 0,4076 0,0649

ln(exp=gdp) 6,9374** 12,6438** 0,2798 0,2825 0,0600
ln(imp=gdp) 11,2127** 7,1483 0,3329 0,3462 0,0618

dif 1,0388 18,3054** 0,1838** 0,1894** 0,0149
difln 1,8039 18,7643** 0,1817** 0,1944* 0,0098**
** and * statistically signi�cant at a 5% and 10% respectively.

Table 1.b: Australia

exp=gdp imp=gdp ln(exp=gdp) ln(imp=gdp)
'̂1 0,785 0,791 0,713 0,758
'̂2 0,967 1,045 1,006 1,062
'̂3 1,324 1,138 1,251 1,098
'̂4 0,994 1,062 1,115 1,132

LRCR 23,3558** 33,1368**

Table 2.a: Canada

Fper LR MSBb MSBq V RT
exp/gdp 9,2664** 3,5365 0,4179 0,4175 0,0765
imp/gdp 6,7301** 3,3886 0,4202 0,4195 0,0790
ln(exp/gdp) 7,0393** 3,6664 0,4465 0,4474 0,0797
ln(imp/gdp) 26,0935** 3,8353 0,4291 0,4283 0,0814

dif 3,4386** 9,5601** 0,1663** 0,1708** 0,0208
difln 2,6053** 13,0961** 0,1826** 0,1792** 0,0095**

Table 2.b: Canada

exp/gdp imp/gdp ln(exp/gdp) ln(imp/gdp)
'̂1 1,1384 1,0853 1,1376 1,0690
'̂2 0,9160 0,9110 0,8967 0,8756
'̂3 0,9867 1,0424 1,0797 1,2053
'̂4 0,972 0,970 0,908 0,886

LRCR 29,9052** 29,5145**
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Table 3.a: Denmark

Fper LR MSBb MSBq V RT
exp/gdp 4,7637** 9,4217** 0,3013 0,3047 0,0641
imp/gdp 3,9823** 14,4301** 0,1941 0,2103 0,0149
ln(exp/gdp) 3,4351** 6,9169 0,3046 0,3077 0,0624
ln(imp/gdp) 3,4995** 13,5095** 0,1981 0,2115 0,0149

dif 3,2743** 6,9876 0,4410 0,4329 0,0681
difln 3,1794** 8,1569* 0,4362 0,4385 0,0637

Table 3.b: Denmark

exp/gdp imp/gdp ln(exp/gdp) ln(imp/gdp)
'̂1 0,9624 1,3365 0,9613 1,3120
'̂2 1,0177 0,8306 0,9996 0,8743
'̂3 1,2462 1,0054 1,3155 1,0011
'̂4 0,8192 0,8960 0,7911 0,8708

LRCR 7,5035 7,3776

Table 4.a: Sweden

Fper LR MSBb MSBq V RT
exp/gdp 3,5257** 3,8686 0,2777 0,2721 0,0368
imp/gdp 4,0235** 6,3992 0,2505 0,2491 0,0343
ln(exp/gdp) 3,9594** 3,5997 0,2732 0,2675 0,0348
ln(imp/gdp) 3,9580** 6,2928 0,2523 0,2501 0,0331

dif 4,3273** 5,4004 0,3202 0,3387 0,0250
difln 5,2382** 2,2068 0,3021 0,3313 0,0217

Table 4.b: Sweden

exp/gdp imp/gdp ln(exp/gdp) ln(imp/gdp)
'̂1 1,1255 1,1227 1,0823 1,1039
'̂2 0,9395 0,9824 0,9574 0,9999
'̂3 1,1513 1,1266 1,2000 1,1273
'̂4 0,8214 0,8048 0,8042 0,8036

LRCR 7,1242 2,5414
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Table 5.a: United Kingdom

Fper LR MSBb MSBq V RT
exp/gdp 0,2558 6,1229 0,2299 0,2483 0,0252
imp/gdp 3,5524** 9,6687** 0,2171 0,2301* 0,0308
ln(exp/gdp) 0,3915 5,8637 0,2752 0,2635 0,0274
ln(imp/gdp) 2,7003** 8,6335* 0,1964* 0,2038* 0,0351

dif 2,7003** 13,5919** 0,1785* 0,1690** 0,0131*
difln 3,7082** 15,3947** 0,1555* 0,1591** 0,0115*

Table 5.b: United Kingdom

exp/gdp imp/gdp ln(exp/gdp) ln(imp/gdp)
'̂1 0,9866 0,9618 0,9578 0,9077
'̂2 1,0675 1,1846 1,0768 1,1893
'̂3 0,9547 0,9128 1,0082 0,9651
'̂4 0,9946 0,9616 0,9617 0,9598

LRCR 14,0012** 15,4674**

Table 6.a: Norway

Fper LR MSBb MSBq V RT
exp/gdp 1,4852 6,4036 0,1920* 0,1932* 0,0398
imp/gdp 2,1442** 2,7533 0,2944 0,2882 0,0650
ln(exp/gdp) 1,5214 6,4674 0,1928* 0,1944* 0,0382
ln(imp/gdp) 1,7184* 2,3716 0,2746 0,2721 0,0655

dif 2,9522** 3,9529 0,2589 0,2590* 0,0648
difln 2,4200** 3,3283 0,2762 0,2785 0,0670

Table 6.b: Norway

exp/gdp imp/gdp ln(exp/gdp) ln(imp/gdp)
'̂1 1,0061 0,9471 1,0272 0,9604
'̂2 0,9080 0,9299 0,8724 0,9245
'̂3 1,2785 0,8408 1,3097 0,8800
'̂4 0,8563 1,3506 0,8520 1,2798

LRCR 9,8643* 9,5170*
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Table 7.a: Switzerland

Fper LR MSBb MSBq V RT
exp/gdp 3,7263** 1,1613 0,2344 0,2351 0,0111*
imp/gdp 0,5875 4,3516 0,1997 0,1976* 0,0084**
ln(exp/gdp) 4,6170** 1,1163 0,2329 0,2342 0,0111*
ln(imp/gdp) 0,7261 4,0753 0,2037* 0,2031* 0,0085**

dif 5,0733** 2,1789 0,2294 0,2230 0,0121*
difln 6,2268** 1,9552 0,2381 0,2330 0,0124*

Table 7.b: Switzerland

exp/gdp imp/gdp ln(exp/gdp) ln(imp/gdp)
'̂1 1,1748 1,0669 1,2062 1,1041
'̂2 1,0906 1,0369 1,0615 1,0119
'̂3 1,0924 1,0500 1,1387 1,0928
'̂4 0,7145 0,8609 0,6859 0,8190

LRCR 1,9734 1,7272

Table 8.a: Japan

Fper LR MSBb MSBq V RT
exp/gdp 4,3632** 3,2341 0,2863 0,2851 0,0246
imp/gdp 2,2274* 4,7804 0,3256 0,3267 0,0257
ln(exp/gdp) 2,8044** 2,9987 0,3039 0,3022 0,0248
ln(imp/gdp) 0,2432 3,2508 0,3208 0,3159 0,0255

dif 1,1161 15,8320** 0,2180 0,2190* 0,0112*
difln 1,0003 8,1958* 0,2420 0,2418 0,0173

Table 8.b: Japan

exp/gdp imp/gdp ln(exp/gdp) ln(imp/gdp)
'̂1 0,9324 1,0434 0,9054 0,9786
'̂2 1,1829 1,0514 1,1573 1,0267
'̂3 1,0332 1,0310 0,9961 1,0125
'̂4 0,8775 0,8841 0,9582 0,9831

LRCR 14,1942** 12,1204**
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Table 9.a: Empirical quantiles of LRio.

� 0,9 0,95 0,975 0,99
0,2 8,5077 10,3599 12,1984 14,3974
0,3 9,0153 10,8519 12,5488 14,8566
0,4 9,3382 11,1417 12,9004 14,9936
0,5 9,3446 11,1893 12,9652 15,3002
0,6 9,3315 11,3013 13,0715 15,4670
0,7 8,9711 10,9550 12,7243 14,7483
0,8 8,4180 10,3099 12,1546 14,5669

Table 9.b: Empirical size and power of LRio for (21) with i).Y4

s=1
's � PAR(1) PAR(2) PAR(3) PAR(4) PAR(5)

1 0,2 0,037 0,036 0,040 0,046 0,041
1 0,3 0,035 0,037 0,039 0,044 0,042
1 0,4 0,036 0,038 0,038 0,043 0,049
1 0,5 0,036 0,037 0,038 0,038 0,040
1 0,6 0,035 0,038 0,036 0,041 0,045
1 0,7 0,038 0,038 0,039 0,037 0,033
1 0,8 0,039 0,034 0,033 0,035 0,033

0,8 0,2 0,229 0,233 0,243 0,239 0,205
0,8 0,3 0,205 0,209 0,213 0,221 0,185
0,8 0,4 0,193 0,201 0,202 0,203 0,180
0,8 0,5 0,177 0,189 0,187 0,194 0,169
0,8 0,6 0,178 0,187 0,195 0,195 0,166
0,8 0,7 0,196 0,194 0,193 0,190 0,169
0,8 0,8 0,223 0,219 0,217 0,198 0,173
0,5 0,2 0,973 0,934 0,902 0,855 0,763
0,5 0,3 0,961 0,923 0,877 0,821 0,734
0,5 0,4 0,951 0,908 0,858 0,798 0,709
0,5 0,5 0,947 0,903 0,847 0,787 0,694
0,5 0,6 0,950 0,908 0,861 0,793 0,710
0,5 0,7 0,959 0,921 0,864 0,806 0,714
0,5 0,8 0,968 0,932 0,892 0,830 0,738
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Table 9.c: Empirical size and power of LRio for (21) with ii).Y4

s=1
's � PAR(1) PAR(2) PAR(3) PAR(4) PAR(5)

1 0,2 0,611 0,206 0,099 0,074 0,050
1 0,3 0,651 0,215 0,093 0,068 0,052
1 0,4 0,671 0,201 0,083 0,062 0,046
1 0,5 0,684 0,199 0,084 0,057 0,040
1 0,6 0,660 0,199 0,082 0,058 0,045
1 0,7 0,635 0,191 0,084 0,055 0,041
1 0,8 0,585 0,179 0,081 0,051 0,032
0,8 0,2 0,997 0,766 0,482 0,366 0,278
0,8 0,3 0,995 0,750 0,451 0,338 0,247
0,8 0,4 0,996 0,729 0,431 0,314 0,242
0,8 0,5 0,995 0,718 0,416 0,293 0,217
0,8 0,6 0,996 0,730 0,419 0,296 0,218
0,8 0,7 0,996 0,724 0,424 0,298 0,218
0,5 0,2 1,000 1,000 0,987 0,943 0,868
0,5 0,3 1,000 1,000 0,979 0,926 0,826
0,5 0,4 1,000 1,000 0,975 0,921 0,819
0,5 0,5 1,000 0,999 0,974 0,912 0,805
0,5 0,6 1,000 1,000 0,976 0,910 0,810
0,5 0,7 1,000 0,999 0,977 0,908 0,806
0,5 0,8 1,000 1,000 0,985 0,930 0,840
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Table 9.d: Empirical size and power of LRio for (21) with ii).Y4

s=1
's � PAR(1) PAR(2) PAR(3) PAR(4) PAR(5)

1 0,2 0,016 0,043 0,053 0,070 0,155
1 0,3 0,019 0,044 0,059 0,079 0,153
1 0,4 0,019 0,040 0,054 0,067 0,144
1 0,5 0,023 0,043 0,052 0,065 0,139
1 0,6 0,018 0,043 0,052 0,064 0,141
1 0,7 0,017 0,037 0,044 0,058 0,136
1 0,8 0,017 0,036 0,044 0,061 0,133

0,8 0,2 0,003 0,229 0,229 0,217 0,203
0,8 0,3 0,002 0,208 0,214 0,202 0,187
0,8 0,4 0,002 0,199 0,201 0,190 0,172
0,8 0,5 0,003 0,196 0,194 0,189 0,170
0,8 0,6 0,002 0,185 0,187 0,174 0,165
0,8 0,7 0,002 0,191 0,189 0,176 0,160
0,8 0,8 0,001 0,207 0,198 0,180 0,167
0,5 0,2 0,067 0,874 0,831 0,776 0,699
0,5 0,3 0,048 0,835 0,789 0,726 0,650
0,5 0,4 0,040 0,829 0,781 0,717 0,633
0,5 0,5 0,038 0,822 0,770 0,707 0,621
0,5 0,6 0,041 0,837 0,780 0,703 0,632
0,5 0,7 0,048 0,829 0,776 0,707 0,633
0,5 0,8 0,065 0,863 0,814 0,743 0,660
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Table 9.e: Empirical size and power of LRio for (22).Y4

s=1
's � PAR(1) PAR(2) PAR(3) PAR(4) PAR(5)

1 0,2 0,016 0,041 0,053 0,071 0,154
1 0,3 0,017 0,037 0,046 0,061 0,143
1 0,4 0,019 0,043 0,057 0,072 0,145
1 0,5 0,019 0,041 0,053 0,063 0,145
1 0,6 0,019 0,038 0,048 0,066 0,134
1 0,7 0,017 0,034 0,041 0,050 0,125
1 0,8 0,016 0,036 0,041 0,056 0,134

0,8 0,2 0,005 0,235 0,232 0,217 0,202
0,8 0,3 0,003 0,221 0,221 0,210 0,185
0,8 0,4 0,002 0,203 0,212 0,199 0,174
0,8 0,5 0,002 0,191 0,180 0,173 0,165
0,8 0,6 0,002 0,197 0,198 0,183 0,170
0,8 0,7 0,001 0,205 0,198 0,188 0,170
0,8 0,8 0,002 0,221 0,211 0,192 0,169

Table 10: France
Fper LRio (�) LRCR

exp/dgp 0,2956 13,7320** 2,7537
imp/dgp 1,3455 15,6965**

ln(exp/dgp) 0,1015 13,7380** 3,5439
ln(exp/dgp) 0,3885 13,9926**

Table 11: Italy
Fper LRio (�) LRCR

exp/dgp 4,2104*** 6,7669 4,2554
imp/dgp 6,7757*** 8,7128

ln(exp/dgp) 2,2115* 8,4031 4,7141
ln(exp/dgp) 2,8290** 8,9749

Table 12: Netherlands
Fper LRio (�) LRCR

exp/dgp 6,1678*** 12,7855** 4,9678
imp/dgp 6,8509*** 8,8625

ln(exp/dgp) 1,1100 9,6861* 15,3403**
ln(exp/dgp) 0,3862 9,9918*

Table 13: Finland
Fper LRio (�) LRCR

exp/dgp 4,8178*** 2,6434 3,9836
imp/dgp 3,1068** 13,8461**

ln(exp/dgp) 3,2237*** 4,1203 11,4335**
ln(exp/dgp) 2,0870* 6,9096
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Table 14: Spain
Fper LRio (�) LRCR

exp/dgp 0,9876 4,6657 10,7291*
imp/dgp 0,3175 10,4385*

ln(exp/dgp) 0,6198 6,7820 10,0310*
ln(exp/dgp) 0,6668 11,3004*

Proof. First note that from (14) it is possible to write:

y� � y��1 = (�0 +�1L)	(L)
�1e� = C (L)u� (24)

with u� = 	(L)�1e� , them we have that:

y� = y0 +C (1)
�X
j=1

uj +Op (1)

= y0 + ab
0
�X
j=1

uj +Op (1) :

Replace E� by (D (NB)� + u� ), hence we have:

y� = y0 + ab
0
�X
j=1

uj + ab
0DU� +Op (1)

As in Perron and Vogelsang (1992a) it is possible to write for ~ys� = ys� � �̂s �
̂�sDUs� , where �y

a
s = N�1

b

PNb

�=1 ys� = ��1N�1PNb

�=1 ys� and �y
b
s = (N �Nb)�1

PN
�=Nb+1

ys� =

(1� �)�1N�1PN
�=Nb+1

ys� :

~ys� = ys� � �yas = asS� � as �Sa if � � NB

~ys� = ys� � �ybs = asS� � as �Sb � asb0
�
1� �0

�
= (1� �) if NB � � � N 0

B (25)

~ys� = ys� � �ybs = asS� � as �Sb + asb0 � asb0
�
1� �0

�
= (1� �) if N 0

B � � � N

with S� = b0
�X
j=1

uj , �Sa = N�1
b

PNb

�=1 S� = ��1N�1PNb

�=1 S� and �Sb =

(N �Nb)�1
PN

�=Nb+1
S� = (1� �)�1N�1PN

�=Nb+1
S� . Additionally we de�ne

~y�s� as the residuals from a projection of ~ys� on D (NB)s;� in the case where
we do not have serial correlation and as the the residuals from a projection of
~ys� on D (NB)s;� and its p� 1 lags, assume for simplicity the absence of serial
correlation, hence:

~y�s� = asS� � as �Sa if � � NB

~y�s� = 0 if � = NB + 1 (26)

~y�s� = asS� � as �Sb � asb0
�
1� �0

�
= (1� �) if NB + 1 � � � N 0

B

~y�s� = asS� � as �Sb + asb0 � asb0
�
1� �0

�
= (1� �) if N 0

B � � � N
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Following the lines of the proof of Theorem 1 in Boswijk and Franses (1996) it
is convenient to write (18)/(19) using conventional time subscripts and seasonal
dummy variable notation (Dst taking the value unity when observation t falls in
season s and zero otherwise). Employing this notation yields the representation
(see Boswijk and Franses, 1996, p. 238):

~y�t = �1D1t~y
�
t�1 +

4X
s=1

'sDst~y
�
t�1 +

4X
s=1

p�1X
j=1

 js
�
Dst~y

�
t�j � 's�jDst~y

�
t�j�1

�
+ "t

(27)
where the restrictions '1'2'3'4 = 1 is imposed. Note that since the de-
terministic terms enter unrestrictedly then ~y�t are the residuals as de�ned in
(25)/(26). Let � =

�
�1; �

0
2; �

0
3

�0
denote the full parameter vector with �1 = �1,

�02 = ['2; '3; '4] and �
0
3 =

�
 11; � � � ;  1;p�1; � � � ;  41; � � � ;  4;p�1

�
. Under the

null hypothesis �1 = 0, hence this parameter is associated with the unit root
while, '2, '3 and '4 are cointegration parameters (with '1 de�ned from the
periodic unit root restriction as '1 = ('2'3'4)

�1), and �3 collects the parame-
ters associated with the stationary regressors in (27). Let zt =

�
z1t ; z

20
t ; z

30
t

�0
be

de�ned conformably with � as zt = @~yt=@�, and hence

z1t = D1t~yt�1; z2t = H 0ut ut = [u1t; u2t; u3t; u4t]
0

where :

ust = Dst~yt�1 �
p�1X
i=1

 i;s+iDs+i;t~yt�i�1 s = 1; 2; 3; 4 (28)

H 0 =

264 �'1
'2

1 0 0

�'1
'3

0 1 0

�'1
'4

0 0 1

375 :
Note that for z1t we have that

��2N�1
TX
t=1

z1t "t = ��2N�1
TX
t=1

D1t~yt�1"t = ��2N�1
NX
�=1

~y4;��1"1� =

= ��2N�1
X

a4S��1"1� � ��2N�1a4 �Sa

NbX
�=1

"1� �

���2N�1a4 �Sa

NX
�=Nb+1

"1� +Op (1)
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and

��2N�2
TX
t=1

�
z1t
�2

= ��2N�2
TX
t=1

(D1t~yt�1)
2
= ��2N�2

NX
�=1

(~y4;��1)
2
=

= ��2N�2
X

(a4S��1)
2
+ ��2N�1�

�
a4 �Sa

�2
+ ��2N�1 (1� �)

�
a4 �Sb

�2
+

�2��2N�2a4 �Sa

NbX
�=1

(a4S��1)� 2��2N�2a4 �Sb

NX
�=Nb+1

(a4S��1) + op (1) :

From lemma 1 in Boswijk and Franses (1996) it is possible to establish:

��2N�1
X

asS��1"1� ) ��2!as

Z 1

0

w (r) dE1 (r)

��1N�3=2
X

asS��1 ) ��1!as

Z 1

0

w (r) dr

��1N�1=2
X

"1� ) ��1E1 (1)

��1N�3=2
X
NB

asS��1 ) ��1!a4

Z 1

�

w (r) dr

��1N�1=2
X
NB

"1� ) ��1 (E1 (1)� E1 (�))

��2N�2
X

(asS��1)
2 ) ��2!2a2s

Z 1

0

[w (r)]
2
dr

��1N�1=2as �Sa = ��1��1N�3=2
NbX
�=1

asS� ) ��1!as�
�1
Z �

0

w (r) dr

��1N�1=2as �Sb = ��1 (1� �)�1N�3=2
NX

�=Nb+1

asS� ) ��1!as (1� �)�1
Z 1

�

w (r) dr

Hence we have that:

��2N�1
TX
t=1

z1t "t ) ��2!a4

"Z 1

0

w (r) dE1 (r)� ��1
"Z �

0

w (r) dr

#
E1 (�)+

� (1� �)�1
�Z 1

�

w (r) dr

�
(E1 (1)� E1 (�))

�
=

= ��2!a4 [NU (E1)] (29)

where :

[NU (E1) ; (�)] =

Z 1

0

w (r) dE1 (r)� ��1
"Z �

0

w (r) dr

#
E1 (�) +

� (1� �)�1
�Z 1

�

w (r) dr

�
(E1 (1)� E1 (�))
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and:

��2N�2
TX
t=1

�
z1t
�2 ) ��2!2a24

Z 1

0

[w (r)]
2
dr � ��2!2a24��1

 Z �

0

w (r) dr

!2
�

���2!2a24 (1� �)
�1
�Z 1

�

w (r) dr

�2
= ��2!2a24 [DE]

where :

[DE (�)] =

Z 1

0

[w (r)]
2
dr � ��1

 Z �

0

w (r) dr

!2

� (1� �)�1
�Z 1

�

w (r) dr

�2
:

Note also that using Lemma 1 and (28) it is possible to establish:

��2N�1
X

z2t "� ) ��2!H 0A	(1)
0
[NU (E)]

��2N�2
X

z2t z
1
t ) ��2!2H 0A	(1)

0
A1 [DE]

��2N�2
X

z2t z
20
t ) ��2!2H 0A	(1)

0
	(1)AH [DE] (30)

where :

[NU (E) ; (�)] =

Z 1

0

w (r) dE (r)�

���1
"Z �

0

w (r) dr

#
E (�) +

� (1� �)�1
�Z 1

�

w (r) dr

�
(E (1)� E (�))

A = diag [a4; a1; a2; a3] = diag ['2'3'4; 1; '2; '2'3]

A1 = diag [a4; 0; 0; 0] = diag ['2'3'4; 0; 0; 0] :

Under the periodic unit root null hypothesis the PAR(p-1) regressors Dstyt�j�
's�jDstyt�j�1 collected in the vector z3t are stationary with

��2N�1
X

z3t "� ) N (0; V3)

��2N�2
X

z3t z
30
t ! V3:

Finally , re�ecting the di¤erent rates of convergence for the parameter estimates
corresponding to the nonstationary PI regressors and those for the stationary
PAR(p-1) component in the augmented regression (7) or (??), we have that:

N�2
X

z3t z
20
t = Op (1)

N�2
X

z3t z
1
t = Op (1) :
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The distribution of the LR test is established by Boswijk and Franses (1996)
using

LR =

�
N�̂1

�2
�
Y �1N Q�Y

�1
N

�11 + op (1) : (31)

where YN = diag
�
N � I4; N1=2 � I4(p�1)

�
,
�
Y �1N Q�Y

�1
N

�11
is the �rst element

of the principal diagonal of the inverse matrix
�
Y �1N Q�Y

�1
N

��1
, N�̂1 is the �rst

element of
�
Y �1N Q�Y

�1
N

��1
Y �1N q�, and q� and Q� are the score and negative

of the Hessian matrix, respectively, formulated in terms of �. Note that, as in
Boswijk and Franses (1996),

�
Y �1N Q�Y

�1
N

��1
Y �1N q� =

�
��2Y �1N

X
ztz

0
tY

�1
N

��1
��2Y �1N

X
zt"t:

From (29), (??) and (30) it is easy to see that

Y �1N Q�Y
�1
N )

�
K 0K [DE (�)] 0

0 V3

�
Y �1N q� )

�
��1K 0 [NU (E) ; (�)]

N (0; V3)

�
(32)

where :

K =
!

�

�
A1
...	(1)AH

�
:

Therefore,

�
Y �1N Q�Y

�1
N

��1
Y �1N q� )

�
[DE (�)]

�1
��1 (K 0K)

�1
K 0 [NU (E) ; (�)]

N
�
0; V �13

� �
:

(33)
Note that [DE; (�)] is a scalar and also that for ��1 (K 0K)

�1
K 0 [NU (E) ; (�)]

it is possible to write:

��1 (K 0K)
�1
K 0 [NU (E)] =

Z 1

0

w (r) dS (r)�

���1
"Z �

0

w (r) dr

#
S (�) (34)

+(1� �)�1
�Z 1

�

w (r) dr

�
(S (1)� S (�))

where :

S (r) = ��1 (K 0K)
�1
K 0E (r) :

Now, partitioningK =

�
K1

...K2

�
to focus on the �rst element of

�
Y �1N Q�Y

�1
N

��1
Y �1N q�,
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namely N�̂1, (33) and (34) implies

N�̂1 ) [DE (�)]
�1
�Z 1

0

w (r) dS1 (r)�

���1
"Z �

0

w (r) dr

#
S1 (�)�

� (1� �)�1
�Z 1

�

w (r) dr

�
(S1 (1)� S1 (�))

�
where :

S1 (r) = ��1 (K 0
1M2K1)

�1
K 0
1M2E (r)

M2 = I �K2 (K
0
2K2)

�1
K 0
2:

In Boswijk and Franses (1996) it is shown that S1 (r) = (K 0
1M2K1)

�1=2
w (r)

hence we have:

N�̂1 ) (K 0
1M2K1)

�1=2
[DE]

�1
�Z 1

0

w (r) dw (r)�

���1
"Z �

0

w (r) dr

#
w (�)�

� (1� �)�1
�Z 1

�

w (r) dr

�
(w (1)� w (�))

�
=

= (K 0
1M2K1)

�1=2
[DE (�)]

�1
[NU (�)] (35)

with :

[NU (�)] =

Z 1

0

w (r) dw (r)� ��1
"Z �

0

w (r) dr

#
w (�)�

� (1� �)�1
�Z 1

�

w (r) dr

�
(w (1)� w (�))

note also that:�
Y �1N Q�Y

�1
N

�11 ) (K 0K)
11
[DE]

�1
= (K 0

1M2K1)
�1
[DE (�)]

�1
: (36)

Then �nally substituting (35) and (36) into (31) the required result is easily
obtained.
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Figure 1: Australia
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Figure 2: Canada

Figure 3: Denmark
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Figure 4: Sweeden

Figure 5: United Kingdom
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Figure 6: Norway

Figure 7: Switzerland
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Figure 8: Japan

Figure 9: France
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Figure 10: Italy

Figure 11: Netherlands
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Figure 12: Finland

Figure 13: Spain
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