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Abstract: 

In this paper we discuss the asymptotically efficient estimation of a univariate static 

cointegrating regression relationship when we take into account the deterministic 

structure of their stochastically integrated components, in a slightly more general 

framework that considered by Hansen (1992). After reviewing the properties of OLS 

and Fully Modified OLS (FM-OLS) estimation in this framework, we consider the 

recently proposed Integrated Modified OLS (IM-OLS) estimator by Vogelsang and 

Wagner (2011) of the cointegrating vector and propose a new proper specification of the 

integrated modified cointegrating regression equation. This alternative method of bias 

removal has the advantage over the existing methods that does not require any tuning 

parameters, such as kernels, bandwidths or lags. Also, based on the sequence of IM-

OLS residuals, we propose some new test statistics based on different measures of 

excessive fluctuation for testing the null hypothesis of cointegration against the 

alternative of no cointegration. For these test statistics we derive their asymptotic null 

and alternative distributions, and study their finite sample performance through a local-

to-unity approach to the null of cointegration. 
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1. Introduction 

Cointegration analysis is widely used in empirical macroeconomics and finance, and 

includes both the estimation of cointegrating relationships and hypothesis testing, and 

also testing the hypothesis of cointegration among nonstationary variables. In the 

econometric literature there are many contributions in these two topics, some of which 

deals with these two questions simultaneously. Given the usual linear specification of a 

potentially cointegrating regression, a first candidate for estimation is the method of 

ordinary least squares (OLS), that determines superconsistent estimates of the 

regression parameters under cointegration. However, with endogenous regressors the 

limiting distribution of the OLS estimator is contaminated by a number of nuisance 

parameters, also known as second order bias terms, which renders inference 

problematic. Consequently, there has been proposed several modifications to OLS to 

makes standard asymptotic inference feasible but at the cost of introducing the choice of 

several tuning parameters and functions. These methods include the fully modified OLS 

(FM-OLS) approach of Phillips and Hansen (1990), the canonical cointegrating 

regression (CCR) by Park (1992), and the dynamic OLS (DOLS) approach of Phillips 

and Loretan (1991), Saikkonen (1991) and Stock and Watson (1993). 

This paper deals with the analysis of a new asymptotically efficient estimation method 

of a linear cointegrating regression recently proposed by Vogelsang and Wagner (2011) 

that does not require any additional choice more than the initial standard assumptions on 

the model specification, making it a very appealing alternative. 

This methods, which is called the integrated modified OLS (IM-OLS) estimator, works 

under a simple transformation of the model variables that asymptotically produces the 

same correction effect as the commonly used estimation methods cited above. 

An important issue, which is often is not taken into account and that can substantially 
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affect the performance and properties of these estimation procedures, is the nature and 

structure of the deterministic component, if any, of the generating mechanism of the 

model variables and its relation with the deterministic component, if is considered, in 

the specification of the cointegrating regression. Following the work by Hansen (1992), 

we generalize its formulation by allowing for deterministically trending integrated 

regressors with a possibly different structure for their deterministic components and 

propose a simple rule for a proper specification of the deterministic trend function in the 

cointegrating regression that simultaneously correct for their effects. 

Given the particular transformation of the model variables required for performing the 

asymptotically efficient IM-OLS estimation, we show that a proper accommodation of 

these components must be based on a previous transformation of the model variables, in 

particular the OLS detrending. With these corrected observations we perform the IM-

OLS estimation of the cointegrating regression and derive the limiting distributions of 

the resulting estimates and residuals both under the assumption of cointegration and no 

cointegration. 

Based on these new asymptotically efficient estimators of the vector parameters in the 

cointegrating regression, we study the building of some simple statistics for testing the 

null hypothesis of cointegration by using different measures of excessive fluctuation in 

the IM-OLS residual sequence that cannot be compatible with the stationarity 

assumption of the error sequence. These test statistics are based on the statistics 

proposed by Shin (1994), Xiao and Phillips (2002) and Wu and Xiao (2008) with the 

same objective as ours, and that use two basic measures of excessive fluctuations, the 

Cramér-von Mises (CvM) and Kolmogorov-Smirnov (KS) metrics. We derive their 

limiting null and alternative distributions and evaluate their power behavior in finite-

samples through a simulation experiment. 
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2. The model, OLS and FM-OLS estimation of the linear 

cointegrating regression with trending regressors 

We assume that the variables of interest, the scalar tY  and the k-dimensional vector 

, 1, ,( ,..., )k t t k tX X ′=X , come from the following data generating process (DGP) 

0, , 0,

, , , ,

1,...,p p t tt

k t k p p t k t

Y
t n

′ η     = + =    
    X A

α τα τα τα τ
τ ητ ητ ητ η      (2.1) 

where 0, ,( , )t t k t
′ ′= ηη ηη ηη ηη η  is the stochastic trend component that satisfy the first order 

recurrence relation 

1t t t−= +η η εη η εη η εη η ε  

with 0, ,( , )t t k t
′ ′= εε εε εε εε ε  a k+1 vector zero mean sequence of error processes. Also, we 

consider the general case where both Yt and each element of the k vector 

, 1, ,( ,..., )k t t k tX X ′=X  contains a deterministic trend component given by a polynomial 

trend function of an arbitrary order pi ≥ 0, i = 0, 1, …, k, that is , , ,i ii t i p p td ′= α τα τα τα τ , with 

, ,0 ,1 ,( , ,..., )
i ii p i i i p

′= α α ααααα , and , (1, ,..., )i
i

p

p t t t ′=ττττ . To make this assumption compatible 

with the standard formulation in (2.1) where all the deterministic trend components 

appears as if it were of the same type and order, we have to write 

,

, , , , ,
,

( : ) i

i i i i

i

p t

i p p t i p p p i p p t
p p t

−
−

 ′ ′ ′ ′= = 
 

0
ττττα τ α α τα τ α α τα τ α α τα τ α α τττττ ,     i = 0, 1, …, k   (2.2) 

with p = max(p0, p1, ..., pk) and 
ip p−0  a (p−pi)×1 vector of zeroes, so that 

1 11, , 1,

, , ,

, , ,k k

p p t p

k p p t p t

k p p t k p

′ ′   
   = =
   ′ ′  

A ⋮ ⋮

α τα τα τα τ αααα
τ ττ ττ ττ τ

α τ αα τ αα τ αα τ α
 

With this formulation, we introduce the static potentially cointegrating regression 

equation between the unobserved stochastic trend components of the elements in Zt as 

0, ,t k t k tu′η = +η βη βη βη β  
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which gives 

, , 1,...,t p p t k k t tY u t n′ ′= + + =Xα τ βα τ βα τ βα τ β       (2.3) 

with 0, ,p p k p k
′= −Aα α βα α βα α βα α β . Associated to the deterministic component we introduce the 

polynomial order trend and sample size dependent scaling matrix ,p nΓΓΓΓ , given by 

1

, (1, ,..., )pp n diag n n− −=ΓΓΓΓ , which determines that , , , ( ) (1, ,..., )pp tn p n p t p r r r ′= → =τ Γ τ ττ Γ τ ττ Γ τ ττ Γ τ τ  

uniformly over r ∈ [0,1] as n→∞. Also we have that 1 [ ]

1 , 0 ( )nr r

t p tn pn s ds−
=∑ → ∫τ ττ ττ ττ τ , and 

1

1 , ,

n

t p tn p tnn−
= ′∑ =τ ττ ττ ττ τ 1 1

, , 0 ( ) ( )n pp n pp pp p pn s s ds− ′= → = ∫ < ∞Q Q Q τ ττ ττ ττ τ . In order to complete 

the specification of our data generating process we next introduce a quite general and 

common assumption on the error terms involved in (2.3). 

Assumption 2.1. We assume that the error term in the cointegrating regression tu  

satisfy the first-order recurrence relation 1t t tu u −= α + υ , with |α| ≤ 1, where the zero 

mean (k+1)-dimensional error sequence ,( , )t t k t
′ ′= υξ εξ εξ εξ ε  verify any of the existing 

conditions that guarantee the validity of the functional central limit theorem (FCLT) 

approximation of the form 

[ ]
1/ 2 1/ 2

,1

( )
( ) ( ) ( ) 0 1

( )

nr

t

k t kt

B r
n r r r

r
− υ

=

υ   ⇒ = = = ≤ ≤  
  

∑ B BM W
B

Ω ΩΩ ΩΩ ΩΩ Ωεεεε  

with ( ) ( ( ), ( ))kr W r rυ ′ ′=W W  a k+1-dimensional standard Brownian motion, and ΩΩΩΩ  the 

covariance matrix of B(r), which is assumed to be positive definite and that can also be 

interpreted as the long-run covariance matrix of the vector error sequence ξξξξt, that is 

1[ ] ( [ ] [ ])t t j t t j t j tE E E∞
= − −′ ′ ′= +∑ +Ω ξ ξ ξ ξ ξ ξΩ ξ ξ ξ ξ ξ ξΩ ξ ξ ξ ξ ξ ξΩ ξ ξ ξ ξ ξ ξ , which can be decomposed as ′= +Ω ∆ ΛΩ ∆ ΛΩ ∆ ΛΩ ∆ Λ , 

with = +∆ Σ Λ∆ Σ Λ∆ Σ Λ∆ Σ Λ  the one-sided long-run covariance matrix, where [ ]t tE ′=Σ ξ ξΣ ξ ξΣ ξ ξΣ ξ ξ , and 

1 [ ]j t t jE∞
= −′= ∑Λ ξ ξΛ ξ ξΛ ξ ξΛ ξ ξ . 

The assumption of positive definiteness of ΩΩΩΩ excludes cointegration among the k 
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integrated regressors ,k tX  (subcointegration) with ,( ) ( )k k kr =B BM ΩΩΩΩ , , 0k k >ΩΩΩΩ . Given 

the upper triangular Cholesky decomposition of the matrix ΩΩΩΩ, we then have that 

.( ) ( ) ( )k k kB r B r rυ υ υ′= + Bγγγγ , with . .( ) ( )k kB r W rυ υ υ= ω , and 1/ 2

,( ) ( )k k k kr r=B WΩΩΩΩ , where 

1

, ,k k k k

−
υ υ′=γ Ω ωγ Ω ωγ Ω ωγ Ω ω  and 2 2 2 1

. . . , , ,[ ( ) ] [ ( ) ( )]k k k k k k kE B r E B r B r −
υ υ υ υ υ υ υ′ω = = = ω − ω Ω ωω Ω ωω Ω ωω Ω ω  is the 

conditional variance of ( )B rυ  given ( )k rB , which gives .[ ( ) ( )]k k kE r B rυ =B 0 . 

For the initial values ,0kηηηη  and 0u , we introduce the very general conditions 

1/ 2

,0 ( )k po n=ηηηη , and 1/ 2

0 ( )pu o n= , which include the particular case of constant finite 

values. In the case of a stationary error term tu , with |α| < 1, we then have that 

1/ 2 [ ] 1

1 ( ) (1 ) ( )nr

t t un u B r B r− −
= υ∑ ⇒ = − α , with .( ) ( ) ( )u u k k kB r B r r′= + Bγγγγ , 1

k kk ku

−=γ Ω ωγ Ω ωγ Ω ωγ Ω ω , 

2 2 2 2[ ( ) ] (1 )u uE B r −
υ= ω = − α ω , 2 2 2

. .[ ( ) ]u k u k u k kk kE B r ′= ω = ω − γ Ω γγ Ω γγ Ω γγ Ω γ , and [ ( ) ( )]k uE r B r =B  

1(1 )ku k

−
υ= − αω ωω ωω ωω ω , while that in the case of nonstationarity, that is when α = 1, then 

1/ 2

[ ] ( ) ( )nr un u B r B r−
υ⇒ = , with 2 2

u υω = ω . With these results then we have 

[ ]
(1 ) (1 )

[ ]

1 0

( ) 1/2
( )

( ) 1/2

nr
uv v

nr t u r

t u

B r v
n U n u J r

B s ds v

− − − −

=

== ⇒ = 
∫ = −

∑  

with v =1/2 and v = −1/2 indicating, respectively, the stationary and nonstationary cases. 

Given the specification of the linear static cointegrating regression equation (2.3) the 

standard approach to estimating the vector parameters ,p kα βα βα βα β  consists in the use of the 

OLS estimation which gives 

1

, , ,

, ,

, ,1 1,

ˆ
( , )

ˆ

n n
p n p p t p t

p t k t t

k t k tt tk n k

u

−

= =

−      ′ ′=       −      
∑ ∑X

X X

α αα αα αα α τ ττ ττ ττ τ
ττττ

β ββ ββ ββ β
 

Taking into account the structure for the deterministic and stochastic trend components 

of the observed processes tY  and ,k tX  in (2.1), we can write 
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1 1

,, , , 1,,

1/ 21 1
, ,, , , , , , ,

, ,

1/ 2 1/ 2

, ,

p tnp n p tn p n p kp t

k t k tk p p n p tn k t k p p n k k

p tn p tn

n n

k t k tn

nn

n n

− −
+

−− −

− −

     
= =         +      

   
= =   

   

0

X A A I

W W

ττττΓ τ ΓΓ τ ΓΓ τ ΓΓ τ Γττττ
ηηηηΓ τ η ΓΓ τ η ΓΓ τ η ΓΓ τ η Γ

τ ττ ττ ττ τ
η ηη ηη ηη η

  (2.4) 

so that 

1

, ,1 1/ 2

, ,1/ 2

1 ,,

,(1 )

1/ 2

1 ,

ˆ
( ) (1/ ) ( , )

ˆ

n
p n p p tnv

n p tn k t

t k tk n k

n
p tnv

t

t k t

n n n
n

n u
n

−

− − −
−

=

− −
−

=

−     
′ ′ ′=        −     

   ×   
   

∑

∑

W
α αα αα αα α ττττ

τ ητ ητ ητ η
ηηηηβ ββ ββ ββ β

ττττ
ηηηη

 

with the power v taking values ±1/2 depending on the stochastic properties of the error 

sequence tu , and determining the order of consistency of the OLS estimates, that is 

1

, , , ,

1/ 2

,

1

, ,1/ 2 (1 )

, ,1/ 2 1/ 2

1 1, ,

ˆˆ[( ) ( )]

ˆ( )

(1/ ) ( , )

v

p n p n p k p k n k

v

k n k

n n
p tn p tnv

p tn k t t

t tk t k t

n

n

n n n u
n n

−

+

−

− − −
− −

= =

 ′− + −
 
 − 

       ′ ′=                
∑ ∑

AΓ α α β βΓ α α β βΓ α α β βΓ α α β β
β ββ ββ ββ β

τ ττ ττ ττ τ
τ ητ ητ ητ η

η ηη ηη ηη η

 (2.5) 

The usual result in this context is as in (2.5) but with , , 1k p k p+=A 0 , which corresponds 

to the case where the integrated regressors have no deterministic component and, in out 

formulation, the deterministic term that appears in the cointegrating equation 

corresponds to the one included in Yt. Hansen (1992) has studied a similar situation, but 

assuming that 0,t tY = η  with 
0 00, 0, , 0t p p td ′= =α τα τα τα τ , and pi = m, i = 1, ..., k, with 

1 2

, ( , ,..., )mpp p

m t t t t ′=ττττ ,1 ≤ p1 <...< pm, and scaling matrix 1 2

, ( , ,..., )mpp p

m n diag n n n
−− −=ΓΓΓΓ  

(see Theorem 1(a, b), p.93). The main differences with our approach are the no 

inclusion of a constant term and the inclusion of a rank condition on the coefficient 

matrix ,k mA , particularly, rank( ,k mA ) = m ≤ k. Then, from (2.1) we have that 

1

1 1 1/ 2

, , , , ,[ ] ,[ ] , , , , ,[ ]

( 1/ 2)

,[ ]

[( ) ] [( ) ]( )

( ) ( )

m n k m k m k m k nr m nr n m n k m k m k m k nr

p

m nr n p m

n n

O n r

− − −

− −

′ ′ ′ ′= +
= + ⇒

A A A X A A AΓ τ Γ ηΓ τ Γ ηΓ τ Γ ηΓ τ Γ η
τ ττ ττ ττ τ

 

which allows the possibility to develop a sequence of weights which yield a 
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nondegenerate design limiting matrix when estimating (2.3) by OLS under the 

restriction m m= 0αααα . However, as can see from the previous result, this only yields 

consistent results when p1 ≥ 1, and there is no constant term in the regression neither in 

the polynomial trend function.
1
 Under the assumption of cointegration (v = 1/2), then 

the limiting distribution of the last term in (2.5) is given by 

[ ]
, 1(1 )

1/ 2
,1 , 0

1

.
,0 0

( )
( )

( )

( ) ( )
( ) ( )

( ) ( )

rnr
p tn pv p

t u

k ut kk t

r r
pp p

u k k k
k uk k

s
n u dB s

rsn

s s
dB s d s

rs s

+− −
−

=

+

    
⇒ +    

    
       ′= + +      
      

∑ ∫

∫ ∫

0

B

0
B

B B

ττττ ττττ
∆∆∆∆ηηηη

τ ττ ττ ττ τ
γγγγ ∆∆∆∆

 

with , 0 ,[ ]k u j k t j tE u∞
= −= ∑∆ ε∆ ε∆ ε∆ ε  given by the probability limit of 1

, 1 ,[ ]n

n ku t k t tn E u−
== ∑∆ η∆ η∆ η∆ η .

2
 

This limiting distribution contains the second-order bias due to the correlation between 

Bu(·) and Bk(·) (endogeneity of the stochastic trend components of the regressors), and 

the non-centrality bias that comes from the fact that the regression errors are serially 

correlated through the parameter ,k u∆∆∆∆ . For the first term above we have that 

1 1

1/ 2

. . .

0 0

( ) ( ) ( ) ( )k u k u k kk k u ks dB s s dW s= ω∫ ∫B WΩΩΩΩ  

where, given that ( )k rB  and . ( )u kB r  are independent, conditioning on ( )k rB  (or 

( )k rW ) can be used to show that this term is a zero mean Gaussian mixture of the form 

,

1
1 1

1

. , , ,

0 0 0

( ) ( ) ( , ) ( ), ( ) ( )

k k

k u k k k k k k k k k ks dW s N dP s s

−

−

>

 
′= =  

 
∫ ∫ ∫

G

W 0 G G G W W  

The second term in the expression between brackets is a matrix unit root distribution, 

arising from the k stochastic trends in ,k tX , which is cancelled under strict exogeneity of 

                                                 
1
 See also Hassler (2001) for a related study in the case where the specification of the cointegrating 

regression equation does not include any deterministic term but the integrated regressors Xk,t contain a 

constant term. 
2
 The result 

,k u
r∆∆∆∆  is obtained by writing 

[ ]1 [ ] 1 [ ]

, 1 , 1 ,
( ) [ ] ([ ]) [ ]

nrnr nr

n ku t k t t t k t tn
r n E u nr E u− −

= == ∑ = ∑∆ η η∆ η η∆ η η∆ η η , so that 

[ ] 1 [ ] [ ] 1 1 [ ]

, 1 ,0 0 1 ,
( ) [([ ]) [ ] (([ ]) [ ])]

nr nr nr nr

n ku t k t j t j k t j tn
r nr E u nr E u− − −

= = = + −= ∑ +∑ ∑∆ η ε∆ η ε∆ η ε∆ η ε  

and the use of the initial condition ηηηηk,0, and Assumption 2.1 on the properties of the error terms. 



 8 

the regressors, that is when ku k= 0ωωωω . Using now (2.5) and the decomposition for ,k tX  in 

(2.1), we have that the sequence of OLS residuals is given by 

, , , , ,

1 1/ 2

, , , , , , ,

ˆˆˆ ( ) ( ) ( )

ˆ ˆˆ{ [( ) ( )]} ( )[ ( )]

t p t p t p n p k t k n k

t p tn p n p n p k p k n k k t k n k

u k u

u n n− −

′ ′= − − − −
′ ′ ′= − − + − − −

X

A

τ α α β βτ α α β βτ α α β βτ α α β β
τ Γ α α β β η β βτ Γ α α β β η β βτ Γ α α β β η β βτ Γ α α β β η β β

 

where the first element component in (2.5) can be written as 

1

, , , ,

1 1 1/ 2

, , , , , ,

1 1

ˆˆ[( ) ( )]

ˆ( )[ ( )]

p n p n p k p k n k

n n

n pp p tn t n pp p tn k t k n k

t t

u n n

−

− − −

= =

′− + −

′= − −∑ ∑

A

Q Q

Γ α α β βΓ α α β βΓ α α β βΓ α α β β

τ τ η β βτ τ η β βτ τ η β βτ τ η β β
 

which gives 

1

, , , ,

1

1/ 2 1

, , , , , ,

1

(1/ 2 ) 1/ 2

, , ,

ˆ ( )

ˆ[ ( )]

ˆ[ ( )]

n

t p t p tn n pp p jn j

j

n

k t p tn n pp p jn k j k n k

j

v v

t p kt p k n k

u k u u

n n

u n n

−

=

− −

=

− + +

′= −

 
′ ′ ′− − − 

 
′= − −

∑

∑

Q

Q

τ ττ ττ ττ τ

η τ τ η β βη τ τ η β βη τ τ η β βη τ τ η β β

η β βη β βη β βη β β

   (2.7) 

so that the OLS residuals are free of the trend parameters, and are decomposed in terms 

of the detrended versions of tu  and ,k tηηηη  as defined in (2.7). These OLS residuals can be 

used as the basis for building some simple statistics for testing the null hypothesis of 

cointegration against the alternative of no cointegration, given that ,
ˆ ( ) (1)t p pu k O=  when 

v = 1/2, and 1/ 2

,
ˆ ( ) ( )t p pu k O n=  when v = −1/2. This difference in behavior under the null 

and the alternative can be exploited by searching for excessive fluctuations in the 

sequence of scaled partial sum of residuals 1/ 2 [ ]

[ ], 1 ,
ˆ ˆ( ) ( )nr

nr p t t pB k n u k−
== ∑  through several 

global measures, such as a Cramér-von Mises (CvM) measure of fluctuation as in Shin 

(1994), or a Kolmogorov-Smirnov (KS) measure as in Xiao and Phillips (2002), and 

Wu and Xiao (2008).
3
 The CvM-type test by Shin (1994) is based on a global measure 

of fluctuation given by 2

, 1 ,
ˆ( ) (1/ ) ( ( ))n

n p t t pS k n B k== ∑ , while that the KS-type test statistic 

                                                 
3
 The test statistic proposed by Shin (1994) is the generalization of the KPSS statistic for the null of 

stationarity by Kwiatkowski et.al. (1992), while the test statistics considered in Xiao and Phillips (2002), 

and Wu and Xiao (2008) are the generalizations of the KS test statistic formulated by Xiao (2001). 
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proposed by Wu and Xiao (2008) is based on the recursive centered measure of 

maximum fluctuation , 1,..., , ,
ˆ ˆ( ) max | ( ) ( / ) ( ) |n p t n t p n pR k B k t n B k== − . Xiao and Phillips 

(2002) considers a no centered version of this test statistic given by 

, 1,..., ,
ˆ( ) max | ( ) |n p t n t pCS k B k== , which is the same as , ( )n pR k  when based on OLS 

residuals and the deterministic component contains a constant term. The main problem 

with this approach is that, unless corrected, the null distribution of all these test statistics 

are plagued of nuisance parameters due to endogeneity of regressors and the serial 

correlation in the error terms that cannot be removed by simple scaling methods. There 

exist some different methods, which are known as asymptotically efficient estimation 

methods, to remove these parameters and that differ in the treatment of each source of 

bias. Among the existing estimation methods, the three most commonly used are the 

Dynamic OLS (DOLS) estimator proposed by Phillips and Loretan (1991), Saikkonen 

(1991) and Stock and Watson (1993), the Canonical Cointegrating Regression (CCR) 

estimator by Park (1992), and the Fully-Modified OLS (FM-OLS) estimator by Phillips 

and Hansen (1990). These three estimators are asymptotically equivalent and, as was 

proved by Saikkonen (1991), efficient. The corrected test statistic proposed by Shin 

(1994) makes use of the DOLS residuals, while that the test statistics considered in Xiao 

and Phillips (2002) and Wu and Xiao (2008) are based on FM-OLS residuals. For a 

recent review and comparison of these three alternative estimation methods see, e.g., 

Kurozumi and Hayakawa (2009), and references therein. In order to establish the basis 

for our proposal in the next section we consider an alternative to the cointegrating 

regression equation (2.3). By applying the partitioned OLS estimation to the regression 

equation (2.3) with respect to the trend parameters, we have that this model can also be 

written as 

, , ,
ˆ ˆ , 1,...,t p k kt p t pY u t n′= + =Xββββ       (2.8) 
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where 1

, , , 1 ,
ˆ n

t p t p tn n pp j p jn jY Y Y−
=′= − ∑Qτ ττ ττ ττ τ , 1

, , 1 , , , ,
ˆ n

kt p k t j k j p jn n pp p tn

−
= ′= −∑X X X Qτ ττ ττ ττ τ , and ,t p tu u=  

1

, , 1 ,

n

p tn n pp j p jn ju−
=′− ∑Qτ ττ ττ ττ τ  denote the detrended observations of the model variables 

obtained by OLS fitting of their original observations to a pth-order polynomial trend 

function, where p is chosen according to the rule p ≥ max(p0, p1, ..., pk) in the case 

where the polynomial trend functions in tY  and each component of ,k tX  differ in their 

orders. The next Proposition 2.1 determines the effectiveness of this procedure to make 

the estimation results invariant to the trend parameters in (2.1). 

Proposition 2.1. Given (2.1)-(2.2), when considering the OLS detrending of tY  and ,k tX  

by fitting a polynomial trend function of order p = max(p0, p1, ..., pk) to each of these 

variables, then we have that 
1

, 0 , 0, , , 1 , 0,
ˆ n

t p t p t p tn n pp j p jn jY −
=′= η = η − ∑ ηQτ ττ ττ ττ τ  

and 
1

, , , 1 , , , , 1 , ,
ˆ ( ,..., )n

kt p kt p k t j k j p jn n pp p tn t p kt p

−
= ′ ′= = −∑ = η ηX Qη η η τ τη η η τ τη η η τ τη η η τ τ  

where 0 ,t pη  and ,kt pηηηη  are generalized detrended transformations of 0,tη  and ,k tηηηη , with 

1
1/ 2 1

[ ], ,
0

( ) ( ) ( ) ( ) ( )k nr p k p k k p pp pn r r s s ds r− −′⇒ = − ∫B B B Qη τ τη τ τη τ τη τ τ    (2.9) 

a (p+1)-order detrended transformation of ( )k rB . According to Lemma A.2 in Phillips 

and Hansen (1990), , ,( ) ( · ( ))k p k k pr v r=B BM ΩΩΩΩ  is a full rank Gaussian processes, with 

( )pv r  a scalar function of r and (·)pττττ . 

Proof. See Appendix A. 

By OLS estimation of the cointegrating vector component kββββ  in (2.8) we have 

1

(1/ 2 )

, , , , ,

1 1

1

1/ 2 1/ 2 (1 ) 1/ 2

, , , ,

1 1

ˆ ˆ ˆ ˆ( )

(1/ ) ( )( ) ( )

n n
v

k n k kt p kt p kt p t p

t t

n n
v

kt p kt p kt p t p

t t

n u

n n n n n u

−
+

= =
−

− − − − −

= =

 ′− =  
 

 ′=  
 

∑ ∑

∑ ∑

X X Xβ ββ ββ ββ β

η η ηη η ηη η ηη η η
 

which gives the same limiting results as before under cointegration, that is with v = 1/2, 

to that 1/ 2 1

1 , 0 ( ) ( )n

j p jn j p un u s dB s−
=∑ ⇒ ∫τ ττ ττ ττ τ , and thus 1/ 2

, ( )t p t pu u O n−= + . In order to 

complete the above results, we next consider the relationship between the FM-OLS and 

OLS estimators of pαααα  and kββββ  in (2.3), which is given by 
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1

, 1, ,

, ,
, ,1 1,

ˆ
( , )

ˆ

n n
p n pp t p t

p t k t t
k t k tt t kuk n

Y
n

−+
++
++

= =

          ′ ′= −                     
∑ ∑

0
X

X X

αααα τ ττ ττ ττ τ
ττττ

∆∆∆∆ββββ
   (2.10) 

where ,t t k t kY Y+ ′= − ∆X γγγγ , ku ku kk k

+ = −∆ ∆ ∆ γ∆ ∆ ∆ γ∆ ∆ ∆ γ∆ ∆ ∆ γ , and 1

k kk ku

−=γ Ω ωγ Ω ωγ Ω ωγ Ω ω .
4
 Again, as in (2.1)-(2.2), 

the key is to consider the following general decomposition for , ,k t k t= ∆Z X  

, , , , , 1 1, ,

1, 1

, 1 , , , , ,
,

( : )

k t k p p t k t k p p t k t

p t

k p k k t k p p n p tn k t
p t

− −

− −
−

∆ = ∆ + ∆ = +
 

= + = + τ 

X A

0

τ η Φ τ ετ η Φ τ ετ η Φ τ ετ η Φ τ ε
ττττ

Φ ε Φ Γ τ εΦ ε Φ Γ τ εΦ ε Φ Γ τ εΦ ε Φ Γ τ ε
   (2.11) 

with the matrix of trend coefficients , 1k p−ΦΦΦΦ  given by a linear combination of the 

corresponding elements of ,k pA . 

Proposition 2.2. Given (2.1)-(2.4), and the FM-OLS estimator of (2.3) in (2.10), then 

we have that 

(a) 
1 1

, , , , , , , , ,

, ,

1 1 1 1

, , , , , , , , , ,

1 1

1

, , , ,

1

ˆ ˆˆ ˆ[ ] [ ]

ˆ ˆ
p n p n k p k n p n p n k p k n k p k

k n k n

n n

n pp p tn k t n pk n kk k tn k t k n pp n pk n kk ku

t t

n

n kk k tn k t n p

t

n n

n

− + + −

+

− − − − +

= =

−

=

   ′ ′ ′+ + −
=   

   
   

 ′ ′− − 
 −

′ ′−

∑ ∑

∑

A A

M Q Q M Q Q

M Q

Γ α β Γ α β Φ γΓ α β Γ α β Φ γΓ α β Γ α β Φ γΓ α β Γ α β Φ γ
β ββ ββ ββ β

τ ε η ε γ ∆τ ε η ε γ ∆τ ε η ε γ ∆τ ε η ε γ ∆

η εη εη εη ε 1 1

, , , ,

1

n

k n pp p tn k t k n kk ku

t

n− − +

=

 
 
 
  ′ +  

  
∑Q Mτ ε γ ∆τ ε γ ∆τ ε γ ∆τ ε γ ∆

 

(2.12) 

with FM-OLS residuals, such that 

, , ,

1/ 2 1

, , , ,

1

ˆ ˆ( ) ( )

(1/ )( ) (1/ ) ·

t p t p kt p k

n

kt p n kk k tn kt p k ku

t

(b)u k u k

n n n

+

− − +

=

′= −
 ′ ′+ + 
 

∑M

ε γε γε γε γ

η η ε γ ∆η η ε γ ∆η η ε γ ∆η η ε γ ∆
  (2.13) 

where 1

, , , , ,n pp n pp n pk n kk n pk

− ′= −M Q Q Q Q , , 1 , ,

n

n pk t p tn k t= ′= ∑Q τ ητ ητ ητ η , , 1 , ,

n

n kk t k t k t= ′= ∑Q η ηη ηη ηη η , and 

, ,(1/ )n kk n kkn=M M , with , 1 , ,

n

n kk t kt p kt p= ′= ∑M η ηη ηη ηη η , and 1

, , 1 , , , ,

n

kt p k t j k j p jn n pp p tn

−
= ′= −∑ Qε ε ε τ τε ε ε τ τε ε ε τ τε ε ε τ τ . 

Proof. See Appendix B. 

Remark 2.1. The FM-OLS estimator in (2.10), as well as the results in (2.12) and 

(2.13), is not feasible since it is defined in terms of the unknown quantities kγγγγ  and 

ku ku kk k

+ = −∆ ∆ ∆ γ∆ ∆ ∆ γ∆ ∆ ∆ γ∆ ∆ ∆ γ . The feasible version is obtained by replacing these elements by 

nonparametric kernel estimates of the components of ΩΩΩΩ based on the OLS residuals in 

                                                 
4
 It can be shown that the correction term for Yt is associated with the correction for the endogeneity bias 

while 
ku

+∆∆∆∆  eliminates the non-centrality bias. 
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(2.7), that are consistent under the assumption of cointegration, and requires the choice 

of the bandwidth to ensure the proper asymptotic correction for serial correlation and 

endogeneity.
5
 

Remark 2.2. Using (2.1) we have that , , , , ,k t k t k p p t k t= ∆ = +Z X Φ τ εΦ τ εΦ τ εΦ τ ε . By OLS detrending 

we have 1 1

, , 1 , , , , , 1 , , , , ,
ˆ n n

kt p k t j k j p j n pp p t k t j k j p j n pp p t kt p

− −
= =′ ′= −∑ = −∑ =Z Z Z Q Qτ τ ε ε τ τ ετ τ ε ε τ τ ετ τ ε ε τ τ ετ τ ε ε τ τ ε . If we 

define now tY +  as , ,
ˆ

t t kt p k t kt p kY Y Y+ ′ ′= − = −Z γ ε γγ ε γγ ε γγ ε γ , as indicated by Hansen (1992) (page 

93), then the FM-OLS estimator of ααααp and ββββk is given by 

1

,, 1, , ,1 1

,
, , ,1,,

ˆˆ
( ) ·

ˆˆ

n
p np n pn pp n pk p tn

n kt p k n
n pk n kk k tnt kuk nk n

n

−+
+− −
++

=

          ′ ′= − +            ′         
∑

0Q Q
W W

Q Q

αααααααα ττττ
ε γε γε γε γηηηη ∆∆∆∆ββββββββ

 

which gives exactly the same expressions as before for , ,
ˆˆ( , )p n k n

+ +α βα βα βα β  and the FM-OLS 

residuals. 

For later use, we define the partial sum of the detrended errors in the cointegrating 

regression (2.3) or (2.8) as , 1 ,

t

t p j j pU u== ∑ , with 

[ ] [ ] [ ]
(1 ) (1 ) (1 ) 1 1 (1 )

[ ], , , , ,

1 1 1 1

nr nr nr n
v v v v

nr p t p t p tn n pp p tn t

t t t t

n U n u n u n n u− − − − − − − − − −

= = = =

′= = −∑ ∑ ∑ ∑Qτ ττ ττ ττ τ  

where, asymptotically we have 

,(1 )

[ ], ,

0 ,

( ) 1/2 (| | 1)
( )

( ) 1/2

u pv

nr p u p r

u p

V r v
n U J r

B s ds v

− −
= α <

⇒ = 
∫ = −

   (2.14) 

with , ( )u pV r  a generalized (p+1)th-level Brownian bridge process given by 

1
1

,
0 0

( ) ( ) ( ) ( ) ( )
r

u p u p pp p uV r B r s ds s dB s−′= − ∫ ∫Qτ ττ ττ ττ τ     (2.15) 

                                                 
5
 Similarly, since the CCR estimator proposed by Park (1992) is defined as the OLS estimator between 

the modified dependent variable * 1

, ,
ˆ ˆ( (0, )) ( )

t t k n k k t p
Y Y k−′ ′= − +β ∆ Σ γ ξβ ∆ Σ γ ξβ ∆ Σ γ ξβ ∆ Σ γ ξ  and 

*

, ,
( , )

p t k t
′ ′ ′Xττττ , with 

* 1

, , ,
ˆ ( )

k t k t k t p
k−= −X X ∆ Σ ξ∆ Σ ξ∆ Σ ξ∆ Σ ξ , 

, , ,
ˆ ( ) ( ( ), )

t p t p k t
k u k′ ′ ′= Zξξξξ , and 

0 , 0 , ,
[ ] [ ( , )]

k j k t t j j k t t j k t j
E E u

∞ ∞
= − = − −′ ′= ∑ = ∑∆ ε ξ ε ε∆ ε ξ ε ε∆ ε ξ ε ε∆ ε ξ ε ε . 

This method uses the same principle as the FM-OLS method to eliminate the endogeneity bias, while it 

deals with the non-centrality parameter in a different manner, but also relies on consistent estimates of the 

quantities ∆∆∆∆k, ΣΣΣΣ and γγγγk which depend on some tuning parameters. 
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with variance 2 2

,[ ( ) ] · ( )u p u pE V r b r= ω , where 1

0 0( ) ( ) ( )r r

p p pp pb r r s ds s ds−′= − ∫ ∫Qτ ττ ττ ττ τ , and 

, ( )u pB r  a (p+1)th-order detrended Brownian motion process defined as 

1
1

,
0

( ) ( ) ( ) ( ) ( )u p u p pp p uB r B r r s B s ds−′= − ∫Qτ ττ ττ ττ τ      (2.16) 

as the stochastic limits in (2.14).
6
 Thus, under the assumption of no cointegration, when 

α = 1 and v = −1/2, we get the usual result 

( ) 1
1 1

, , , , ,
0 0

ˆ ( ) ( ) ( ) ( )k n k k p k p k p u ps s ds s dJ s
−

′− ⇒ ∫ ∫B B Bβ ββ ββ ββ β  

where , ,( ) ( )u p u pdJ r B r= . Finally, making use of (2.15), and the relation 

.( ) ( ) ( )u u k k kB r B r r′= + Bγγγγ  we then have that , ( )u pV r  can be decomposed as 

{ }
1

1

, . .
0 0

1
1

0 0

. , ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

r

u p u k p pp p u k

r

k k k p pp p

u k p k k p

V r B r s ds s dB s

r d s s s ds

V r r

−

−

′= −

′ ′ ′+ −

′= +

∫ ∫

∫ ∫

Q

B B Q

V

τ ττ ττ ττ τ

γ τ τγ τ τγ τ τγ τ τ

γγγγ

    (2.17) 

where, by construction, it is verified , . , , . ,[ ( ) ( )] [ ( ) ( )]k p u k p k p u k p kE r V r E r V r= =V B 0 , with 

, ( )k p rB  defined in (2.9), and 2 2

. , .[ ( ) ] · ( )u k p u k pE V r b r= ω . 

3. IM-OLS estimation with trending regressors 

In this section we consider the new estimator of a static cointegrating regression model 

like (2.3) recently proposed by Vogelsang and Wagner (2011). For this estimator, these 

authors show that a simple transformation of the model components is used to obtain an 

asymptotically unbiased estimator of ββββk with a zero mean Gaussian mixture limiting 

distribution, but when the assumed DGP is as in (2.1) with , , 1k p k p+=A 0 . Like FM-OLS, 

                                                 
6
 Explicit expressions for these two limiting processes, 

,
( )

u p
V r  and 

,
( )

u p
B r , can be obtained in the 

leading cases of p = 0 (constant), and p = 1 (constant and linear trend). Specifically, we have that 

,0
( ) ( ) (1)

u u u
V r B r rB= − , and 1

,1 0
( ) ( ) (2 3 ) (1) 6 (1 ) ( )

u u u u
V r B r r rB r r B s ds= + − − − ∫  for the first and second-

level Brownian bridge, while that 1

,0 0
( ) ( ) ( )

u u u
B r B r B s ds= − ∫ , and 1

,1 0
( ) ( ) 2(3 2) ( )

u u u
B r B r r B s ds= + − ∫  

1

0
2(6 3) ( )

u
r sB s ds− − ∫  are the particular expressions for the demeaned and demeaned and detrended 

Brownian processes, respectively. 
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the transformation has two steps but neither step requires the estimation of any of the 

components of ΩΩΩΩ, and so the choice of bandwidth and kernel is completely avoided. 

Thus, computing the partial sum of both sides of (2.3) gives the so-called integrated 

cointegrating regression model as 

, , 1,...,t p p t k k t tS U t n′ ′= + + =S Sα βα βα βα β       (3.1) 

with 1

t

t j jU u== ∑ , 1 0, 1 , 1 0, 0, , 0,

t t t

t j j p j p j j j p p t tS Y h= = =′ ′= ∑ = ∑ +∑ η = +Sα τ αα τ αα τ αα τ α , 

1 1

, 1 , , 1 , , ,

t t

p t j p j p n j p jn p n p tn

− −
= == ∑ = ∑ =S Sτ Γ τ Γτ Γ τ Γτ Γ τ Γτ Γ τ Γ      (3.2) 

and 

1

, 1 , , , 1 , , , , ,

t t

k t j k j k p p t j k j k p p n p tn k t

−
= == ∑ = +∑ = +S X A S A S Hη Γη Γη Γη Γ    (3.3) 

Taking together (3.2) and (3.3) we have 

1 1 1

, 1,, , ,

1,1 3/ 2 3/ 2
, , , , , ,

p n p kp t p tn p tn

n

k t k p p n k k k t k t

n n n

n n n n n

− − −
+

− − −

     
= =                

0S S S
W

S A I H H

ΓΓΓΓ
ΓΓΓΓ

 

with 

1

,[ ] 0

3/ 2

,[ ] 0

( )
( )

( )

r
p nr n p

r
k nr k

n s ds
r

n s ds

−

−

   ∫
⇒ =     ∫  

S
g

H B

ττττ
      (3.4) 

as n→∞. Then, the IM-OLS estimator of pαααα  and kββββ  is given by the OLS estimator in 

(3.1), which can be written as 

1
, , , , ,(1 )

1, 1/ 2
, ,

1
1

, 1 3/ 2

, ,3/ 2
1 ,

1

, (1

3/ 2

,

[( ) ( )]

( )

(1/ ) ( , )

(1/ )

v
p n p p n p n p k p k n kv

n v
k n k k n k

n
p tn

p tn k t

t k t

p tn v

k t

n
n

n

n
n n n

n

n
n n

n

−
− −

+

−−
− −

−
=

−
− −

−

−  ′  − + −
′ =     − −   

  
′ ′=     

  

 
×   

 

∑

A
W

S
S H

H

S

H

ɶɶ ɶ

ɶ ɶ

α αα αα αα α Γ α α β βΓ α α β βΓ α α β βΓ α α β β
β ββ ββ ββ β β ββ ββ ββ β

)

1

n

t

t

U
=

  
 
  

∑

  (3.5) 

where 

1 1

, (1 )

3/ 2
1 , 0

(1/ ) ( ) ( )
n

p tn v

t u

t k t

n
n n U r J r dr

n

−
− −

−
=

 
⇒  

 
∑ ∫

S
g

H
    (3.6) 
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with ( )rg  given in (3.4), ( ) ( )u uJ r B r=  under the assumption of cointegration, v = 1/2, 

and 0( ) ( )r

u uJ r B s ds= ∫  under no cointegration, that is when v = −1/2. Vogelsang and 

Wagner (2011), Theorem 2, considers this case when , , 1k p k p+=A 0 , which corresponds 

to the case of integrated regressors without deterministically trending components, so 

that the trending parameters in the specification of the cointegrating regression must be 

associated to the deterministic component of the dependent variable. Given that the 

limiting result in (3.6) does not contain the additive term ku∆∆∆∆ , partial summing before 

estimating the model thus performs the same role for IM-OLS that 1( , )p kun +
+′ ′ ′0 ∆∆∆∆  plays 

for FM-OLS, but this still leaves the problem that the correlation between tu  and ,k tεεεε  

rules out the possibility of conditioning on ( )k rB  to obtain a conditional asymptotic 

normality result. The solution proposed by these authors requires that ,k tX  be added as a 

regressor to the partial sum regression (3.1) as 

, , , 1,...,t p p t k k t k k t tS t n′ ′ ′= + + + ζ =S S Xα β γα β γα β γα β γ      (3.7) 

which can be called now the integrated modified (IM) cointegrating regression, where 

,t t k k tU ′ζ = − Xγγγγ . Then, by OLS estimation of (3.7) we have that 

1
1 1

, , ,
1/ 2 3/ 2 1 3/ 2 1/ 2

, , , , ,
1/ 2 1/ 21

, ,

1

,
3/ 2 (1 )

,
1/ 2

,

( )

( ) (1/ ) ( , , )

(1/ )

v

p n p n p n p tn
v

k n k k t p tn k t k t
v t

k n k t

p tn
v

k t t

k t

n n

n n n n n n

n n

n

n n n U

n

−− −

+ − − − −

− + −=

−

− − −

−

    −
     ′ ′ ′− =         

    
 
 ×
  
 

∑
S

S S S X

X

S

S

X

ɶ

ɶ

ɶ

Γ α αΓ α αΓ α αΓ α α
β ββ ββ ββ β

γγγγ

1

n

t=


 
 
 
 

∑

 (3.8) 

which gives a well defined limit result and free of nuisance trending parameters under 

the assumption of cointegration and no deterministic component in the DGP (2.1) for 

,k tX , as in Theorem 2 in Vogelsang and Wagner (2011). However, when using 

1 1/ 2

, , , , ,( )k t k p p n p tn k tn n− −= +X A Γ τ ηΓ τ ηΓ τ ηΓ τ η  from (2.1) and (2.4), with , , ,( 1)p tn p tn p t n−= −S Sττττ , then 



 16

we can write 

1 1

, ,, 1
1 1 3/ 2

, , , , ,
1 11 1 1/ 2

, , , ,( 1), , , ,

1

, 1, 1,
1

, , , ,

( )

( ) ( )

( )( ) ( )

p n p tnp t p

k t k p p n p tn k t k

k t k p p n p t nk p p n p tn k t

p n p k p k

k p p n k k k k

n n

n n n n n

n nn n n n

n

n n n

n

− −
+

− − −

− −− − −
−

−
+ +

−

    
     = + −
      +    

=

SS 0

S A S H 0

X A SA S

0 0

A I 0

A

ΓΓΓΓ
ΓΓΓΓ

ΓΓΓΓΓ ηΓ ηΓ ηΓ η

ΓΓΓΓ
ΓΓΓΓ

1

,
3/ 2

,
1/ 21

,, , , ,

1

,( 1)1, 1 1, 1,
3/ 2

, 1 , , , 1
1/ 21

, 1, , , ,

p tn

k t

k tk p p n k k k k

p t np p p k p k

k p k k k k k t

k tk p p n k k k k

n

n

nn

n

n

nn

−

−

−−

−
−+ + + +

−
+ −

−−
−

  
  
    
  

  
  −
    

  

S

H

0 I

S0 0 0

0 0 0 H

A 0 0

ηηηηΓΓΓΓ

ηηηηΓΓΓΓ

 

that is, 

1 1

, ,( 1),

3/ 2 3/ 2

, 21, , 22, , 1

1/ 2 1/ 2
, , , 1

1 1

, ,( 1)

3/ 2 1 3/ 2

21, , 21, 22, , 1

1/ 2 1/ 2

, ,

p tn p t np t

k t n k t n k t

k t k t k t

p tn p t n

n k t n n k t

k t k

n n

n n

n n

n n

n n

n n

− −
−

− −
−

− −
−

− −
−

− − −
−

− −

    
     = −    

          

 
 = − 
 
 

S SS

S W H W H

X

S S

W H W W H

η ηη ηη ηη η

η ηη ηη ηη η 1t−

  
  
  
  

  

 

where the last term between brackets is given by 

1

,( 1) 1

1 3/ 2

21, 22, , 1

1 11/ 2
, , ,( 1), 1

( )

p t n p

n n k t k

k p p n p t nk t

n

n

n nn

−
− +

− −
−

− −−
−−

   
   =   

     

S 0

W W H 0

A SΓΓΓΓηηηη
 

which diverge with the sample size even in the case of a constant term (p = 0). 

Alternatively, if we redefine the IM regression model (3.7) in terms of the IM-OLS 

detrended variables we have 

* * * *

, , , ,
ˆ ˆ ˆ 1,...,t p k kt p k kt p t pS t n′ ′= + + ζ =S Xβ γβ γβ γβ γ  

where 

*

1,

*

, , , , , , ,

1 1*
, ,,

ˆ

ˆ

ˆ

t p jn nt

kt p k t k j p j p j p j p t

j j

k t k jkt p

S SS −

= =

    
      ′ ′= −     

            

∑ ∑S S S S S S S

X XX

 

Given 0, , 0,t p p t tS h′= +Sαααα  and ,k tS  as in (3.3) we then have that 
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1* *

, 0, 0 ,0,

, , , , **
, ,1 1 ,,

ˆ

ˆ

n n
t p j t pt

p j p j p j p t
k t k jj j kt pkt p

S h hh
−

= =

       ′ ′= − =                  
∑ ∑S S S S

H H HS
 

which are free of trend parameters, while that *

,
ˆ

kt pX  is given by 

1

*

, , , , , , ,

1 1

1

* *

, , , , , , , , , ,

1 1

ˆ
n n

kt p k t k j p j p j p j p t

j j

n n

k p p t p j p j p j p j p t kt p k p p t

j j

−

= =

−

= =

 
′ ′= −  
 

  
 ′ ′+ − = + 
   

∑ ∑

∑ ∑

X S S S S

A S S S S A

η ηη ηη ηη η

τ τ η ττ τ η ττ τ η ττ τ η τ

 

with 

* 1/ 2 1/ 2 1

, , , ,

1

1

1 1 1

, , ,

1

( ) (1/ ) ( )( )

(1/ ) ( )( ) ( )

n

kt p k t k j p j

j

n

p jn p jn p tn

j

n n n n n

n n n n

− − −

=

−

− − −

=


′= −


  ′×  

  

∑

∑

S

S S S

η η ηη η ηη η ηη η η

 

and 

* 1 1

, , , , , , ,

1

1

1 1 1 1 *

, , , , , ,

1

(1/ ) ( )

(1/ ) ( )( ) ( )

n

k p p t k p p n p tn p jn p jn

j

n

p jn p jn p tn k p p n p tn

j

n n

n n n n

− −

=

−

− − − −

=


′= −


  ′× = 

  

∑

∑

A A S

S S S A

τ Γ τ ττ Γ τ ττ Γ τ ττ Γ τ τ

Γ τΓ τΓ τΓ τ
 

which determines that 1/ 2 * 1/ 2 * 1/ 2 1 *

, , , , ,
ˆ ( )kt p kt p k p p n p tnn n n− − − −= +X Aη Γ τη Γ τη Γ τη Γ τ . For p = 0, 1/ 2 *

,0
ˆ

ktn− =X  

1/ 2 * 1/ 2 * 1/ 2 * 1/ 2

,0 ,0 0, ,0 ( )kt k tn ktn n n O n− − − −+ = +Aη τ ηη τ ηη τ ηη τ η , so that the deterministic component is 

asymptotically irrelevant, while for p ≥ 1 we have that 1/ 2 * 1/ 2 * 1/ 2

, ,
ˆ ( )p

kt p kt pn n O n− − −= +X ηηηη , 

which implies that deterministic component dominates the stochastic one yielding 

inconsistent results. Thus, to deal with this general case, from (2.8) and making use of 

the result in Remark 2.2 for the OLS detrended observations of ,k t∆X , , ,
ˆ

kt p kt p=Z εεεε , we 

get the following augmented version of (2.8) 

, , , , , , , ,
ˆ ˆ ˆ ˆ ˆ ˆ , 1,...,t p k kt p k kt p t p k kt p k kt p k kt p t pY u z t n′ ′ ′ ′ ′= + + − = + + =X Z Z X Zβ γ γ β γβ γ γ β γβ γ γ β γβ γ γ β γ  

which gives the following corrected version of the IM cointegrating regression equation 
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, , , , , , ,

1

ˆ ˆ ˆˆ ˆ , 1,...,
t

t p k kt p k kj p t p k kt p k kt p t p

j

S t n
=

′ ′ ′ ′= + + ζ = + + ζ =∑S Z S Tβ γ β γβ γ β γβ γ β γβ γ β γ  (3.9) 

with , 1 , 1 ,
ˆ ˆt t

kt p j kj p j kj p= == ∑ = ∑S X ηηηη , and , 1 , , ,
ˆt

t p j t p t p k kt pz U= ′ζ = ∑ = − Tγγγγ , where 

3/ 2 3/ 2

, , ,, ,

1/ 2 1/ 2
, ,, , ,

ˆ ˆ ˆ

ˆ ˆ ˆ
kt p kt p kt pk k k k

n

k k k kkt p kt p kt p

n nn n

n n n

− −

− −

      
= =                 

S S SI 0
W

0 IT T T
   (3.10) 

and 

[ ] [ ] [ ]
1

[ ], , , , , , ,

1 1 1 1

[ ]
1/ 2 1/ 2 1

,0 ,[ ] , , , ,

1 1

ˆ ˆ

(1/ )

nr nr nrn

k nr p kt p k t k j p jn n pp p tn

t t j t

nrn

k k nr k j p jn n pp p tn

j t

n n n n

−

= = = =

− − −

= =

′= = −

 
′= − + − 

 

∑ ∑ ∑ ∑

∑ ∑

T Z Q

Q

ε ε τ τε ε τ τε ε τ τε ε τ τ

η η ε τ τη η ε τ τη η ε τ τη η ε τ τ
 

which gives, asymptotically, a k-dimensional Brownian bridge of order (p+1) such that 

1

1/ 2 1

[ ], ,

0 0

ˆ ( ) ( ) ( ) ( ) ( )

r

k nr p k p k k p pp pn r r d s s s ds− −′⇒ = − ∫ ∫T V B B Qτ ττ ττ ττ τ  

or, more compactly, 

3/ 2

[ ], 0 ,

1/ 2
,[ ],

ˆ ( )
( )

ˆ ( )

r
k nr p k p

p

k pk nr p

n s ds
r

rn

−

−

   ∫
⇒ =       

S B
g

VT
     (3.11) 

Also, from (2.14), (2.17), and (3.11) it can be easily verified that under cointegration 

(|α| < 1 in Assumption 2.1), the scaled error term in the IM cointegrating regression 

(3.9) behaves asymptotically as 

1/ 2 1/ 2 1/ 2

, , , . ,
ˆ ( ).t p t p k kt p u k pn n U n V r− − −′ζ = − ⇒Tγγγγ      (3.12) 

Then, we define the IM-OLS estimator of the coefficient vector (ββββk, γγγγk), based on OLS 

detrended observations, as 

1

, ,,
, , ,

1 1, , ,

ˆ ˆ
ˆ ˆˆ( , )

ˆ ˆ

n n
kt p kt pk n

kt p kt p t p

t tk n kt p kt p

S

−

= =

     
′ ′ =                

∑ ∑
S S

S T
T T

ɶ

ɶ

ββββ
γγγγ

    (3.13) 

with IM-OLS residual sequence given by 

,
, , , ,

,

ˆ ˆ ˆ( ) ( , ) k n
t p t p kt p kt p

k n

k S
 

′ ′ζ = −  
 

S T
ɶ

ɶ
ɶ

ββββ
γγγγ

     t = 1, ..., n    (3.14) 
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Next proposition establish the main result in this section related to the weak 

convergence of IM-OLS estimators and residuals under the assumption of cointegration, 

that is when the error term sequence tu  in the original cointegrating regression equation 

(2.3) is nonstationary with α = 1 in Assumption 2.1. 

Proposition 3.1. Given (2.1) and (2.2), and under Assumption 2.1, the IM-OLS 

estimation of the cointegrating regression model in (2.3) based on the IM regression 

(3.9) with OLS detrended observations, then equation (3.13) determine that: 
1

3/ 21/ 2

,, 3/ 2 1/ 2

, ,1/ 2 1/ 2
1, ,

3/ 2

, (1 )

,1/ 2
1 ,

ˆ( ) ˆ ˆ( ) (1/ ) ( , )
ˆ

ˆ
(1/ )

ˆ

v n
kt pk n k

kt p kt pv
tk n kt p

n
kt p v

t p

t kt p

nn
a n n n

n n

n
n n U

n

−
−+

− −
− + −

=

−
− −

−
=

   −
′ ′ =           

   ×    
   

∑

∑

S
S T

T

S

T

ɶ

ɶ

β ββ ββ ββ β
γγγγ

 

( )
( )
( )

1
1 1

,

. ,
0 0

,

1
1 1

1

. . ,
0 0

1
1 1

1

. . ,
0 0

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) [ (1) ( )] ( )

k n k

p p p u k p

k n k

u k p p p u k p

u k p p p p u k p

n
b r r dr r V r dr

r r dr r W r dr

r r dr r dW r

−

−
−

−
−

 − ′⇒ − 

′= ω

′= ω −

∫ ∫

∫ ∫

∫ ∫

g g g

g g g

g g G G

ɶ

ɶ

β ββ ββ ββ β
γ γγ γγ γγ γ

ΠΠΠΠ

ΠΠΠΠ

 

1/ 2

,(1 ) (1 ) 3/ 2 1/ 2

, , , , 1/ 2

,

( )ˆ ˆ( ) ( ) ( , )
( )

v

k n kv v

t p t p kt p kt p v

k n k

n
c n k n n n

n

+
− − − − − −

− +

 −
′ ′ζ = ζ −   − 
S T

ɶ
ɶ

ɶ

β ββ ββ ββ β
γ γγ γγ γγ γ

 

and 

( ) 1
1

1/ 2

, . . ,
0

1

. , . ,
0

( ) ( ) ( ) ( ) ( ) ( )

[ (1) ( )] ( ) ( )

t p u k u k p p p p

p p u k p u k k p

d n k W r r s s ds

s dW s R r

−
−  ′ ′ζ ⇒ ω −


× − = ω


∫

∫

g g g

G G

ɶ

 

where the results in (b) and (d) are establish under the assumption of cointegration, that 

is with v = 1/2, with . , . . ,( ) ( )u k p u k u k pV r W r= ω , ( ) · ( )p pr r=g gΠΠΠΠ , 0( ) ( )r

p pr s ds= ∫ =G g  

( )p rGΠΠΠΠ , and 1/ 2 1/ 2

, ,( , )k k k kdiag=Π Ω ΩΠ Ω ΩΠ Ω ΩΠ Ω Ω . 

Proof. See Appendix C. 

Remark 3.1. As can be seen in (b) and (d) above, for inferential purposes related to 

hypothesis testing, these limiting results depends only on 2

.u kω  and ,k kΩΩΩΩ  as nuisance 

parameters. Specially relevant, when using the IM-OLS residuals in (d), is the question 

of possible consistent estimation of the conditional long-run variance 2

.u kω  based on the 

first differences of , ( )t p kζɶ , , ( )t p k∆ζɶ . As is discussed in the next section and in 
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Vogelsang and Wagner (2011), the standard approach based on the use of a 

nonparametric kernel-type estimator determine inconsistent estimation of 2

.u kω . For this, 

reason, for our purposes in this paper we follow an alternative approach. 

4. IM-OLS residual-based test for the null of cointegration 

In this section we propose some new statistics based on the sequence of IM-OLS 

residuals, as has been defined in section 3, for testing the null hypothesis of 

cointegration against the alternative of no cointegration by looking for excessive 

fluctuations in the sample paths of this residual sequence . These new test statistics are 

partially inspired by the nonparametric variance-ratio statistic proposed by Breitung 

(2002) for testing the unit root null hypothesis against stationarity in a univariate time 

series, in the sense that our statistics are totally free of tuning parameters. In our case, 

we look for a unit root-like behavior in the residual sequence , ( )t p kζɶ  which is 

compatible with the stationarity of the error term ,t pz  in the augmented cointegrating 

regression among the OLS detrended variables. 

First of all, we consider the case of the IM cointegrating regressión (3.7) with ααααp = 0p+1 

and , , 1k p k p+=A 0 . Thus, from (3.8) we have that the IM-OLS estimators of ββββk and γγγγk can 

be written as 

1
3/ 21/ 2

3/ 2 1/ 2,,
1/ 21/ 2 , ,

,, 1

3/ 2
(1 ),

1/ 2

,1

( )
(1/ ) ( , )

(1/ )

v n

k tk n k
v k t k t

k tk n t

n
vk t

t
k tt

nn
n n n

nn

n
n n U

n

−−+
− −

−− +
=

−
− −

−
=

    − ′ ′=     
    
  

×   
  

∑

∑

S
S X

X

S

X

ɶ

ɶ

β ββ ββ ββ β
γγγγ

 

where 3/ 2 1/ 2 3/ 2 1/ 2

, , , ,( , ) ( , ) ( )k t k t k t k tn n n n r− − − −′ ′ ′ ′ ′ ′= ⇒S X H gηηηη  for t = [nr], with ( )r =g  

0( ( ) , ( ) )r

k ks ds r′ ′ ′∫ B B , as n→∞. Under the assumption of cointegration, the limiting 
distribution of these estimates is as in Proposition 3.1(b), with ( )p rg  and . , ( )u k pW r  

replaced by ( )rg  and . ( )u kW r , respectively. With the associated sequence of IM-OLS 

residuals, , , , ,( ) ( )t t k t k n k t k nk S ′ ′ζ = − +S Xɶ ɶ ɶβ γβ γβ γβ γ , t = 1, ..., n, we define the following main 

components of our fluctuation test statistics 
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2

1,

1

( ) (1/ ) ((1/ ) ( ))
n

n t

t

F k n n k
=

= ζ∑ ɶ       (4.1) 

2,
1,...,

( ) max(1/ ) | ( ) |n t
t n

F k n k
=

= ζɶ        (4.2) 

and 

3,
1,...,

( ) max(1/ ) | ( ) ( / ) ( ) |n t n
t n

F k n k t n k
=

= ζ − ζɶ ɶ      (4.3) 

Taking into account the result (d) in Proposition 3.1, we have that, asymptotically, 

1/ 2

.( ) ( )t u k kn k R r− ζ ⇒ ωɶ  under the cointegration assumption, with 

( ) 1
1 1

. .
0 0

( ) ( ) ( ) ( ) ( ) [ (1) ( )] ( )k u k u kR r W r r s s ds s dW s
−

′ ′= − −∫ ∫g g g G G   (4.4) 

In order to eliminate the nuisance parameter 2

.u kω  from the limiting null distributions of 

these statistics, we define the random element 

2 2( ) (1/ ) ( )n nv k n k= ζɶɶ         (4.5) 

which gives the normalized version of the above fluctuation statistics 

2

1, 1,( ) ( )· ( )n n nF k v k F k−= ɶ        (4.6) 

and 

1

, ,( ) ( )· ( )j n n j nF k v k F k−= ɶ , j = 2, 3      (4.7) 

Taking into account the fluctuation statistics , ( )j nF k  in (4.1)-(4.3), as well as the 

normalized squared error 2 ( )nP kɶ , can also be written as 

1 2 (1 ) 2

1,

1

( ) (1/ ) ( ( ))
n

v v

n t

t

F k n n n k− − −

=

 = ζ 
 

∑ ɶ  

(1 2 )/2 (1 )

2,
1,...,

( ) max | ( ) |v v

n t
t n

F k n n k− − −

=
= ζɶ  

2 1 (1 ) 2 1 2 (1 ) 2

, (1/ )[ ( ( ))] [ ( )]v v v v

n k n nv n n n k n n k− − − − − −= ζ = ζɶ ɶɶ  

and similarly for 3, ( )nF k , then both the numerator and the denominator of the 

normalized test statistics in (4.6) and (4.7) are of the same order of magnitude under the 



 22

null hypothesis of cointegration, as well as under the alternative of no cointegration 

(when v = −1/2), but with very different limiting distributions in each case. Similarly, in 

the case of the IM-OLS estimation of the cointegrating regression model based on OLS 

detrended observations of the variables, as was introduced in section 3, then we define 

the corresponding normalized fluctuation test statistics as 

2

1, , 1,( , ) ( )· ( , )n n p nF p k v k F p k−= ɶ        (4.8) 

and 

1

, , ,( , ) ( )· ( , )j n n p j nF p k v k F p k−= ɶ , j = 2, 3     (4.9) 

where 

2 2

, ,( ) (1/ ) ( )n p n pv k n k= ζɶɶ         (4.10) 

Next proposition establish the asymptotic null and alternative distribution of all these 

test statistics. 

Proposition 4.1. Under the null hypothesis of cointegration, that is when α = 1 in 

Assumption 2.1 with v = 1/2, then: 
1

2 2

1, .
0

2, . 3, .
[0,1] [0,1]

2 2 2

.

( ) ( ) ( )

( ) sup | ( ) |, ( ) sup | ( ) · (1) |

( ) (1)

n u k k

n u k k n u k k k
r r

n u k k

a F k R s ds

F k R r F k R r r R

v k R

∈ ∈

⇒ ω
⇒ ω ⇒ ω −

⇒ ω

∫

ɶ

 

and similarly for , ( , )j nF p k , j = 1, 2, 3, and 2

, ( )n pv kɶ  with ( )kR r  replaced by , ( )k pR r  as 

has been defined in result (d) of Proposition 3.1. Also, under the alternative hypothesis 

of no cointegration, that is when |α| < 1 in Assumption 2.1 with v = −1/2, then: 
1

2 2

1,
0

1 1

2, 3,
[0,1] [0,1]

2 2 2

( ) ( ) ( )

( ) sup | ( ) |, ( ) sup | ( ) (1) |

( ) (1)

n k

n k n k k
r r

n k

b n F k J s ds

n F k J r n F k J r rJ

n v k J

−

− −

∈ ∈
−

⇒

⇒ ⇒ −

⇒

∫

ɶ

 

where 

( ) 1
1 1

0 0
( ) ( ) ( ) ( ) ( ) ( ) ( )k u uJ r J r r s s ds s J s ds

−

′ ′= − ∫ ∫g g g g  

with 0( ) ( )r

u uJ r B s ds= ∫ , and similarly for 2

1, ( , )nn F p k− , 1

, ( , )j nn F p k− , j = 2, 3, and 

2 2

, ( )n pn v k−
ɶ , with ( )kJ r  replaced by , ( )k pJ r  defined as 

( ) 1
1 1

, , ,
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )k p u p p p p p u pJ r J r r s s ds s J s ds
−

′ ′= − ∫ ∫g g g g  

where , 0 ,( ) ( )r

u p u pJ r B s ds= ∫ . 

Proof. See Appendix D. 
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Remark 4.1. As cited above, under the alternative of no cointegration, these test 

statistics are not consistent in the usual way because their limiting distributions are 

obtained without further normalization of the components in the numerator and 

denominator. However, these distributions differ from the null distributions in the sense 

that they are shifted to the left and more concentrated. This implies that a rejection of 

the null of cointegration against no cointegration is registered for small values of any of 

these test statistics, which means that this is a left tailed test that rejects the null 

hypothesis of cointegration for values of , ( )j nF kɶ  smaller than the asymptotic critical 

value , ( )jc kα  given by the αth-lower quantile of the asymptotic null distribution. From 

the results in part (a) of Proposition 3.1, it is evident that the asymptotic null distribution 

of all these test statistics are free of nuisance parameters and only depends on the 

combination of p and k in the case of using OLS detrended observations. 

Tables 4.1 and 4.2 below present the critical values for the test statistics , ( )j nF k  and 

, ( , )j nF p k , for p = 0, 1, computed via direct simulation based on 20000 independent 

replications, with 2000 observations, and ,( , )t t k tu ′ ′=ξ εξ εξ εξ ε  ∼ iidN(0k+1, Ik+1), k = 1, ..., 5. 

Remark 4.2. In the definition of all these test statistics, instead of using the simple 

normalization factor defined in (4.5) and (4.10) to eliminate the nuisance parameter 2

.u kω  

in the fluctuation measures , ( , )j nF p k , we could consider the commonly used 

nonparametric kernel estimator, 2 ( )n nmωɶ , based on the first differences of the IM-OLS 

residuals , ( )t p k∆ζɶ , which is defined as 

1
2 1

, | |,

( 1) | | 1

1

, ,

1 1

( ) ( / ) ( ) ( )

| |
( ) ( )

n n

n n n t p t j p

j n t j

n n

t p s p

t s n

m w j m n k k

t s
n w k k

m

−
−

−
=− − = +

−

= =

 
ω = ∆ζ ∆ζ 

 
 −= ∆ζ ∆ζ 
 

∑ ∑

∑∑

ɶ ɶɶ

ɶ ɶ

   (4.11) 

with bandwidth mn and kernel function w(·). Irrespective of the choice of the kernel, the 
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consistency of this estimator relies on the magnitude of the bandwidth parameter, mn. 

Under stationarity and with 1/ 2( )n pm o n= , which includes both the case of a sample-

size dependent deterministic bandwidth choice and a data-dependent stochastic one, 

usually we must obtain the consistency result 2 2

.( ) p

n n u kmω → ωɶ , but this option requires 

the determination of a particular value for this parameter. In this setup, and from result 

(c) in Proposition 3.1, we have that the first difference of the IM-OLS residuals can be 

written as 

1/ 2
1 3/ 2 1/ 2 ,

1/ 2, , , ,

,

1/ 2
1 3/ 2 1/ 2 ,

1/ 2, , ,

,

( )ˆ ˆ( ) ( , )
( )

( )ˆ ˆ( , )
( )

v
v k n k

vt p t p kt p kt p

k n k

v
v k n k

vt p kt p kt p

k n k

n
k n n n

n

n
n n n

n

+
− − −

− +

+
− − −

− +

 −′ ′∆ζ = ∆ζ − ∆ ∆  − 
 −′ ′= ∆ζ −  − 

S T

X Z

ɶ
ɶ

ɶ

ɶ

ɶ

β ββ ββ ββ β
γ γγ γγ γγ γ

β ββ ββ ββ β
γ γγ γγ γγ γ

 

where , , , ,
ˆ

t p t p t p k kt pz u ′∆ζ = = − Zγγγγ , with , ,
ˆ

kt p kt p=X ηηηη , and , ,
ˆ

kt p kt p=Z εεεε , so that 

1/ 2 1/ 2 1/ 2 1/ 2

, , , , ,

1/ 2 1/ 2

, ,

( ) ( )[ ( ))]

[ ( )]

v v

t p t p k kt p kt p k n k

v v

kt p k n k

k u n n n n

n n

− − − +

− − +

′ ′∆ζ = − − −
′− −

ɶ ɶ

ɶ

γ ε η β βγ ε η β βγ ε η β βγ ε η β β
ε γ γε γ γε γ γε γ γ

 

Under the assumption of cointegration we have that 

1/ 2

, , , ,

1/ 2

,
,

( ) ( ) ( )

1
( , ) ( )

( )

t p t k k t k t k n k p

t k t p
k n k

k u O n

z O n

−

−

′ ′∆ζ = − − − +
 ′= + − − 

ɶ ɶ

ɶ

γ ε ε γ γγ ε ε γ γγ ε ε γ γγ ε ε γ γ

εεεε γ γγ γγ γγ γ
 

given that 1/ 2

, ( )t p t pu u O n−= + , and 1/ 2

, , ( )kt p k t pO n−= +ε εε εε εε ε , with tz  and ,k tεεεε  zero-mean 

stationary processes that are asymptotically uncorrelated by construction, so that the 

long-run covariance matrix of ,( , )t k tz ′ ′εεεε  is 2

.( , )u k kkdiag ω ΩΩΩΩ . With these, and using the 

result (b) in Proposition 3.1 above in more compact form as 
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then we get 2 2

. , ,( ) (1 )n n u k k km γ γ′ω ⇒ ω +d dɶ ,
7
 which is a random limit and is given by the 

                                                 
7
 For a more detailed demonstration of this result, see page 32 in Vogelsang and Wagner (2011). 
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random vector ,kγd  determining the limiting null distribution of ,k n k−ɶγ γγ γγ γγ γ . In this case, 

using 2 ( )n nmωɶ  with some simple rule for determining the bandwidth under stationarity, 

we conjecture that this will produce consistent test statistics. Formally, given that under 

the assumption of no cointegration we have 

1/ 2 1/ 2 1/ 2

, , , ,

1

, ,

( ) ( )( )

[ ( )] (1) ( )

t p t p kt p k n k
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n n O O n

− − −

−

′∆ζ = − −
′− − + =

ɶ ɶ

ɶ

η β βη β βη β βη β β
ε γ γε γ γε γ γε γ γ

 

and thus , ( ) ( )t p pk O n∆ζ =ɶ  using (C.6) in Appendix C, then 
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− −
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′ ′ω = + 

 
∑ ∑ɶ ɶ ɶγ ε ε γγ ε ε γγ ε ε γγ ε ε γ  

with a well defined stochastic limit, so that 2 2( ) ( )n n pm O nω =ɶ . Alternatively, and 

following the idea developed by Kiefer and Vogelsang (2005), and further analized by 

Sun, Phillips and Jin (2008), we could consider the so called fixed-b estimation theory 

of a long-run variance based on a bandwidth that is simply proportional to the sample 

size as mn = b·n, with b ∈ (0,1]. The results in this case were extended by Vogelsang 

and Wagner (2011) to models with nonstationary regressors, but the asymptotics are 

relatively more complex and no treated here. A particular case, that can be treated 

without any additional development, is when b = 1 so that the bandwidth is set equal to 

the sample size, mn = n. By using Lemma 1 in Cai and Shintani (2006) for the Bartlett 

kernel, w(x) = 1−|x|, for |x| ≤ 1, we can write (4.11) as follows 

2 1 2 1 (1 ) 2

,

1

(1 ) (1 ) (1 ) 2

, , ,

1

( ) 2 ( ( ))

( ( )) ( ( )) ( ( ))

n
v v

n t p

t

n
v v v

n p t p n p

t

n n n n k

n k n k n k

− − − −

=

− − − − − −

=

 ω = ζ


− ζ ζ + ζ 
 

∑

∑

ɶɶ

ɶ ɶ ɶ

 (4.12) 

whose asymptotic distribution is proportional to 2

.u kω  under the cointegration 

assumption and, as for the simple element 2

, ( )n pv kɶ , is of the same order of magnitude as 
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the fluctuation measures (4.8) and (4.9), both under cointegration and no cointegration, 

resulting in inconsistent test statistics. Although all these other options seems to produce 

inconsistent test statistics, we explore their use in future research. 

Table 4.1 Asymptotic lower critical values for the cointegration test based on 

the fluctuation test statistic 
,
( )

j n
F kɶ , j = 1, 2, 3 

Significance level, α k = 1 2 3 4 5 

Test statistic 
1,
( )

n
F kɶ     0.01 0.0874 0.0834 0.0847 0.0823 0.0811 

0.025 0.1101 0.1077 0.1076 0.1083 0.1051 

0.05 0.1383 0.1363 0.1357 0.1376 0.1352 

0.1 0.1863 0.1871 0.1875 0.1917 0.1912 

Test statistic 
2,
( )

n
F kɶ     0.01 1.0000 1.0000 1.0000 1.0000 1.0000 

0.025 1.0074 1.0143 1.0175 1.0289 1.0331 

0.05 1.0393 1.0642 1.0885 1.1079 1.1251 

0.1 1.1225 1.1964 1.2458 1.2926 1.3197 

Test statistic 
3,
( )

n
F kɶ     0.01 0.9382 1.3522 1.4484 1.4877 1.5162 

0.025 1.1235 1.4553 1.5510 1.5889 1.6245 

0.05 1.2668 1.5605 1.6437 1.7080 1.7391 

0.1 1.4580 1.7169 1.8110 1.8701 1.9079 

Table 4.2 Asymptotic lower critical values for the cointegration test based on 

the fluctuation test statistic 
,
( , )

j n
F p kɶ , j = 1, 2, 3 

 Demeaned case, p = 0 Demeaned and detrended case, p = 1 

Significance level, α k = 1 2 3 4 5 k = 1 2 3 4 5 

1,
( , )

n
F p kɶ      0.01 0.233 0.166 0.138 0.123 0.117 0.304 0.217 0.180 0.157 0.143 

0.025 0.344 0.223 0.184 0.165 0.154 0.470 0.307 0.249 0.214 0.197 

0.05 0.507 0.312 0.248 0.219 0.204 0.718 0.436 0.345 0.288 0.258 

0.1 0.827 0.466 0.370 0.317 0.292 1.237 0.686 0.519 0.431 0.381 

2,
( , )

n
F p kɶ      0.01 1.266 1.139 1.087 1.061 1.067 1.493 1.321 1.249 1.183 1.158 

0.025 1.538 1.323 1.240 1.196 1.184 1.872 1.572 1.463 1.361 1.342 

0.05 1.832 1.545 1.433 1.378 1.356 2.321 1.885 1.708 1.609 1.553 

0.1 2.371 1.904 1.751 1.657 1.620 3.077 2.380 2.121 1.975 1.892 

3,
( , )

n
F p kɶ      0.01 1.613 1.627 1.656 1.642 1.666 1.870 1.799 1.775 1.765 1.758 

0.025 1.870 1.819 1.809 1.792 1.792 2.220 2.053 1.985 1.956 1.925 

0.05 2.181 2.021 1.978 1.961 1.943 2.648 2.308 2.213 2.149 2.109 

0.1 2.655 2.340 2.254 2.205 2.177 3.330 2.747 2.576 2.474 2.412 

Next, in order to evaluate the power of these test statistics we use a local-to-unity 

approach to cointegration in finite samples where the error term in the cointegrating 

regression equation follows the AR(1) process 1t n t tu u −= α + υ , with 1 /n c nα = − , 0c ≥  

as in Phillips (1987), which gives the following result. 

Corolary 4.2. Under the local-to-unity approach to the null of cointegration and 
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Assumption 2.1, then we have that 1/ 2 ( )

[ ] 0( ) ( )r r s c

nr cn u B r e dB s− −
υ⇒ = ∫ , and 

3/ 2

[ ], , ,( ) ( )nr p c k pn k J r− ζ ⇒ɶ  

where , , ( )c k pJ r  is as , ( )k pJ r  in part (b) of Proposition 4.1, with , ( )u pJ r  replaced by 

, 0 ,( ) ( )r

c p c pJ r B s ds= ∫ , and , ( )c pB s  the  detrended Ornstein-Uhlenbeck process ( )cB s . 

Next Table 4.3 shows the power results for sample sizes n = 100 and 500 computed by 

simulation with 5000 replications for values of c = 0, 1, 2.5, 5 and 10 for the 

fluctuation-type test statistic 3, ( , )nF p k , with p = 0, 1 and k = 1, …, 5. 

Table 4.3 Finite-sample power of the test statistic 
3,
( , )

n
F p k , p = 0, 1, under the 

local-to-unity approach to stationarity (cointegration) at the 5% nominal level 

 Case p = 0, 
3,
(0, )

n
F k   Case p = 1, 

3,
(1, )

n
F k  

Sample size n = 100 500  n = 100 500 

c = 0      k = 1 0.1770 0.1806  0.1492 0.1634 

2 0.1842 0.2016  0.1512 0.1860 

3 0.1830 0.2134  0.1556 0.1836 

4 0.1872 0.2044  0.1678 0.1846 

5 0.1954 0.2034  0.1554 0.1798 

c = 1      k = 1 0.1658 0.1992  0.1298 0.1698 

2 0.1696 0.2004  0.1526 0.1920 

3 0.1926 0.2174  0.1562 0.1774 

4 0.1768 0.2262  0.1664 0.1950 

5 0.1724 0.2100  0.1584 0.2016 

c = 2.5   k = 1 0.1684 0.1762  0.1580 0.1720 

2 0.1738 0.2018  0.1500 0.1764 

3 0.1890 0.1876  0.1578 0.1952 

4 0.1696 0.1820  0.1600 0.1874 

5 0.1792 0.1882  0.1620 0.1948 

c = 5      k = 1 0.1502 0.1614  0.1436 0.1606 

2 0.1528 0.1766  0.1510 0.1696 

3 0.1618 0.1850  0.1656 0.1556 

4 0.1612 0.1722  0.1588 0.1704 

5 0.1624 0.1826  0.1604 0.1852 

c = 10    k = 1 0.1200 0.1352  0.1244 0.1262 

2 0.1500 0.1442  0.1436 0.1560 

3 0.1488 0.1628  0.1420 0.1526 

4 0.1534 0.1750  0.1494 0.1614 

5 0.1432 0.1724  0.1408 0.1696 

The first remarkable evidence is that of inconsistency of the proposed test statistic, and 

the very low power displayed irrespective of the value of c, which indicates the need of 

a more deeply investigation of these testing procedures. 

5. Conclusions and some extensions 

The present paper is devoted to the analysis of the asymptotically efficient estimation of 

a linear static cointegrating regression model by making use of a new recently proposed 
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estimation method by Vogelsang and Wagner (2005), the so-called integrated modified 

OLS estimator (IM-OLS) that has the main advantage that does not require the choice 

of any tuning parameter, when we deal with deterministically trending integrated 

regressors. We show that this method must be modified to correctly accommodate the 

structure of the deterministic component of the regressors and to avoid possible 

inconsistencies in the estimation results. As a byproduct of these results, we propose the 

use of the IM-OLS residuals to build some new simple statistics to testing the null 

hypothesis of cointegration against the alternative of no cointegration. While the main 

component of these new test statistics seems to work well in detecting excessive 

fluctuations in the residual sequence under no cointegration, it is not yet clear how to 

obtain pivotal test statistics free of nuisance parameters and consistent tests given the 

difficulties in obtaining a proper estimator of a long-run variance. This central question 

will be studied in future work, as well as the consideration of more complex 

deterministic components and their treatment in the context of the IM-OLS estimation. 
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Appendix 

A. Proof of Proposition 2.1. By OLS detrending of the observed processes tY  and ,k tX , 

as defined by (2.1) and (2.2), we have that 
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given the block structure for the inverse of ,n ppQ , when pi < p for all i = 0, 1, …, k. 

Obviously, the same result directly holds when pi = p, while that if any pi > p, then we 

have 1 1

, , 1 , , , , , , ,( ) , ,( ) ( )
i i i i i i

n

i p p t j p j p j n pp p t i p p p p t n p p p n pp p t

− −
= − − −′ ′ ′−∑ = −Q Q Qα τ τ τ τ α τ τα τ τ τ τ α τ τα τ τ τ τ α τ τα τ τ τ τ α τ τ , which does 

not vanish and it is of order ( )i
p

O n . 

g 
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B. Proof of Proposition 2.2. First, given that we can write 
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then, using (2.11) we have that 
1 1 1

, , , , ,

,1 1 1
,1, , , ,

1 1 1 1

, , , , , , , ,

1 1 1 1

, , , , , , ,

n
n pp n pp n pk n kk p tn

k t
k tntn kk n pk n pp n kk

n pp n pp n pk n kk n pp p n k p p t

n kk n pk n pp n kk n pk p n k p

− − −

− − −
=

− − − −

− − − −

 −   ′∆    ′−   

′   −
= +      ′ ′ ′−   

∑
M M Q Q

X
M Q Q M

M M Q Q Q

M Q Q M Q

ττττ
ηηηη

Γ ΦΓ ΦΓ ΦΓ Φ ττττ
Γ ΦΓ ΦΓ ΦΓ Φ ,

,1

1 1

, , , , , , ,1

1 1, ,

1 1,

, , , , , , ,

1 1

n
n

k t

k tnt

n n

n pp p tn k t n pk n kk k tn k t

t tp n k p

n n
k k

n kk k tn k t n pk n pp p tn k t

t t

=

− −
−

= =

− −

= =

   ′  
   

  ′ ′−  ′    = + 
    ′ ′ ′−  

  

∑

∑ ∑

∑ ∑

M Q Q

0
M Q Q

εεεεηηηη

τ ε η ετ ε η ετ ε η ετ ε η ε
Γ ΦΓ ΦΓ ΦΓ Φ

η ε τ εη ε τ εη ε τ εη ε τ ε

 

and 
1 1 1 1 1

1, , , , , , ,1

1 1 1 1

, , , , ,

pn pp n pp n pk n kk n pp n pk n kk ku

n

kun kk n pk n pp n kk n kk ku

n
n

− − − − − +
+−
+− − − − +

   − − 
=       ′−     

0M M Q Q M Q Q
W

M Q Q M M

∆∆∆∆
∆∆∆∆ ∆∆∆∆

 

with nW  given in (2.4). Taking these results together we get (2.12). Second, given the 

sequence of FM-OLS residuals, defined by , , , , ,
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or, in more compact form, as in (2.13) when using  
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C. Proof of Proposition 3.1(a, b). Partial summing from (2.8) gives 
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and thus 
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(C.2) 

Making use of the convergence results in (2.14), (2.15) and (3.11), then under the 

cointegration assumption, that is when v = 1/2, we have that 
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(C.3) 

where the last two terms are based on the decomposition in (2.17). For the last term 

above, as in Vogelsang and Wagner (2011) (equation (43), page 27), we can write 
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kk k

r r dr r r dr r r dr
    ′ ′ ′= =    

   
∫ ∫ ∫

0 0
g V g g g g

I
γ γγ γγ γγ γ γγγγ  

(C.4) 

so that 

( ) 1
1 1

1,
. ,

0 0
,

( )
( ) ( ) ( ) ( )k n k

p p p u k p

k n k

n
r r dr r V r dr

−
− − ′⇒ − 
∫ ∫g g g

ɶ

ɶ

β ββ ββ ββ β
ΠΠΠΠ

γ γγ γγ γγ γ
 

or, equivalently, 

( ) 1
1 1

1,
. ,

0 0
,

( )
( ) ( ) [ (1) ( )] ( )k n k

p p p p u k p

k n k

n
r r dr r dV r

−
− − ′⇒ − − 
∫ ∫g g G G

ɶ

ɶ

β ββ ββ ββ β
ΠΠΠΠ

γ γγ γγ γγ γ
 

where the last equality comes from defining 0 0( ) ( ) ( )r r

p p pr s ds s ds= ∫ = ∫G g gΠΠΠΠ , with 

1/ 2 1/ 2

, ,( , )k k k kdiag=Π Ω ΩΠ Ω ΩΠ Ω ΩΠ Ω Ω , and ( ) · ( )p pr r=g gΠΠΠΠ . Also, by defining 2

. , . . ,( ) · ( )u k p u k u k pV r W r= ω , 

with . , ( ) ( ( ))u k p pW r BM b r= , then we have 

( ) 1
1 1

1,
. . ,

0 0
,

( )
( ) ( ) [ (1) ( )] ( )k n k

u k p p p p u k p

k n k

n
r r dr r dW r

−
− − ′⇒ ω − − 
∫ ∫g g G G

ɶ

ɶ

β ββ ββ ββ β
ΠΠΠΠ

γ γγ γγ γγ γ
 (C.5) 

As in equation (24) in Vogelsang and Wagner (2011), conditional on ( )k rB , the above 

limiting distribution (C.5) is N(02k, ΘΘΘΘ2k), with ΘΘΘΘ2k a well defined conditional asymptotic 

stochastic covariance matrix. Under no cointegration, that is, with v = −1/2 and 
nonstationarity of the error sequence tu , then we have 

( ) 1
1 1

,

,1 0 0
,

( ) ( ) ( ) ( )
k n k

p p p u p

k n

r r dr r J r dr
n

−

−

 −
′⇒  

 
∫ ∫g g g

ɶ

ɶ

β ββ ββ ββ β
γγγγ

   (C.6) 

where , 0 ,( ) ( )r

u p u pJ r B s ds= ∫ . As can be seen from (C.5) and (C.6), the convergence 

rates for the IM-OLS estimator of kββββ  are the same as when using OLS or any of the 

asymptotically equivalent and efficient estimation methods. 

Proof of Proposition 3.1(c, d). Given the IM-OLS residual sequence in (3.14), the IM 

cointegrating regression equation in (3.9) and (C.2), we can write , ( )t p kζɶ  as 
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1/ 2

,1 3/ 2 1/ 2

, , , , 1/ 2

,

( )ˆ ˆ( ) ( , ) 1,...,
( )

v

k n kv

t p t p kt p kt p v

k n k

n
k n n n t n

n

+
− − −

− +

 −
′ ′ζ = ζ − =  − 
S T

ɶ
ɶ

ɶ

β ββ ββ ββ β
γ γγ γγ γγ γ

 

Under the cointegration assumption, making use of (3.11), (3.12) and the weak 

convergence of the IM-OLS estimators of ββββk and γγγγk, the result (d) then follows by the 

continuous mapping theorem. 
g 

D. Proof of Proposition 4.1(a). It follows directly from the results in (b) and (d) from 

Proposition 3.1 and the continuous mapping theorem. 

Proof of Proposition 4.1(b). From result (c) in Proposition 3.1 with v = −1/2 we have 

,3/ 2 3/ 2 3/ 2 1/ 2

, , , , 1

,

ˆ ˆ( ) ( , )
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t p t p kt p kt p

k n

n k n n n
n

− − − −
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 −
′ ′ζ = ζ −   

 
S T
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ɶ
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β ββ ββ ββ β
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where 
3/ 2 3/ 2 1 1/ 2 3/ 2 1

, , , ,
ˆ( ) ( )t p t p k kt p t p pn n U n n n U O n− − − − − −′ζ = − = +Tγγγγ  

so that, using (C.6) above and the continuous mapping theorem we have that 

( ) 1
1 1

3/ 2

, , , ,
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t p k p u p p p p p u pn k J r J r r s s ds s J s ds
−

− ′ ′ζ ⇒ = − ∫ ∫g g g gɶ  

with , 0 ,( ) ( )r

u p u pJ r B s ds= ∫  as in (2.14), which gives the indicated results. 
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