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Abstract:

In this paper we discuss the asymptotically efficient estimation of a univariate static
cointegrating regression relationship when we take into account the deterministic
structure of their stochastically integrated components, in a slightly more general
framework that considered by Hansen (1992). After reviewing the properties of OLS
and Fully Modified OLS (FM-OLS) estimation in this framework, we consider the
recently proposed Integrated Modified OLS (IM-OLS) estimator by Vogelsang and
Wagner (2011) of the cointegrating vector and propose a new proper specification of the
integrated modified cointegrating regression equation. This alternative method of bias
removal has the advantage over the existing methods that does not require any tuning
parameters, such as kernels, bandwidths or lags. Also, based on the sequence of IM-
OLS residuals, we propose some new test statistics based on different measures of
excessive fluctuation for testing the null hypothesis of cointegration against the
alternative of no cointegration. For these test statistics we derive their asymptotic null
and alternative distributions, and study their finite sample performance through a local-
to-unity approach to the null of cointegration.
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1. Introduction

Cointegration analysis is widely used in empirical macroeconomics and finance, and
includes both the estimation of cointegrating relationships and hypothesis testing, and
also testing the hypothesis of cointegration among nonstationary variables. In the
econometric literature there are many contributions in these two topics, some of which
deals with these two questions simultaneously. Given the usual linear specification of a
potentially cointegrating regression, a first candidate for estimation is the method of
ordinary least squares (OLS), that determines superconsistent estimates of the
regression parameters under cointegration. However, with endogenous regressors the
limiting distribution of the OLS estimator is contaminated by a number of nuisance
parameters, also known as second order bias terms, which renders inference
problematic. Consequently, there has been proposed several modifications to OLS to
makes standard asymptotic inference feasible but at the cost of introducing the choice of
several tuning parameters and functions. These methods include the fully modified OLS
(FM-OLS) approach of Phillips and Hansen (1990), the canonical cointegrating
regression (CCR) by Park (1992), and the dynamic OLS (DOLS) approach of Phillips
and Loretan (1991), Saikkonen (1991) and Stock and Watson (1993).

This paper deals with the analysis of a new asymptotically efficient estimation method
of a linear cointegrating regression recently proposed by Vogelsang and Wagner (2011)
that does not require any additional choice more than the initial standard assumptions on
the model specification, making it a very appealing alternative.

This methods, which is called the integrated modified OLS (IM-OLS) estimator, works
under a simple transformation of the model variables that asymptotically produces the
same correction effect as the commonly used estimation methods cited above.

An important issue, which is often is not taken into account and that can substantially



affect the performance and properties of these estimation procedures, is the nature and
structure of the deterministic component, if any, of the generating mechanism of the
model variables and its relation with the deterministic component, if is considered, in
the specification of the cointegrating regression. Following the work by Hansen (1992),
we generalize its formulation by allowing for deterministically trending integrated
regressors with a possibly different structure for their deterministic components and
propose a simple rule for a proper specification of the deterministic trend function in the
cointegrating regression that simultaneously correct for their effects.

Given the particular transformation of the model variables required for performing the
asymptotically efficient IM-OLS estimation, we show that a proper accommodation of
these components must be based on a previous transformation of the model variables, in
particular the OLS detrending. With these corrected observations we perform the IM-
OLS estimation of the cointegrating regression and derive the limiting distributions of
the resulting estimates and residuals both under the assumption of cointegration and no
cointegration.

Based on these new asymptotically efficient estimators of the vector parameters in the
cointegrating regression, we study the building of some simple statistics for testing the
null hypothesis of cointegration by using different measures of excessive fluctuation in
the IM-OLS residual sequence that cannot be compatible with the stationarity
assumption of the error sequence. These test statistics are based on the statistics
proposed by Shin (1994), Xiao and Phillips (2002) and Wu and Xiao (2008) with the
same objective as ours, and that use two basic measures of excessive fluctuations, the
Cramér-von Mises (CvM) and Kolmogorov-Smirnov (KS) metrics. We derive their
limiting null and alternative distributions and evaluate their power behavior in finite-

samples through a simulation experiment.



2. The model, OLS and FM-OLS estimation of the linear
cointegrating regression with trending regressors

We assume that the variables of interest, the scalar Y, and the k-dimensional vector

X,, =(X
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where n, =(n,,,N;,) is the stochastic trend component that satisfy the first order

. X,,) , come from the following data generating process (DGP)

recurrence relation
nt = nt—l + st
with €, =(g,,,€,,) a k+1 vector zero mean sequence of error processes. Also, we

consider the general case where both Y, and each element of the k vector

X,, =(X,,,...X,,) contains a deterministic trend component given by a polynomial
trend function of an arbitrary order p; 2 0,1 =0, 1, ..., k, that is d,, =a;)p_rp_,t, with
a,, =(0,,,0,,..0,, ), and T, =(Lt,..t" )". To make this assumption compatible

with the standard formulation in (2.1) where all the deterministic trend components

appears as if it were of the same type and order, we have to write
a 1 .= :0 ) Tpu =a T i=0,1 k (2.2)
Ly Pt Lyt PR '[p . iLppit? A :

with p = max(po, p1, ..., pr) and 0,_ ~a (p=p;)X1 vector of zeroes, so that

Pi

With this formulation, we introduce the static potentially cointegrating regression

equation between the unobserved stochastic trend components of the elements in Z, as

o
No, = nk,tBk tu,



which gives
Y=a't, +BX,, *u t=L..n (2.3)

ppit

with o, =a, , —A} B, . Associated to the deterministic component we introduce the
polynomial order trend and sample size dependent scaling matrix I, , given by

g -1 -p . . _ _ P
r,,=diag(l,n",..,n"), which determines that t,, =l 1, - T, ,()=0r,..,r")

uniformly over 7 0 [0,1] as n—c. Also we have that n” Y"1 - [} T, (s)ds, and

/DY S n_lep =(_)n,pp -Q,, =fé TP(S)TP(S)'ds <oo. In order to complete

p.,tn = p,in
the specification of our data generating process we next introduce a quite general and
common assumption on the error terms involved in (2.3).

Assumption 2.1. We assume that the error term in the cointegrating regression u,
satisty the first-order recurrence relation u, =0u,_, +U,, with |a| < 1, where the zero
mean (k+1)-dimensional error sequence & =(U,,€,,)" verify any of the existing
conditions that guarantee the validity of the functional central limit theorem (FCLT)

approximation of the form

()= m0= ()@= we) osrs

with W(r) =(W,(r),W,(r))" a k+1-dimensional standard Brownian motion, and Q the

covariance matrix of B(r), which is assumed to be positive definite and that can also be

interpreted as the long-run covariance matrix of the vector error sequence &, that is
Q=E[E& 1+ (E[§E, 1+ E[E,_&]), which can be decomposed as Q=A+A',
with A=X+A the one-sided long-run covariance matrix, where X =E[§ & ], and
N=27, E€& 1.

The assumption of positive definiteness of Q excludes cointegration among the &



integrated regressors X, , (subcointegration) with B, (r) =BM(Q, ,), Q,, >0. Given
the upper triangular Cholesky decomposition of the matrix Q, we then have that
B,(r)=B,,(r)+Y,B,(r), with B, (r)=w, W, (r), and B,(r)= Q,l,/,fWk (r), where
Yoo =Q.,03,, and o}, = E[B,,(r)’1=E[B,,(r)B,(rN] =}, ~®,,Q, &, is the
conditional variance of B,(r) given B, (r), which gives E[B,(r)B,,(r)]=0, .

For the initial values n,, and u,, we introduce the very general conditions

1/2 1/2

Nio =0,(n""), and u, =o,(n""), which include the particular case of constant finite

values. In the case of a stationary error term wu,, with |0 < 1, we then have that
nP X u, = B,(r)=(1-a)"B,(r), with B,(r)=B,(N+YB,(r), Y, =Q/w,,
E[B,(r]=w =(1-0) e, E[B,,(*]=}, = ~Y,QuY,. and E[B,(r)B,(r)]=
w, =(1 —cx)'looku, while that in the case of nonstationarity, that is when a = 1, then
n""u,,, = B,(r) = B,(r), with &} = a),. With these results then we have

- el B (r) v=1/2
(1 V)U = (1-v) — J - u

with v=1/2 and v = —1/2 indicating, respectively, the stationary and nonstationary cases.
Given the specification of the linear static cointegrating regression equation (2.3) the

standard approach to estimating the vector parameters o ,,3, consists in the use of the

OLS estimation which gives

~ -1

a , —a (T 2T

AP,” p = z pit (Tr , Xr t) z ( Pt jut
( Bk,n _Bk ] [[21 (Xk,lj o “ j t=1 Xk,t

Taking into account the structure for the deterministic and stochastic trend components

of the observed processes ¥, and X, , in (2.1), we can write
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with the power v taking values *1/2 depending on the stochastic properties of the error

(2.4)

so that

sequence u,, and determining the order of consistency of the OLS estimates, that is

nvr:” [(dl’a” _ap) + A;c,p (Bk,n _Bk)]
n1/2+v (Bk,n _Bk)
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The usual result in this context is as in (2.5) but with A, =0

2.5)

r.p+1 » Which corresponds

to the case where the integrated regressors have no deterministic component and, in out
formulation, the deterministic term that appears in the cointegrating equation
corresponds to the one included in Y;. Hansen (1992) has studied a similar situation, but

assuming that Y, =n,, with d, =0, and p, = m, i = 1, ..., k, with

Op pt

T, =@, t”,..,t") 1 < p <..< py, and scaling matrix [, =diag(n™",n"",..,n""")

(see Theorem 1(a, b), p.93). The main differences with our approach are the no
inclusion of a constant term and the inclusion of a rank condition on the coefficient

matrix A, , particularly, rank( A, , ) =m < k. Then, from (2.1) we have that

rm,n [(A;c,mAk,m )_1 A;c,m ]Xk,[nr] = Tm,[nr]n + \/Zrm,n [(A;c,mAk,m )_l A;c,m ](n_l/znk,[nr] )
=T +Op(n_(p‘_”2)):>'[m(r)

m,[nrln

which allows the possibility to develop a sequence of weights which yield a



nondegenerate design limiting matrix when estimating (2.3) by OLS under the

restriction o, =0, . However, as can see from the previous result, this only yields

consistent results when p; = 1, and there is no constant term in the regression neither in
the polynomial trend function." Under the assumption of cointegration (v = 1/2), then

the limiting distribution of the last term in (2.5) is given by

0 p.tn f Tp(S) 0p+l
z( Uznkt]ut - '([(Bk (S)deu ) +(’”Ak u
(%O, , 0,.
a5 me y"HrAk,uj
with A, =X E[g,, u,] given by the probability limit of A, =n"' X E[N, u, 12

This limiting distribution contains the second-order bias due to the correlation between
B.(*) and By(*) (endogeneity of the stochastic trend components of the regressors), and

the non-centrality bias that comes from the fact that the regression errors are serially

correlated through the parameter A, . For the first term above we have that

1
[Bi(5)dB,,(5) =, Q) j W, ()dW, ,(s)
0
where, given that B,(r) and B, ,(r) are independent, conditioning on B, (r) (or

W, (7)) can be used to show that this term is a zero mean Gaussian mixture of the form

[Wi()am, ()= [ N©,G)dP(G, ), Gk,k:[j Wk(s)Wk(s)'j

G, ;>0

The second term in the expression between brackets is a matrix unit root distribution,

arising from the k stochastic trends in X, ,, which is cancelled under strict exogeneity of

" See also Hassler (2001) for a related study in the case where the specification of the cointegrating
regression equation does not include any deterministic term but the integrated regressors X, contain a
constant term.

? The result rA, , is obtained by writing A, () =n"' 21" E[n, u,1="2([nr])™" X" E[N, 1,1, so that
A, ., () =C2[([nr)™ X BN, g, 1+ X007 ()™ XL, ETe,,- 1, D]

and the use of the initial condition 1, and Assumption 2.1 on the properties of the error terms.



the regressors, that is when @,, =0, . Using now (2.5) and the decomposition for X, , in

(2.1), we have that the sequence of OLS residuals is given by

b, ,(k)y=u, -7, (@&, -a,)-X, B, -B)
=u, -1, AC 1@, —a ) +A, B, ~B)I} -0, V@B, —B]

where the first element component in (2.5) can be written as
r:,"l [(dPJl - ap) + A;c,p (ﬁk,n - Bk )]
= Q;,lpp z Tp,tnut - Q;,lpp z Tp,tn (n_l/zrl;c,t )[\/E(Bk,n - Bk )]
=1 t=1
which gives

A - ] -1
U p (k) = U, _Tp,thn,pp Ty intt;
I=

-n"? {n;,t —r;,,,,Q;},,pZT,,,jnn;,j}[x/ﬁ B, —B] 2.7)
j=1

— -(1/2 1/2 0
U, TN ( +V)n,kt,p[n +V(Bk,n _Bk)]

so that the OLS residuals are free of the trend parameters, and are decomposed in terms
of the detrended versions of u, and n,, as defined in (2.7). These OLS residuals can be

used as the basis for building some simple statistics for testing the null hypothesis of

cointegration against the alternative of no cointegration, given that #, ,(k) = O, (1) when
v=1/2,and 4, (k) =0, (n"*) when v = —1/2. This difference in behavior under the null

and the alternative can be exploited by searching for excessive fluctuations in the

A

sequence of scaled partial sum of residuals B, (k)=n"">3'4, (k) through several

global measures, such as a Cramér-von Mises (CvM) measure of fluctuation as in Shin
(1994), or a Kolmogorov-Smirnov (KS) measure as in Xiao and Phillips (2002), and

Wu and Xiao (2008).> The CvM-type test by Shin (1994) is based on a global measure

of fluctuation given by S, (k) =(1/n) 2, (B?[, » (k))?, while that the KS-type test statistic

3 The test statistic proposed by Shin (1994) is the generalization of the KPSS statistic for the null of
stationarity by Kwiatkowski et.al. (1992), while the test statistics considered in Xiao and Phillips (2002),
and Wu and Xiao (2008) are the generalizations of the KS test statistic formulated by Xiao (2001).



proposed by Wu and Xiao (2008) is based on the recursive centered measure of
maximum fluctuation R, (k) =max,_,_, |B, (k)= (t/n)B, (k)|. Xiao and Phillips
(2002) considers a no centered version of this test statistic given by
CsS, (k) =max,, |l§,,p(k)\, which is the same as R, (k) when based on OLS

residuals and the deterministic component contains a constant term. The main problem
with this approach is that, unless corrected, the null distribution of all these test statistics
are plagued of nuisance parameters due to endogeneity of regressors and the serial
correlation in the error terms that cannot be removed by simple scaling methods. There
exist some different methods, which are known as asymptotically efficient estimation
methods, to remove these parameters and that differ in the treatment of each source of
bias. Among the existing estimation methods, the three most commonly used are the
Dynamic OLS (DOLS) estimator proposed by Phillips and Loretan (1991), Saikkonen
(1991) and Stock and Watson (1993), the Canonical Cointegrating Regression (CCR)
estimator by Park (1992), and the Fully-Modified OLS (FM-OLS) estimator by Phillips
and Hansen (1990). These three estimators are asymptotically equivalent and, as was
proved by Saikkonen (1991), efficient. The corrected test statistic proposed by Shin
(1994) makes use of the DOLS residuals, while that the test statistics considered in Xiao
and Phillips (2002) and Wu and Xiao (2008) are based on FM-OLS residuals. For a
recent review and comparison of these three alternative estimation methods see, e.g.,
Kurozumi and Hayakawa (2009), and references therein. In order to establish the basis
for our proposal in the next section we consider an alternative to the cointegrating
regression equation (2.3). By applying the partitioned OLS estimation to the regression
equation (2.3) with respect to the trend parameters, we have that this model can also be

written as

>

» :B'kxk,,p tu t=1,..,n (2.8)

t.p?



o — J -1 n > — n ! -1 —
where ¥, =Y -1, ,Q, 2", 1.7, X, =X, -2_X,,1,.Q, 1, . and u  =u

t,p J=1 B pjnT i n,pp " p,tn? t

—T'p,mQ:pp 20, T, u,; denote the detrended observations of the model variables

obtained by OLS fitting of their original observations to a pth-order polynomial trend

function, where p is chosen according to the rule p = max(py, pi, ..., pr) in the case

where the polynomial trend functions in Y, and each component of X, , differ in their

orders. The next Proposition 2.1 determines the effectiveness of this procedure to make

the estimation results invariant to the trend parameters in (2.1).

Proposition 2.1. Given (2.1)-(2.2), when considering the OLS detrending of Y, and X, ,

by fitting a polynomial trend function of order p = max(py, pi, ..., pr) to each of these
variables, then we have that

7 — —_ ! -1 n
Yt,p - nOt,p - nO,t Tp,thn,pp zj=1 Tp,jnno,j
and

A

1

th,p = nkt,p = nk,t - ZZ':l nk,ij,an;,ppr,m = (r]lt,p""’ r]kt,p)
where 1, , and N, , are generalized detrended transformations of 1, and N, ,, with

- 1 I -
7Ny, = By, (1) = BL(1) = [ B(9)T,(5)dsQ;,T, () (2.9)
a (p+1)-order detrended transformation of B, (r). According to Lemma A.2 in Phillips
and Hansen (1990), B, (r)=BM(Q, v, (r)) is a full rank Gaussian processes, with

v,(r) ascalar function of r and T ,(*).
Proof. See Appendix A.

By OLS estimation of the cointegrating vector component 3, in (2.8) we have

-1
n n
a2+ 2 _ — 2 < 2
n ! (Bk,n Bk) - (zxkt,px’kt,pj szt,put,p
t=1 t=1

1
— ((l/n)z (n—l/ant’p )(n—l/Zn;d,p)j n_(l—v) Z (n—l/ant,p )ut’p
t=1 t=1
which gives the same limiting results as before under cointegration, that is with v = 1/2,
to that n">>"_ 1 u. = I'1 (s)dB (s), and thus u, =u +O (n™"?). In order to
J=L S p.jn™j 0°%p u t.p t p

complete the above results, we next consider the relationship between the FM-OLS and

OLS estimators of o, and B, in (2.3), which is given by

10
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a n (T n (T 0

=D LLX Y IS D AR B 2.10
(BZWJ (tzl (Xk,tj( pit k,t)j {m (Xk,tj t (”AZH (2.10)

where ¥ =Y -AX, y,, A}, =A,, Ay, and y, =Q.'w, .* Again, as in (2.1)-(2.2),

t

the key is to consider the following general decomposition for Z,, =AX, |
AX A AT +Ankt - k - ITp—l,t +£k,t

_ _ (2.11)
( kpl k)( j-l-akt (karpntptn-l-ak,t
p,t

with the matrix of trend coefficients @, _, given by a linear combination of the

corresponding elements of A,

Proposition 2.2. Given (2.1)-(2.4), and the FM-OLS estimator of (2.3) in (2.10), then
we have that

(@)
rola, +ALBL 1) _(ToL0e,, + AL B, —®V,]
i, N

-1 N ! -1 N ! -1 -1 A+
Mn,pp {th,tnek,t - Qn,kan,kk Z rlk,tnsk,t} \/_Mn prn kan,kkAku
t=1

r -1 C ’ -1 +
n kk {Z rlk tn k : Qn,kan,ppZTp,msk,l } yk + \/ZMn,kkAku
t=1
(2.12)

with FM-OLS residuals, such that
(b) ﬁ:p (k) = L’zt,p (k) - s;ct,pyk

+ AN, IV ((” VLMl Vs *AZ“j

— _ 1 - — N\ ]
Whe”e Mn ,pp Qn ,pp Qn kan kk “n,pk > Qn ,pk zt =1 *p, tnnk,t ’ Qn,kk - thl nk,tnk,t 4 and
— n ’ -1
Kk — (l/n)Mn,kk ’ Wlth Mn,kk - Zt:l nkt,pnkt,p’ and skt,p - k,t _zj=1 8k,j-[;7,jrt(2rt,pp-l:;7,t11‘

(2.13)

Proof. See Appendix B.

Remark 2.1. The FM-OLS estimator in (2.10), as well as the results in (2.12) and

(2.13), is not feasible since it is defined in terms of the unknown quantities Yy, and

A=A, —A,y,. The feasible version is obtained by replacing these elements by

nonparametric kernel estimates of the components of Q based on the OLS residuals in

* It can be shown that the correction term for Y, is associated with the correction for the endogeneity bias

+

while A, eliminates the non-centrality bias.

11



(2.7), that are consistent under the assumption of cointegration, and requires the choice
of the bandwidth to ensure the proper asymptotic correction for serial correlation and
endogeneity.’

Remark 2.2. Using (2.1) we have that Z, , =AX, , =®,_ 1, +€, . By OLS detrending

P pit

2 — _\n J -1 — _\n ! -1 —
we have Z, =7, ->" 7, T Q 1 =€, -2 &1, .Q 1T, =€ . If we

A
!

define now Y as Y =Y,-Z,, Yy, =Y, —€, Y, as indicated by Hansen (1992) (page

t

93), then the FM-OLS estimator of a,, and B is given by

A+ S -1 ;
€. (0o (8 ][5y )
Bk,n Bk,n Qn,pk Qn,kk t=1 nk,m ’ I’ZAku

which gives exactly the same expressions as before for (d;,n,f};,n) and the FM-OLS

residuals.

For later use, we define the partial sum of the detrended errors in the cointegrating

regression (2.3) or (2.8)as U, , = 23:1 u, ,with

J.p?
[nr] [nr] [nr] n
-(1-v) — —(-v) — —(-v) _ -l oAl —(1-v)
n U[nr],p —n Zut,p —n Zut h ztp,m Qn,ppn th,mut
t=1 =1 =1

t=1

where, asymptotically we have

V. (r) v=1/2 (ja|<1)
My =T = P 2.14
" ke (") {IS B, (s)ds v=-1/2 @19
with ¥V, (r) a generalized (p+1)th-level Brownian bridge process given by
ro, _ 1
v, (r)=B,(r)- jo T (5)ds Q) jo T,(5)dB, (s) 2.15)

> Similarly, since the CCR estimator proposed by Park (1992) is defined as the OLS estimator between
the modified dependent variable ¥ =Y -(B, ,AZ"+(0,y,)E (k) and (T,.X},), with

pt?
Xz,z = Xk,z _Akzilzz,p (k) s EI,/} (k) = (u[',/) (k),Z;”)' H and Ak = 27:0 E[sk,zz:—j] = zT:O E[sk,z (u[—j7£;{,l—j)] :
This method uses the same principle as the FM-OLS method to eliminate the endogeneity bias, while it
deals with the non-centrality parameter in a different manner, but also relies on consistent estimates of the
quantities 4, X and Y, which depend on some tuning parameters.

12



with variance E[V, , r)’l=w b, (r), where b, (r)=r- Ir T, (s)ds Q;,;, Ir T,(s)ds , and

B, ,(r) a(pt1)th-order detrended Brownian motion process defined as

, el
B, () =B,r)-T,(nNQ;! jo T,(5)B, (s)ds 2.16)
as the stochastic limits in (2.14).° Thus, under the assumption of no cointegration, when
o =1 and v = —1/2, we get the usual result

A

1 S
BB = ([ B, B 65 [B, ()1,
where dJ, (r)=B, (r). Finally, making use of (2.15), and the relation

B,(r)=B,,(r)+Y,B,(r) we then have that V, ,(r) can be decomposed as

V., (0= B, ~ [ 1,5)dsQ;} [ T,()dB, ,(5)
¥ B~ [ B, 671,67 Q[ T, ()0 21
= I/LLk,p(r) + y'ka,p (r)

where, by construction, it is verified E[V, ,(r)V,, (r)]=E[B, ,(r)V,, (r)]=0,, with
B, ,(r) defined in (2.9), and E[V,, ,(r)’1=2,b,(r).

3. IM-OLS estimation with trending regressors

In this section we consider the new estimator of a static cointegrating regression model
like (2.3) recently proposed by Vogelsang and Wagner (2011). For this estimator, these
authors show that a simple transformation of the model components is used to obtain an

asymptotically unbiased estimator of [y with a zero mean Gaussian mixture limiting

distribution, but when the assumed DGP is as in (2.1) with A, =0 . Like FM-OLS,

k,p+l

6 Explicit expressions for these two limiting processes, V, (r) and B, (r), can be obtained in the

u,p u,p

leading cases of p = 0 (constant), and p = 1 (constant and linear trend). Specifically, we have that
V,o(r)=B,(r)=rB,(1),and V, (r)=B,(r)+(2-3r)rB,(1)—6r(1-r) ﬁ) B, (s)ds for the first and second-

level Brownian bridge, while that B, ,(r) = B,(r)={ B,(s)ds , and B,,(r) =B,(r)+2(3r=2)[} B, (s)ds

=2(6r-3) ﬂ) sB,(s)ds are the particular expressions for the demeaned and demeaned and detrended
Brownian processes, respectively.
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the transformation has two steps but neither step requires the estimation of any of the
components of Q, and so the choice of bandwidth and kernel is completely avoided.
Thus, computing the partial sum of both sides of (2.3) gives the so-called integrated

cointegrating regression model as

S,=a’S, +B.S,, +U, t=1,...n (3.1)
with U ZJ =l J’ t = Z Y aop Jj= ITPJ tj:l nO,J‘ :a;),psp,t +h0,t’

Sp,t = t] 2l = |——1 t L rznsp,m (3.2)
and

Si. = ;=1 Xi, TALS,, +zz 2Ny = A prpnsp w TH, (3.3)

Taking together (3.2) and (3.3) we have

Sp,t _ nr;ln 0p+l,k n_lsp,m _— I’l_lsp,m
S, nAkprpln n\/ZIk,k n_3/2Hk,t L n_3/2Hk,t

n’'S . [r1 (s)ds
{ h p.lnr] j — g(r) :( f p( ) j (3.4)
n"H,,, [ B, (s)ds

as n—oo. Then, the IM-OLS estimator of a, and B, is given by the OLS estimator in

with

(3.1), which can be written as

—(1 V)W

1n

(u —a] [vr;,fn[(ﬁ,,,n—a,,)+AL,p(Bk,n—l3k)]J
Bkn B; ”1/2+V(Bk,n_Bk)

-1
< n_ls in - = !
= ((1/;1)2(”_3/2}"1’ (n'S,.n""H},) (3.5)
t=1 kit

n (n”'S
xd(1/n Py
{( );(n—:;/sz’tJ t

j My = j g(r)J, (r)dr (3.6)

where

(l/n)Z( —3/2

k.t

14



with g(r) given in (3.4), J, (r) =B, (r) under the assumption of cointegration, v = 1/2,
and J (r)= IS B (s)ds under no cointegration, that is when v = —1/2. Vogelsang and

Wagner (2011), Theorem 2, considers this case when A, =0 which corresponds

k,p+l 2
to the case of integrated regressors without deterministically trending components, so
that the trending parameters in the specification of the cointegrating regression must be
associated to the deterministic component of the dependent variable. Given that the

limiting result in (3.6) does not contain the additive term A, , partial summing before
estimating the model thus performs the same role for IM-OLS that (0',,,74;,)" plays
for FM-OLS, but this still leaves the problem that the correlation between u, and €,
rules out the possibility of conditioning on B,(r) to obtain a conditional asymptotic
normality result. The solution proposed by these authors requires that X, , be added as a

regressor to the partial sum regression (3.1) as

S = apSpt+|3;(Sk,t+y'ka,t+zt t=1,...,n 3.7)
which can be called now the integrated modified (IM) cointegrating regression, where
(, =U,-Y.X,,. Then, by OLS estimation of (3.7) we have that

-1

'l ,.(,,-a,) o[ 7S
12+v 1 =3/2 - =3/2Q1r -1/2~g1
nl ' (/[23/{,” _Bk) (l/l’l)z I Skt 1Sptn’ Sk,t’n 1 Xk,t)
-1/2+vg, -1
n o n X,
(3.8)
n _lS
X(l/n)z n 3/28,” n U,
=1 1/2X
k.t

which gives a well defined limit result and free of nuisance trending parameters under
the assumption of cointegration and no deterministic component in the DGP (2.1) for

X,,, as in Theorem 2 in Vogelsang and Wagner (2011). However, when using

-S

pum

X, =A, T, +¥n(n""?n,,) from (2.1) and (2.4), with T,,, =S then

k,p' p,n*pin p.(t=n >
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we can write

-1, -1
S,. LTS, 0,.,
Se. |=| nALT L, (0SS, ) +ndn(n""H, ) |- 10k 1
- . -2 -1 o=
Xk»t nAk,prp,n(n Sp,tn)+ I’l(l’l nk,z) nAk)PrP,”(n SP’U‘I)")
-1 -1
nrp,n 0p+1,k 0p+l,k n Sp,tn
_ -1 -3/2
= nAk,pI'p’n nvnl, 0, n /2Hk,t
-1 -1
nAk,prp,n 0,, val, )\ n N,
-1
0p+1,p+1 0p+l,k 0p+1,k n_3/S2p,(t—l)n
- 0k,p+l 0., 0., ||n 1/2Hk,t—l
_l —
nAk,prp,n Ok,k Ok,k N | PP
that is,
S n’'S n’'S
pit pitn p.(t=D)n
_ =372 _ -3/2
Si. =W, | n H, =Wy, |n""H,
-1/2 -1/2
Xk,t n nk,t n nk,t—l
-1 -1
n Sp,tn n Sp,(t—l)n
_ 372 -l -3/2
_W21,n n Hk,t WZl,nWZZ,n n Hk,t—l
-1/2 -1/2
noNy, N | P

where the last term between brackets is given by

-1
U 0,
-1 -3/2 _
W W, | n 7 Hy | = 0,
-1/2 / -1 -1
N | PP nAk,prp,n(n Sp,(t—l)n)

which diverge with the sample size even in the case of a constant term (p = 0).
Alternatively, if we redefine the IM regression model (3.7) in terms of the IM-OLS
detrended variables we have

S, =BSi, tY. X, t{,, t=lL..n
where

Jars

. Lp St n Sf n !

* _ _ ] ]
Skt,p - Sk,t Sk,j Sp,j zsp,jsp,j Sp,t
Ak Jj=1 Jj=1

kip Xk,t Xk,j

Given S, =a, S, , +4,, and S, asin (3.3) we then have that
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ny } *
S[,P - ho,t _ i Z S _ hot’p
éz:,p Hk,t I= H p J pJ P j it HZ,,p

which are free of trend parameters, while that )A(’,;, , 18 given by

-1
ktp_nkt znkl pj(zsp/ PI] Dt
-1
ZTP] p/(zspj p]j Sp,t ZnZt,p+Ak,pT;,t

with
Ny, =1 {(n_”znk,,) ~(Un)Y (n"n, (1S, )
j=1
i -1
x((1/n)z(n'lsp,jn)(n‘ls;,,jn)J (n”'S,,)
JA
and
AT, —Akpl'pn{ p —(1/n)z;rp,jn(n‘ls;,jn)
=
i -1
x((un)z(n'lsp,jn)(n‘ls;,,jn)J ('S, ) =AML T,
JA
which determines that n_mf(; =n?n,, +A, (0T )T, Forp=0, n_l/zfiz,,o =
_”zr'|kt0 +A, - Tz)m =n_”2r'|g,;,0 +0(n™"?), so that the deterministic component is

asymptotically irrelevant, while for p = 1 we have that n™"2X;, = =n"""n,, , TO0m” "y,
which implies that deterministic component dominates the stochastic one yielding
inconsistent results. Thus, to deal with this general case, from (2.8) and making use of

the result in Remark 2.2 for the OLS detrended observations of AX, , Zk, p =&y, WE

get the following augmented version of (2.8)

A

R R VTS R B
Yt,p = Bkat,p + y'kat,p tu,, Vkat,p = Bkat,p + y'kat,p tz,,, [= L,...,n

which gives the following corrected version of the IM cointegrating regression equation
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t
St,p = B;cskt,p +y;cszj,p +Zt,p = B;cskt,p +y;cht,p +Zt,p’ t= 1""’” (39)
=

with S, =2 )A(kj’p =2"n,,.and {, , ="z =U,, _Vkat,pa where
ékz,p _ ”\/;Ik,k 0, _3/2Skt 2| — n_3/2§kt,p
2 - Jn T =W, -1/24 (3.10)
Tkt,p Ok)k Ik k Tkt,p n Tkt,p

and

=
S
=
S
=

[nr]

— ., — -1
po Zkt,p - 8k,t sk ij jn Qn ppsz n

[nr]
— -1/2 -1/2
=Nt n|n N fr) Zsk Jjtpan Q, PP (l/n)ztp mJ

which gives, asymptotically, a k-dimensional Brownian bridge of order (p+1) such that

7Ty, = Vi, () =B - j dB,(5)T,(5)Q, j T,(5)ds
or, more compactly,
-3/2Q r
Far o)
Also, from (2.14), (2.17), and (3.11) it can be easily verified that under cointegration
(lal < 1 in Assumption 2.1), the scaled error term in the IM cointegrating regression

(3.9) behaves asymptotically as

n‘“zzt,p = n‘”zU,,p -y,n T, =V, (). (3.12)

Then, we define the IM-OLS estimator of the coefficient vector (B, Yx), based on OLS

detrended observations, as

~ -1 ~

Bk J Skt P N Skt P |Q

L= (S, T, ) S, (3.13)
(yk,n ; Tkt,p o ktp =1 Tkt,p ”

with IM-OLS residual sequence given by
Bk,n —
Z (k) S (SktpﬂTktp) v t 17 e N (314)
k,n
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Next proposition establish the main result in this section related to the weak
convergence of IM-OLS estimators and residuals under the assumption of cointegration,

that 1s when the error term sequence u, in the original cointegrating regression equation

(2.3) is nonstationary with a = 1 in Assumption 2.1.

Proposition 3.1. Given (2.1) and (2.2), and under Assumption 2.1, the IM-OLS
estimation of the cointegrating regression model in (2.3) based on the IM regression
(3.9) with OLS detrended observations, then equation (3.13) determine that:

”1/2+V(Ek -B) L(n zékz -3/2 02 )
N = 1/ P S T
(a)( n_1/2+vv ] (( n);[n_l T }( kt p’ kt p)}

k,n kt,p

—3/2S —(1 )
X(l/n)z g U,
kt,p

(b)[n(Bkn j (I g, (r)g ) dr) jg (r) ukp(l”)dl”

k,n

=0, (|8, 08, (V) |80, 00

=0, (['g, 08, (Ve [IG,0)-, (), ., ()

(C) n—(l—v)z (k) - n—(l—v)z ( 3/2Sk —1/2Tk )( 1/2+V(Bk n _Bk ]
Lp Lp .p t.p —1/2+V(yk ) _yk)

and
-1

@, ()= w,, {Wu_k,p(r) -5,07 (]! 2,00g, (57

x[[G,(H)-G,(s)d l,k,J(s)} W, R, , ()

where the results in (b) and (d) are establish under the assumption of cointegration, that
is with v = 172, with V,, (r)=w, W, . (r), g,(r)=0g, (), G,(r)= IO g,(s)ds =
NG,(r), and T =diag(Q,§j,3,Q,§f,§).

Proof. See Appendix C.

Remark 3.1. As can be seen in (b) and (d) above, for inferential purposes related to

hypothesis testing, these limiting results depends only on ¥, and Q, . as nuisance

parameters. Specially relevant, when using the IM-OLS residuals in (d), is the question

of possible consistent estimation of the conditional long-run variance 3, based on the

first differences of Z,,p(k), Azt,p(k). As is discussed in the next section and in
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Vogelsang and Wagner (2011), the standard approach based on the use of a
nonparametric kernel-type estimator determine inconsistent estimation of «J , . For this,

reason, for our purposes in this paper we follow an alternative approach.

4. IM-OLS residual-based test for the null of cointegration

In this section we propose some new statistics based on the sequence of IM-OLS
residuals, as has been defined in section 3, for testing the null hypothesis of
cointegration against the alternative of no cointegration by looking for excessive
fluctuations in the sample paths of this residual sequence . These new test statistics are
partially inspired by the nonparametric variance-ratio statistic proposed by Breitung
(2002) for testing the unit root null hypothesis against stationarity in a univariate time

series, in the sense that our statistics are totally free of tuning parameters. In our case,

we look for a unit root-like behavior in the residual sequence Z,,p(k) which is

compatible with the stationarity of the error term z, , in the augmented cointegrating

regression among the OLS detrended variables.
First of all, we consider the case of the IM cointegrating regression (3.7) with A, = 0,

and A, =0, ., . Thus, from (3.8) we have that the IM-OLS estimators of B, and Y, can

be written as

1/2+v -3/2 -
( B Bk)] [(1/ )Z( ,S(j(SX)j

k,n

where (n”%S) ,,n""’X ) =(n”""H,,,n""?n,,) = g(r) for t = [nr], with g(r)=
(I B,(s)ds,B,(r)'), as n—oo. Under the assumption of cointegration, the limiting
distribution of these estimates is as in Proposition 3.1(b), with g (r) and W,, (r)
replaced by g(r) and W, (r), respectively. With the associated sequence of IM-OLS
residuals, {,(k)=S, —(S,MB,M +X. Vi), t =1, ..., n, we define the following main
components of our fluctuation test statistics

20



F, (0 = 1m Y (NmE, J)Y @

F,, (k) = max(1\m) |2, (6)| (42)

,,,,,

and

F, (k) = max (V) | 2, (k) = (1), (K) | *3)

,,,,, n

Taking into account the result (d) in Proposition 3.1, we have that, asymptotically,

n""*C, (k) = w, R, (r) under the cointegration assumption, with

R(1) =W, =20 ([ EOR6Yas) [ 160) -G, 5 @

In order to eliminate the nuisance parameter ), from the limiting null distributions of
these statistics, we define the random element

720k = (U (k) (4.5)
which gives the normalized version of the above fluctuation statistics

F,, (k) =9 (k)F,,(k) (4.6)
and

F, (k) =, (kyF,,(k),j=2,3 .7)
Taking into account the fluctuation statistics £, (k) in (4.1)-(4.3), as well as the

normalized squared error P’ (k) , can also be written as

F,(k)=n"" {(1/")i (”_“'”Zt(k))z}

Vo = Un)A” (G) = I ()T
and similarly for £}, (k), then both the numerator and the denominator of the

normalized test statistics in (4.6) and (4.7) are of the same order of magnitude under the
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null hypothesis of cointegration, as well as under the alternative of no cointegration
(when v = —1/2), but with very different limiting distributions in each case. Similarly, in
the case of the IM-OLS estimation of the cointegrating regression model based on OLS
detrended observations of the variables, as was introduced in section 3, then we define

the corresponding normalized fluctuation test statistics as

F,(p.k) =72 (k)F,,(p.k) (4.8)
and

Ff;”(p’k) :‘Zt_,p(k).F},n(pak)ajzza 3 4.9
where

7, (0) = (Um), (k) (4.10)

Next proposition establish the asymptotic null and alternative distribution of all these
test statistics.

Proposition 4.1. Under the null hypothesis of cointegration, that is when O = [ in
Assumption 2.1 with v = 1/2, then:

(@) F, ()=}, [ R (s)'ds
F,, ()= w,, sup |R,(M],F, (k)= @, sup | R,(r)=rR, (1)

#10,1] 10,11
P2(k) = oF R, (1)’
and similarly for F, (p,k),j =1, 2, 3, and ﬁf’p(k) with R, (r) replaced by R, ,(r) as

has been defined in result (d) of Proposition 3.1. Also, under the alternative hypothesis
of no cointegration, that is when |Q| < 1 in Assumption 2.1 with v = —1/2, then:

O)n”F,, (k)= [ J,(s)ds
0B, ()= sup |, () [, F, () = sup |, () =1, ()|
1 rJ0,1]

+0000,1
v (k)= J, (1)
where
1 S
Jo(r)=J,(r) = g(r) ( [, g(s)g(s)’ds) [ &), (5)ds
with Ju(r)IIS B, (s)ds, and similarly for n_zFl)n(p,k), n_le’n(p,k), j =2 3, and
n_zﬁnz,p (k), with J,(r) replaced by J, ,(r) defined as
1 L
5 =0,,00 2,07 ([ 2,08, 67 ) [, )ds
where J, ,(r)= Ir B, ,(s)ds.

Proof. See Appendix D.
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Remark 4.1. As cited above, under the alternative of no cointegration, these test
statistics are not consistent in the usual way because their limiting distributions are
obtained without further normalization of the components in the numerator and
denominator. However, these distributions differ from the null distributions in the sense
that they are shifted to the left and more concentrated. This implies that a rejection of
the null of cointegration against no cointegration is registered for small values of any of

these test statistics, which means that this is a left tailed test that rejects the null

hypothesis of cointegration for values of 15 (k) smaller than the asymptotic critical
value ¢, (k) given by the ath-lower quantile of the asymptotic null distribution. From

the results in part (a) of Proposition 3.1, it is evident that the asymptotic null distribution
of all these test statistics are free of nuisance parameters and only depends on the

combination of p and k in the case of using OLS detrended observations.

Tables 4.1 and 4.2 below present the critical values for the test statistics F'j,n (k) and
F'j,n (p,k), for p = 0, 1, computed via direct simulation based on 20000 independent
replications, with 2000 observations, and &, = (,,€, )" OiidN(O1, Lii1), k=1, ..., 5.
Remark 4.2. In the definition of all these test statistics, instead of using the simple
normalization factor defined in (4.5) and (4.10) to eliminate the nuisance parameter Y,

in the fluctuation measures £, (p,k), we could consider the commonly used
nonparametric kernel estimator, Gy (m,), based on the first differences of the IM-OLS

residuals AL .., (k) , which is defined as

Gy (m,) = "2 w(j/mn){n‘liAZ,,p(k)AZ,_j,p(k)}
j==(n-1) t=[j]+1 (4.1 1)

=3 S w { jAzt,,(k)Azs,J(m

t=1 s=1

with bandwidth m, and kernel function w(-). Irrespective of the choice of the kernel, the
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consistency of this estimator relies on the magnitude of the bandwidth parameter, m,,.

1/2

Under stationarity and with m, =o,(n""), which includes both the case of a sample-

size dependent deterministic bandwidth choice and a data-dependent stochastic one,
usually we must obtain the consistency result @ (m,) —” @, , but this option requires

the determination of a particular value for this parameter. In this setup, and from result
(c) in Proposition 3.1, we have that the first difference of the IM-OLS residuals can be

written as

n—l/ZATr

kt,p

AL, (k)=AL,, -n'”(n™2AS!

kt,p>

(n(B —Bk))
n (Vk,n -Y,)

1/2+v /1
_ — I ~1/25 n -
_nl V(n 3/2X;€t’p,l’l l/Zcht,p)( (Bk,n Bk)j

=A e
¢ (Y, Y

tp

where AL, , =z, , =u, , -V, Z,, ,,with X, =n, ,and Z, =€, ,so that

kt,p

Azt,p (k)= U » _y,kskt,p _nl/z_vn_l/z(”_l/zn;ct,p)[”l/2+v (Bk,n —-B.)]
€, (¥, ~ V)]

Under the assumption of cointegration we have that

_ nl/2—v

AZ[,p (k) =u, - y,ksk,t - 8;,; (Vk,n Y+ Op (n_l/z)

“Got) g, -y JrO.0)

given that u, , =u, +O0,(n""?), and €, , =€, +0,(n""*), with z, and €, zero-mean
stationary processes that are asymptotically uncorrelated by construction, so that the
long-run covariance matrix of (z,,€;,)" is diag(w;,,Q,,). With these, and using the

result (b) in Proposition 3.1 above in more compact form as

A _ d Q—l/zd
(n('-Bk’n_ Bk)] = ('ou.krl B (dB’k j = wu.k kfl/Z o
yk N yk Y.k Qkk d Y.k

then we get G (m,) = «,(1+d,d,,),” which is a random limit and is given by the

7 For a more detailed demonstration of this result, see page 32 in Vogelsang and Wagner (2011).
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random vector d,, determining the limiting null distribution of y, , —y, . In this case,

using G (m,) with some simple rule for determining the bandwidth under stationarity,

we conjecture that this will produce consistent test statistics. Formally, given that under

the assumption of no cointegration we have

A, (k) =0 Py, = (B, By
~Vng, [0 (¥, ~ Y01+ 0,() = 0,(n)

and thus AZ,, ,(k) =0,(n) using (C.6) in Appendix C, then
N B n—1 4 n B
n wn (mn) = (Vk,n/n) Z w(]/mn ) {n z sk,ts’k,t—\j\ }(yk,n/n) + Op (1)
j==(n=1) 1=|jl+1

with a well defined stochastic limit, so that & (m,) =Op(n2). Alternatively, and

following the idea developed by Kiefer and Vogelsang (2005), and further analized by
Sun, Phillips and Jin (2008), we could consider the so called fixed-b estimation theory
of a long-run variance based on a bandwidth that is simply proportional to the sample
size as m, = b'n, with b [0 (0,1]. The results in this case were extended by Vogelsang
and Wagner (2011) to models with nonstationary regressors, but the asymptotics are
relatively more complex and no treated here. A particular case, that can be treated
without any additional development, is when b = 1 so that the bandwidth is set equal to
the sample size, m, = n. By using Lemma 1 in Cai and Shintani (2006) for the Bartlett
kernel, w(x) = 1-|x|, for |x| £ 1, we can write (4.11) as follows

G)zn (n) = (211—1 {Zn: (”_(H)Z,,p (k))z
= (4.12)

-, (k))i(n-“-”&,p (k))}ﬂn‘“‘”zn,p <k>)2j

whose asymptotic distribution is proportional to ¥, under the cointegration

assumption and, as for the simple element \7,12’ ,(k), is of the same order of magnitude as
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the fluctuation measures (4.8) and (4.9), both under cointegration and no cointegration,
resulting in inconsistent test statistics. Although all these other options seems to produce

inconsistent test statistics, we explore their use in future research.

Table 4.1 Asymptotic lower critical values for the cointegration test based on
the fluctuation test statistic 151.’,, (k,j=1,2,3

Significance level, a0 k=1 2 3 4 5
Test statistic E’,,(k) 0.01 0.0874 0.0834 0.0847 0.0823 0.0811
0.025 0.1101  0.1077 0.1076  0.1083  0.1051
0.05 0.1383  0.1363  0.1357 0.1376  0.1352
0.1 0.1863 0.1871 0.1875 0.1917 0.1912
Test statistic Ii,n(k) 0.01 1.0000 1.0000 1.0000 1.0000 1.0000
0.025 1.0074 1.0143 1.0175 1.0289 1.0331
0.05 1.0393 1.0642 1.0885 1.1079 1.1251
0.1 1.1225 1.1964 1.2458 1.2926 1.3197
Test statistic 1:"3)"(k) 0.01 0.9382 13522 1.4484 1.4877 1.5162
0.025 1.1235 1.4553 15510 1.5889  1.6245

0.05 1.2668 1.5605 1.6437 1.7080 1.7391
0.1 1.4580 1.7169 1.8110 1.8701 1.9079

Table 4.2 Asymptotic lower critical values for the cointegration test based on
the fluctuation test statistic ﬁ‘m (p,k),j=1,2,3

Demeaned case, p = 0 Demeaned and detrended case, p = 1
Significance level, a k=1 2 3 4 5 k=1 2 3 4 5
Eﬂ(p,k) 0.01 0.233 0.166 0.138 0.123 0.117 0.304 0.217 0.180 0.157 0.143
0.025 0.344 0.223 0.184 0.165 0.154 0.470 0.307 0.249 0.214 0.197

0.05 0.507 0.312 0.248 0.219 0.204 0.718 0.436 0.345 0.288 0.258
0.1 0.827 0.466 0.370 0.317 0.292 1237 0.686 0.519 0.431 0.381

ﬁ'z,n(p,k) 0.01 1.266 1.139 1.087 1.061 1.067 1493 1321 1.249 1.183 1.158
0.025 1.538 1.323 1240 1.196 1.184 1.872 1.572 1.463 1361 1.342

0.05 1.832 1.545 1433 1378 1356 2321 1.885 1.708 1.609 1.553
0.1 2371 1904 1.751 1.657 1.620 3.077 2.380 2.121 1975 1.892

ﬁ;)n(p,k) 0.01 1.613 1.627 1.656 1.642 1.666 1.870 1.799 1.775 1.765 1.758
0.025 1.870 1.819 1.809 1.792 1.792 2220 2.053 1.985 1.956 1.925

0.05 2.181 2.021 1978 1961 1943 2.648 2308 2213 2.149 2.109
0.1 2.655 2340 2254 2205 2.177 3.330 2.747 2576 2474 2412

Next, in order to evaluate the power of these test statistics we use a local-to-unity
approach to cointegration in finite samples where the error term in the cointegrating
regression equation follows the AR(1) process u, =a u, , +0,, with o, =1-c/n, c=0
as in Phillips (1987), which gives the following result.

Corolary 4.2. Under the local-to-unity approach to the null of cointegration and
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Assumption 2.1, then we have that n_”zu[m] = B.(r)=1"e"dB,(s), and

n=" (0= J. (1)
where J,, (r) is as J, (r) in part (b) of Proposition 4.1, with J, (r) replaced by
J.,(r)= | 0 B.,(s)ds, and B, (s) the detrended Ornstein-Uhlenbeck process B, (s).

Next Table 4.3 shows the power results for sample sizes n = 100 and 500 computed by

simulation with 5000 replications for values of ¢ = 0, 1, 2.5, 5 and 10 for the

fluctuation-type test statistic F;,n( p.k),withp=0,1land k=1, ..., 5.

Table 4.3 Finite-sample power of the test statistic 1?‘3," (p,k),p=0, 1, under the

local-to-unity approach to stationarity (cointegration) at the 5% nominal level

Casep=0, F,,(0,k) Casep=1, F,, (k)

Sample size n=100 500 n=100 500
c=0 k=1 0.1770 0.1806 0.1492 0.1634
2 0.1842 0.2016 0.1512 0.1860
3 0.1830 0.2134 0.1556 0.1836
4 0.1872 0.2044 0.1678 0.1846
5 0.1954 0.2034 0.1554 0.1798
c=1 k=1 0.1658 0.1992 0.1298 0.1698
2 0.1696 0.2004 0.1526 0.1920
3 0.1926 0.2174 0.1562 0.1774
4 0.1768 0.2262 0.1664 0.1950
5 0.1724 0.2100 0.1584 0.2016
c=25 k=1 0.1684 0.1762 0.1580 0.1720
2 0.1738 0.2018 0.1500 0.1764
3 0.1890 0.1876 0.1578 0.1952
4 0.1696 0.1820 0.1600 0.1874
5 0.1792 0.1882 0.1620 0.1948
c=5 k=1 0.1502 0.1614 0.1436 0.1606
2 0.1528 0.1766 0.1510 0.1696
3 0.1618 0.1850 0.1656 0.1556
4 0.1612 0.1722 0.1588 0.1704
5 0.1624 0.1826 0.1604 0.1852
c=10 k=1 0.1200 0.1352 0.1244 0.1262
2 0.1500 0.1442 0.1436 0.1560
3 0.1488 0.1628 0.1420 0.1526
4 0.1534 0.1750 0.1494 0.1614
5 0.1432 0.1724 0.1408 0.1696

The first remarkable evidence is that of inconsistency of the proposed test statistic, and
the very low power displayed irrespective of the value of ¢, which indicates the need of

a more deeply investigation of these testing procedures.

5. Conclusions and some extensions
The present paper is devoted to the analysis of the asymptotically efficient estimation of

a linear static cointegrating regression model by making use of a new recently proposed
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estimation method by Vogelsang and Wagner (2005), the so-called integrated modified
OLS estimator (IM-OLS) that has the main advantage that does not require the choice
of any tuning parameter, when we deal with deterministically trending integrated
regressors. We show that this method must be modified to correctly accommodate the
structure of the deterministic component of the regressors and to avoid possible
inconsistencies in the estimation results. As a byproduct of these results, we propose the
use of the IM-OLS residuals to build some new simple statistics to testing the null
hypothesis of cointegration against the alternative of no cointegration. While the main
component of these new test statistics seems to work well in detecting excessive
fluctuations in the residual sequence under no cointegration, it is not yet clear how to
obtain pivotal test statistics free of nuisance parameters and consistent tests given the
difficulties in obtaining a proper estimator of a long-run variance. This central question
will be studied in future work, as well as the consideration of more complex

deterministic components and their treatment in the context of the IM-OLS estimation.
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Appendix

A. Proof of Proposition 2.1. By OLS detrending of the observed processes ¥, and X, |,
as defined by (2.1) and (2.2), we have that

! Y, (Y,
R Y e - T ,Q;l T, t=l..,n
[th,p] (Xk,tj ;(Xk,jj p.J PP "D,

Each of the components above can be decomposed as
1] n ] -1 .
Ny +0G, (T, —204T, T, .Q, T,) i=0,1,..,k

n.pp = p;t
—_ _ n r -1
where n, , =n,, -2’ n,,7,,Q,,T,,, and
n | n -[
_ 1 - - _ 1 - -1 Dist
Tp,-,t zrp,v,jtp,j Qn,pprp,t Tp,-,t ZTP,-J (Tp,-,j ‘Tp—p,,j)Qn,pp T
j=1 j:1 pPpist

-1
= Q” Pipi Qn pi(p=p;) L
- Tpi’t _(Q”’Pipi ’ Q”»Pi(ﬁ‘/’i))( , - ‘ l T ' t

Qn,p,(p-p,-) n,(p=pi)(p=p;) P=Di»
T
= — . Pt | =
TP:’»[ (Ipi+1a/7i+1 : Opiﬂ»/’_pi )(Tp—p / 0P1+1
o

given the block structure for the inverse of Q when p; <p foralli=0,1, ..., k.

n,pp 2
Obviously, the same result directly holds when p; = p, while that if any p; > p, then we
] _ n [} -1 — [} _ -1 .
have ai,p,- (TP,- ot z]‘:l Tp,»,J'Tp,j n,pptp,t) - ai,P,»—p (Tp,--p,t Qn,(p.-—p)an,ppr,t) » which does

not vanish and it is of order O(n”").
[ |
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B. Proof of Proposition 2.2. First, given that we can write

-1 -1
i Tp,tn (.[r nr ) = Qn,pp Qn,pk
t=1 nk,tn pm> Tk Qn,pk Qn,kk
-1 -1
- Mn,pp _Mn prn kan,kk
_M;,lka:'t,ka;,lpp Mnlkk
then, using (2.11) we have that

-1 -1,

Mn,pp _Mn prn kan,kk Z(Tp,tn jAXr

- [ - k,

_Mn,lkan,kan,lpp Mnlkk t=1 nk,tn t

-1 -1 -1

= M, . M,,Q,,.Q.. || Q. pprp ncp z( ja
oy _ k.,
_Mn,lkan,kan,lpp Mnlkk Qn pk T\ Nie.on '

-1 11
-1 n ,pp z Tp tnsk : Qn,kan,kk z nk,tnsk,t
r q)k P4 t=1

0 n
k,k -1 ro_ ’ -1 !
Mn,kk zrlk,tnak,t Qn,kan,ppztp,msk,t
t=1 t=1

-1 ~1 _ "

Mn,pp _Mn prn kan,kk W—] ( 0p+l j - \/E(_Mn prn kan,lkkAku]

-1 J -1 1 n + +
_Mn,kan,kan,pp Mrt kk nAku Mn,kkAku

with W given in (2.4). Taking these results together we get (2.12). Second, given the
sequence of FM-OLS residuals, defined by a,,(k)=Y" (T, X, )@, B, with

and

—-(t,, I, 9, T&.)Y;, can be written as
ﬁ:p(k) =u, p(k) —€,.Y,

ptn n,p, ({zrp tnskt “ Wy kan kkznk tnsk t} \/_Qn kan kkAI:uj
nk Jn n,ki ({z nk tnsk : Q;L,ka;,lpp z Tp,tns;c,t } yk + \/EAI:M j
t=1

or, in more compact form, as in (2.13) when using

n n n
-1 / — N1 "o -1 J
n ,pp {z Tp tnsk t Qn,kan,kk z rlk,tnek,t} - Qn,pp {z Tp,tnsk,t Qn,pan,kk z nk,tnskt,p }
t=1 t=1 t=1

and Zz‘=l nk,tnskt,p = Zz‘=1 nk,tn (s;c,t _T’p,th;,lpp 2:121 Tp,jns;c,j) .
|
C. Proof of Proposition 3.1(a, b). Partial summing from (2.8) gives
S, =BS., *U, .t =1.,n (C.1)
so that

A -1

B (B -
kn | — (1-v) -1 kt —3/2 -1/2
[~ j_(ozjm (W) (l/n)z g v S;,,.n"""T,, )

yk,n kt,p
-3/2Q
i nS
kt,p =(1-v)
x(Un2,
iy | "2
t=1 kt,p

and thus
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n‘(l—v)W’; {Sk,f - Bkj — {nl/zwl(/[}fvn - Bk)]
yk n yk n

_3/2Sktp 3/2 —1/2 /ZS -(1 v)
(l/n)z S Lo T ) (l/n)z U,
Tkt,p Tkﬁp

(C.2)
Making use of the convergence results in (2.14), (2.15) and (3.11), then under the
cointegration assumption that is when v = 1/2, we have that

(H(Bkn ] (j g, (r)g () dl") I g (}")Vup(r)dr
= (.[01 g, (g, (7”)'61,,)_1 {J'Ol g, (W, ,(rdr+ .[; g, (I”)Vk,p(r)'dr yk}

(C.3)
where the last two terms are based on the decomposition in (2.17). For the last term
above, as in Vogelsang and Wagner (2011) (equation (43), page 27), we can write

1 , 1 (0., 1 , 0,
J-ng(r)vk,p(r) dry, :J-ng(r){gp(r) (I ’ J}dryk :J.ng(r)gp(r) dr(y j

(C.4)
so that
nB, - N I N
oo e (g er o] g0, 0
or, equivalently,
nP, - e — L\
D2 o0, 0,07 16,006, 00, 0
k,n k
where the last equality comes from defining G ,(r) =f6 g, (s)ds =N Ig gp(s)ds with
N =diag(Q;;,Q.}), and g, (r)=Ng,(r). Also, by defining V,, (r)=o,W,, (r),
with W, , (r)=BM(b,(r)), then we have
[ng3k,n_-yﬁk jjwukn ( j g,(ng,(r) dr) j [G,()-G,()dW,, (r) (C5)
k,n k

As in equation (24) in Vogelsang and Wagner (2011), conditional on B, (), the above

limiting distribution (C.5) is N(0x, @), with @, a well defined conditional asymptotic
stochastic covariance matrix. Under no cointegration, that is, with v = —1/2 and
nonstationarity of the error sequence u, , then we have

{B;_zv j (e, e, 07ar) [\, 0 ©o
k,n
where Ju’p(r)=fg B, ,(s)ds . As can be seen from (C.5) and (C.6), the convergence

rates for the IM-OLS estimator of 3, are the same as when using OLS or any of the
asymptotically equivalent and efficient estimation methods.

Proof of Proposition 3.1(c, d). Given the IM-OLS residual sequence in (3.14), the IM
cointegrating regression equation in (3.9) and (C.2), we can write Zt) (k) as
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; VN (¥ -
Zt,p(k) :Zt,p _nl (l’l 3/2Skz,pan 1/2Tkt,p)(n—l/2+\z(vk’,n _yk) t:1,...,l’l

Under the cointegration assumption, making use of (3.11), (3.12) and the weak
convergence of the IM-OLS estimators of B, and Y, the result (d) then follows by the

continuous mapping theorem.
|

D. Proof of Proposition 4.1(a). It follows directly from the results in (b) and (d) from
Proposition 3.1 and the continuous mapping theorem.
Proof of Proposition 4.1(b). From result (c) in Proposition 3.1 with v =—1/2 we have

-3/25 _ =32 3/2Q —1/27 Bk, _Bk
n°C, (k)y=n""C,,=(n""S,, .,n T,;,p)( e J
n yk,n
where
=3/2 — _=3/2 -1 -1/27 — . =3/2 -1
ng,, =n Ut,p—vkn (n"T,,)=n""U,,+0,(n")

so that, using (C.6) above and the continuous mapping theorem we have that
s N Lo\ e
(0= 0,0 =,,0)-8,07 [ 8, (), (735 [l g, (604, (5)ds
with J, (r)= [ o B, (s)ds asin (2.14), which gives the indicated results.

u,p
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