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Abstract

We examine the finite-sample performance of small versus large scale dynamic factor
models. Our Monte Carlo analysis reveals that small scale factor models out-perform large
scale models in factor estimation and forecasting for high levels of cross-correlation across
the idiosyncratic errors of series belonging to the same category, for oversampled categories
and, especially, for high persistence in either the common factor series or the idiosyncratic
errors. Using a panel of 147 US economic indicators, which are classified into 13 economic
categories, we show that a small scale dynamic factor model that uses one representative
indicator of each category yields satisfactory or even better forecasting results than a large
scale dynamic factor model that uses all the economic indicators.

Keywords: Business cycles, output growth, time series.

JEL classification: E32, C22, E27.



Resumen

Examinamos las propiedades en pequefia muestra de modelos dinamicos factoriales de
pequena escala frente a modelos de dimensiones grandes. Nuestro analisis de Montecarlo
revela que los modelos de pequefa escala se ajustan mejor en la estimaciéon de los
factores y predicen mejor cuando existen altos niveles de correlacidon entre los errores
idiosincraticos de la series que pertenecen a la misma categoria econémica, cuando existe
una sobrerrepresentacion de una determinada categoria y, especialmente, cuando existe alta
persistencia del factor comun o de los errores idiosincraticos. Usando un panel de 147
indicadores econdmicos para EEUU, que se clasifican en 13 categorias, mostramos que un
modelo dinamico de pequefia escala con una sola serie por categoria da mejor resultado
en prediccion que usar todos los indicadores.

Palabras claves: Ciclos econémicos, crecimiento del PIB, series temporales.

Cédigos JEL: E32, C22, E27.



1 Introduction

Aruoba, Diebold and Scotti (2009) considered that comparative assessments of forecasts
from “small data” versus “big data” dynamic factor models was a good place to develop
further empirical analyses for the same economy and time period. On the one hand, small
data forecasts have been computed from different enlargements of the Stock and Watson
(1991) single-index small scale dynamic factor model (SSDFM). Recent examples of
are Mariano and Murasawa (2003), Nunes (2005), Aruoba, Dieblod and Scotti (2009),
Aruoba and Dieblod (2010), and Camacho and Perez Quiros (2010). The Philadelphia
Fed business conditions index is also contructed using this approach. In these studies, the
strict factor models are estimated by maximum likelihood using the Kalman filter under
the assumption of having non cross-correlated idiosyncratic errors.

On the other hand, big data forecasts have been computed from various sophistications
of the seminal Stock and Watson (2002a) principal components estimator, which combine
the information of many predictors. Recent examples of forecasts from the so-called large
scale dynamic factor models (LSDF M) are Forni, Hallin, Lippi and Reichlin (2005),
Giannone, Reichlin and Small (2008), and Angelini et al. (2011). The Chicago Fed
National Activity Index (CFNAI) is also developed under this approach.! The approzimate
factor models suggested in these papers lead to asymptotically consistent estimates when
the number of variables and observations tends to infinity, under the assumptions of weak
cross-correlation of the idiosyncratic components and that the variability of the common
component is not too small.

Relatively, much more theoretical attention has recently been devoted to large scale
factor models by stressing that strict factor models rely on the tight assumption that the
idiosyncratic components are cross-sectionally orthogonal. However, including time series
in empirical applications to compute factors from large panels frequently supposes facing
non-negligible costs as well. According to Boivin and Ng (2006), the large data sets used
by LSDF M are typically drawn in practice from a small number of broad categories (such

as industrial production, or monetary and price indicators). Since the idiosyncratic errors

!Notably, in November 2011 the real-time monthly average of the Philadelphia Fed index was positive
(0.01) while the Chicago Fed index was negative (-0.37).
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of time series belonging to a particular category are expected to be highly correlated, the
assumption of weak correlation among the idiosyncratic components is more likely to fail
as the number of time series of this category increases. In addition, the good asymptotic
properties suggested by the theory may not hold in many empirical applications when the
number of variables and observations is relatively small.?

The impact of this potential clash between the asymptotically good properties of
LSDFM suggested by the theory and their actual forecasting performance obtained in
empirical applications has rarely been addressed. Among the exceptions, Stock and Wat-
son (2002b) find deterioration in the performance of large scale (static) factor models
when the degree of serial correlation and (to a lesser extent) heteroskedasticity among
idiosyncratic errors are large and when serial correlation of factors is high. Boivin and Ng
(2006) use large scale (static) factor models to show that including series that are highly
correlated with those of the same category does not necessarily mean outperforming mod-
els that exclude these series. Boivin and Ng (2006) for the US and Caggiano, Kapetanios,
and Labhard (2009) for some Euro area countries estimate large scale (static) factor mod-
els of different dimensions to show that factors extracted from pre-screened series often
yield satisfactory or even better results than using larger sets of series. Notably, their
preferred data sets sometimes include one-fifth of the original set of indicators. Bai and
Ng (2008) find improvements over a baseline large scale (static) factor model by estimating
the factors using fewer, but more informative, predictors. Banbura and Runstler (2011)
use a large scale (dynamic) model to show that forecast weights are concentrated among
a relatively small set of Euro area indicators. Finally, Banbura and Mondugno (2010) find
that a LSDF M applied to a small (14 series) dataset outperforms the forecasts obtained
from medium (46 series) and large (101 series) datasets.

Of all these works, the one closest to our approach is that of Boivin and Ng (2006),
although we differ from these authors in many aspects. First, our purpose is not to

determine the optimal number of variables from a large dataset to be used in a large

?Recently, Boivin and Ng (2006) for US and Banbura and Runstler (2011) for the Euro area have shown
that the predictive content of empirical large scale factor models is contained in the factors extracted from

as few as about 40 series.
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scale factor model. In contrast, we try to shed some light on the issue of which is the
optimal strategy when dealing with a forecasting problem, either to start from a simple
small scale factor model that reasonably selects the indicators (and which is enlarged if
necessary) or to deal with a large scale factor model whose dimension can be selectively
reduced to eliminate the redundant information.? Second, Boivin and Ng (2006) consider
static models, while we compare dynamic specifications. In particular, we consider the
large scale dynamic factor model of Giannone, Reichlin and Small (2008) while they use
the large scale static factor model of Stock and Watson (2002a). The use of dynamic
instead of static factor models is an important distinctive feature of our analysis since
we address to what extent persistence in the factors and in the idiosyncratic shocks may
affect the accuracy of our different factor model specifications. Third, we assess in depth
the effects on factor models of using time series which are extracted from separate groups
of macroeconomic indicators. Boivin and Ng (2006) use the word “categories” to refer
to different sectors in the economy (prices, production, etc..) but they classify the data
according to their correlation or their heteroskedastic behavior. In contrast, we concentrate
on assessing the effects on the estimation of the factors and forecasting of dealing with
data which are extracted from separate sectors. In addition, we examine the effects of
dealing with cross-correlation across sectors and within each sector.

Within this context, our paper develops simulations in which we try to mimic different
empirical forecasting scenarios. The first scenario is the case in which an analyst uses
SSDFM to estimate the factors and to compute the forecasts from a small number of
pre-screened series which are the main (less noisy) indicators of the different categories
of data. In the second scenario, the analysis is developed from a SSDFM which uses a
less accurate pre-screening set of indicators that includes the series exhibiting the highest
averaged correlation with respect to the other series included in the same category. In
the final scenario, the analysis is conducted with a LSDF M that uses a large scale data

set generated by including additional series in each category under the assumption that

3The LSDFM requires a sufficiently large number of time series to achieve its statistical properties. In
this sense, a SSDF M cannot be viewed as a particular case of a LSDF M but as a different estimation

strategy.

BANCO DE ESPANA 9 DOCUMENTO DE TRABAJO N.° 1204



the additional series are finer disaggregations of the main indicator with which they are
correlated.

Using averaged squared errors, we propose a Monte Carlo analysis to evaluate the
accuracy of these three forecasting proposals to estimate the factors and to compute out-
of-sample forecasts of a target variable. We find that adding indicators that bear little
information about the factor components does not necessarily lead LSDF M to improve
upon the forecasts of SSDF M. In fact, we show that when the additional time series are
too correlated with the indicators already included in some categories, forecasting with
many predictors performs worse than forecasting from a reasonably pre-screened dataset,
especially when the categories are not highly correlated. In addition, SSDF M outperform
LSDFM in factor estimation and forecasting for high levels of cross-correlation across
the idiosyncratic errors of series from the same category, for oversampled categories and,
especially, for high persistence in either the common factor series or the idiosyncratic error.

The comparative performance of small versus large scale dynamic factor models is ex-
amined using the set of 147 US monthly macroeconomic indicators suggested by Stock and
Watson (2002b). The time series included in the dataset are classified by these authors
into 13 economic categories such as real output, prices, and employment. In an out-of-
sample exercise, we examine the accuracy of a large scale dynamic factor model that uses
the 147 indicators versus a small scale dynamic factor models that uses one representative
of each category to forecast the Industrial Production Index (IPI) at different short-term
horizons. The empirical results obtained from actual data are in concordance with those
obtained from generated data. A SSDFM that uses the 13 time series exhibiting the
highest averaged correlation with respect to the series of the same category yields sat-
isfactory or even better forecasting results than a LSDF M that uses the 147 economic
indicators.

This paper proceeds as follows. Section 2 describes both small and large scale dynamic
factor models. Section 3 presents the design details of the simulation exercise, i.e. how
to generate the main series of each category and the finer disaggregations. Section 4
shows the main findings in the comparison between SSDFM and LSDFM for different
parameter values. Section 5 describes the main results of our empirical application. Section

6 concludes.
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2 Dynamic factor models

Large and small scale factor models can be represented in a similar general framework.
Let y; be a scalar time series variable to be forecasted and let X; = (Xqy, ..., XNt)', with
t=1,...,T, be the observed stationary time series which are candidate predictors of y;. If
we are interested in one-step-ahead predictions, the baseline model can be stated as

p

/
Y1 = ao + o Xy + E VjYt—j+1 T Eytt1, (1)
Jj=1
where o = (v, ..., ay)’, and €yt+1 is a zero mean white noise.

Since estimating this expression becomes impractical as the number of predictors in-
creases, it is standard to assume that each predictor X;; has zero mean and admits a factor

structure:

Xir = NiFy + &y, (2)

for the ith cross-section unit at time ¢, 5 = 1,.... N, \; = (M\i1, ..., Ai)’, and t = 1, ..., T. In
this framework, the r x 1 vector F; contains the » common factors, \; the r factor loadings,
Xit = \;F} the common components, and &, the idiosyncratic errors. In vector notation

the model can be written as

Xt =AF + &, (3)

where A = ()\;;) is the N x r matrix of factor loadings and &, is the vector of N idio-
syncratic shocks. In the related literature, it is standard to assume that the vectors F;
and &, are serially and cross-sectionally uncorrelated unobserved stationary processes.*
In contrast to static factor models, the dynamics of the common factors are supposed to

follow autoregressive processes. Although it is very easy to generalize, let us assume that

the factors follow a simple VAR(1) process

Ft = AFt_l + Ug, (4)

In this framework the common factor is supposed to generate most of the cross-correlation between

the series of the data set { X},
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where A is the r x r matrix of coefficients, with E[u;] = 0 and Efusu;] = ¥,,. In addition,

&, is also assumed to follow a simple stationary VAR(1) process with mean zero:

gt = Cgt—l + vy, (5)

where v; is serially uncorrelated with E[v;] = 0 and E[vjv]] = %,.° Then, the target
variable y; can be forecasted through the common factors by

p

yer1 = Bo+ BFe+ > vy jr1 + eyera. (6)
=1

Finally, let us call the model a small scale dynamic factor model (SSDFM) when N is
fixed and small and T is large, and a large scale dynamic factor model (LSDF M) when
both N and T are large. In addition, although we leave the data to select the number of
factors in the empirical exercise, let us focus the analysis in the case where there is only

one factor.

2.1 Small scale dynamic factor models

The baseline model is the single-index dynamic factor model of Stock and Watson (1991)
which can be written in state-space form. Accordingly, the autoregressive parameter A, the
vector of the N loading factors A, and the (N x N) covariance matrix of the idiosyncratic
shocks ¥, can be estimated by maximum likelihood via the Kalman filter.® Let h; be the
(N +1) vector hy = (F{&;)', I; be the identity matrix of dimension j, and 0; be the vector

of j zeroes. Hence, the measurement equation can be defined as
Xt = Hht+6t, (7)

where
H=(A Iy), ®)

and e; is a vector of N zeroes. In addition, the transition equation can be stated as

ht+1 = Fh; + wy, (9)

® Although assuming VAR(p) dynamics for the factors and the idiosyncractic components is straight-

forward, it would complicates notation.
SFor identification purposes, ¥, is usually assumed to be one.
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where the (N + 1 x N + 1) matrix F is

A 0
= Mol (10)
oy C
and w; = (ug,v;) with zero mean and covariance matrix
by 0
Q= " . (11)
0o X%,

In the standard way, the Kalman filter also produces filtered and smoothed inferences
of the common factor: {Flf‘t}tT:1 and {FtS|T}tT:1' These inferences can be used in the

prediction equation (6) to compute OLS forecasts of the variable y;41.

2.2 Large scale dynamic factor models

To estimate the factors in the large scale framework, we use the quasi-maximum likelihood
approach suggested by Doz, Giannone and Reichlin (2007). In this method, the estimates
of the parameters are obtained by maximizing the likelihood via the EM algorithm, which
consists of an iterative two-step estimator. In the first step, the algorithm computes an
estimate of the parameters given an estimate of the common factor. In the second step,
the algorithm uses the estimated parameters to approximate the common factor by the
Kalman smoother. At each iteration, the algorithm ensures higher values of the log-
likelihood of the estimated common factor, so it is assumed that the process converges
when the slope between two consecutive log-likelihood values is lower than a threshold.”

Using an initial set of time series {X;;}~ |, the (i 4+ 1)-th iteration of the algorithm is
defined as follows. Let us assume that A?, A® and X are known. Let F} be the common
factor which is the output of the Kalman filter from the ¢-st iteration. The updated

estimates of A, A, and X, can be obtained from

AT = E[XF(B[F F) T (12)
AT = B[F R )(EIF_ FLD) T (13)
= = BIXGE (14)

"In practice, we consider a threshold of 107%.
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The estimates of the expectations can be obtained from

T
— 1 .
BIX.F) = S X FY (15)
t=1

where the series {F/}L_; is the factor estimated at the iteration 4. In addition, since
E[F\F]| = E[F,F/'|+ E[{F; — F/'}{F, — F/"}], and E[{F; — F'}{F, — F{'}] is the variance
of the estimated common factor, then denoting the variances by {V;}_,, the expectation

E[F,F}] can be estimated by

MHH

E[F{F]) = " V). (16)

t:l
Following a similar reasoning, E[F}F,_,] = E[FF/ ] + E[{F; — F/'}{F;—1 — F/,}], and
the last expectation which we denote as {C;}]_, can be estimated by the Kalman filter.

Then, the expectation E[F}F]_;] can be estimated by

T
e — 1 i i
E[FF ] = T E (F{FL +Cy). (17)
=1

The matrix ¥, is estimated as the diagonal matrix whose principal diagonal is given by:

T
2 . i i
Yo = dzag(T E X (Xe — AN'E})). (18)

These estimates can be used again in the Kalman filter to compute the factors FZH. The
algorithm, which starts with the static principal components estimates of the common
factors F and their factor loadings A, is repeated until the quasi-maximum likelihood
estimates of the parameters are obtained. These can easily be used to compute the esti-
mates of the common factor {Ft|T}tT:1 using the Kalman smoother, treating the idiosyn-
cratic errors as uncorrelated both in time and in the cross section.® Finally, as in the case

of SSDF M, the forecasts of y;+; are estimated by OLS regressions on (6).

3 Designing the simulation study

According to the estimation of the dynamic factor models described in the previous sec-

tion, the empirical applications that use these factor models will perform worse than

$The algorithm requires small number of iterations to converge. In our simulations, we only required 3

or 4 iterations to converge.
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theoretically expected when facing data problems that invalidate the assumptions seem-
ingly guaranteed by the theory. In the case of SSDF M, the larger the covariance among
idiosyncratic errors, the less accurate the estimations are expected to be. With respect to
the empirical performance of LSDF M, the models’ accuracy deteriorates when the aver-
age size of the common component falls, when the number of observations is not large on
either the cross-section or on the time dimensions, and when the possibility of correlated
errors increases as more series are included in the model, which is very common in prac-
tice since the data are usually drawn from a small number of broad categories.” In this
section, we perform Monte Carlo simulations to assess the extent to which the violation of
the theoretical assumptions behind SSDFM and LSDF M affects both the consistency

of factor estimation and the accuracy of forecasts.

3.1 Forecasting scenarios

The first scenario mimics the case in which forecasters develop a reasonable pre-screening
of the set of potential indicators and apply SSDFE M to obtain predictions from a reduced
number of selected indicators. In particular, we assume that the analyst searches for
the representative indicators of each economic category by screening out the noisier time
series of each category. However, the analyst usually does not know which are the least
noisy indicators from each category and some noisy indicators can be erroneously included
to compute the forecasts. To evaluate the effects of forecasting from a less accurate pre-
screened set of indicators, we also consider the forecasting scenario of computing SSDF M
forecasts from a small number of noisier indicators which are the series of each category
that exhibits the highest average correlation with the other series included in the same
category. In this case, we assume different degrees of correlation across representative
series of different categories.

The second forecasting scenario mimics the case of forecasters who include a large

number of indicators and apply LSDF M to compute predictions. In this case, the analyst

“Moench, Ng and Potter (2009) develop an interesting analysis by using dynamic hierarchical factor
models. The comparison between these type of models and the traditional large and small scale models

used in this paper is left for further research.
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does not carry out any pre-screening of the initial set of indicators which are also assumed
to belong to a reduced set of different categories. In addition, the indicators that belong to
each category are assumed to exhibit different degrees of correlation with the representative

indicators of these categories.

3.2 Generating small data sets

To simplify the analysis, we assume that the small data set, {Xft}f\izl, with N = 10,
is generated from one common factor only. First, given the parameters A and X, we

generate the series of the common factor {F;}/_; by
Ft = AFt_l + Ug. (19)

In the empirical applications, F; usually represents the “state of the economy” or the
“business cycle”. In this case, {us};_; are random numbers which are drawn from a
normal distribution with zero mean and variances ¥,, = 1. To examine the dependence of
the results on the persistence of the factor, we allow for different values for the parameter
A =0.1, 0.5, and 0.75.

Second, we assume that the idiosyncratic errors follow autoregressive processes. For
particular values of the coefficient matrix C, and %, we generate the series & = (€14, &ne),

from

§=C& 1+ vt (20)

In this case, vy = (viy, ..., vn¢) , and {vit}ﬁ’zl are random numbers which are drawn from
a normal distribution with zero mean and variance-covariances matrix »,. To simplify
simulations, the autoregressive coefficients matrix C' will be diagonal with two possible
values ¢ = 0.1 and ¢ = 0.75 in all the elements of the main diagonal. In addition, to
examine the effects of the errors cross-correlation, the covariance matrix will take different
values across the simulations. In particular, let us consider a given value for the parameter

ps and generate the vector p's = (1, pg, p2, ..., p2)’. Then, the matrix ¥, can be viewed as
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the Toeplitz matrix constructed from vector 7'y as

L opg pi oo Pl
ps 1 ps oo A8

Se=1| p2 p, 1 ... ol |- (21)
Py Ps Pt 1

As can be deduced from this expression, parameter p, represents the maximum correlation
between the error terms of two series and controls the correlation across categories of data.
In the simulations, the values of this parameter will be p, = 0,0.1,0.5, and 0.75.

Finally, in the simulations A will be a column vector of N ones. Then, {F;}]_,, and
{€,}E | is used in

XS:AFt+§t7 (22)

to obtain simulations of X}, with X;¥ = {X3}I_,, for i = 1,..., 10.

Therefore, each of the ten series Xg included in Xf could be intuitively interpreted
as ten economic sectors which depend on two components. The first component, Fj, is
common to the ten categories and is usually interpreted as the business cycle, and exhibits
different levels of persistence which are measured by A. The second component, &;;, refers
to sectorial or idiosyncratic components which also have different levels of persistence

(measured by ¢) and across-categories cross-correlation (measured by p,).!°

3.3 Generating large data sets

As mentioned above, for the large data set {X ;t}%fp with M = 100, we assume that

the ten series generated in the previous section, th , represent the main indicators of
each of ten different categories of data. Accordingly, we add an error term representing
the idiosyncratic error of the specific series of each category to each of the ten time series

{X ;}ivtzl for N = 10. These errors are called {wlkt}:%lt():? where ¢ represents the category,

YFor simplicity and clarity in the exposition, we present our main results with only one factor. Con-
sidering more than one factor is trivial but, although the results are of the same nature, the computation
time for the simulations increases dramatically. Nevertheless, we address the possibility of estimating more

than one factor in Section 4.
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and k represents the series within the category. These errors are assumed to be serially
correlated and cross-correlated with all the series existing within their respective category.

Hence, the large data set is generated by
X = X+ wine, (23)

where i = 1,...,10, k = 1,...,10, and w;; = (wi1¢, ..., wit0¢) is the vector of idiosyncratic
errors which is generated by
wig = Dwy_1 + €. (24)

. : 10,10, g
In this expression, {e},,},,;~] are random numbers drawn from a normal distribution

with zero mean and covariance matrix >, which is the Toeplitz matrix constructed from
vector p; as in (21), where p; = 0,0.1,0.5, and 0.75. Therefore, parameter p; controls the
correlation within each of the categories of data. The autoregressive coefficients matrix D
is diagonal with constant values of d = 0.1 and d = 0.75 in the main diagonal.

According to expressions (22), (23), and (24), each series of the large data set can be
decomposed as follows

Xilkt = NF+ fflikt, (25)

where fékt = &; + wike. Then, the idiosyncratic components fékt are composed of a
common error inside the categories, &,;, which could be cross-correlated among different
categories, and a specific error term, w;z;, which could be correlated with series from the
same category. Finally, putting together the series along all the categories, we have the

large data set

Xéz <X{,1,t7 Xl1,2,t7 ) X%LlO,t? Xl?,l,t? Xl2,2,t7 i X12,107t’ B XllO,l,tv XaO72,t> ) X%lO,lO,t>/ .
(26)
As in the case of small data sets, the generated time series can be interpreted as
economic indicators that have been generated as the sum of two components: the common
factor, F;, and the idiosyncratic component, fﬁkt. However, in the case of large data sets
the time series also depend on the within-category cross-correlation (measured by p;) and

by the within category autocorrelation (measured by d).
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3.4 Generating the target series

Finally, we generate the series to be predicted in a simple scenario. To simplify simulations,
we consider that forecasting with factors and one lagged value of the time series is dy-
namically complete. Hence, the series y; is generated from the following factor-augmented

regression

Yir1 = B'Fy + vy + ey, (27)

where (3 is one, e, is a white noise process, with o., = 1. Parameter -, which measures
the autocorrelation of the target series, is assumed to take the values of 0, 0.3, 0.5 and

0.8.

4 Simulation results

In each replication, j, we estimate the small and large scale factor models and compute
the accuracy of these models to infer the factor by using the Mean Squared Error over the

J = 1000 replications
T
1 .
= S (Fit = QFlyr)?, (25)

1 t=1

MSE' =

Sl

J

J

for ¢ = s in the case of the small data set and 7 = [ in the case of the large data set. In

this expression, @ is the projection matrix of the true common factor on the estimated

1

common factor.!! In addition, we compare the out of sample forecasting accuracy of

SSDFM and LSDFM by computing the errors in forecasting one step ahead the target
series generated. Let B and 7 be the OLS estimates of the parameters given by equation
(27) using the common factor series and the values of y up to period 7. Then, we construct
the one-step-ahead forecast of y;r1 by using the relation g’jji.T 1= BF;HT +Ay;jr. In this
way, one can define the Mean Squared one-step-ahead Forecast Errors of model ¢ as
1 .
MSFE = 2 (yjr1 — Jir1)”. (29)

J &

According to the forecasting scenarios described above, we call MSE;, MSE?, M SE',
MSFE;, MSFE}, and MSFE" the mean across replications of the MSE and MSFE

T

""'We need the projection matrix since the common factors are estimated up to a signal transformation.
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which are computed from a SSDFM that uses the 10 pre-screened (least noisy) series of
each category (superscript s, subscript p), from a SSDFM that uses 10 representative
(highly correlated) series of each category (superscript s, subscript r), and from a LSDF M

that uses the 100 time series of the large scale simulation exercise (superscript 1).

4.1 Factor estimates

Let us start the analysis of the simulations by using M SFEs to examine the relative ac-
curacy of the models to infer the factors. For easier facilitate understanding, we describe
how the results are presented in the tables. First, the results in Tables 1 to 3 are classified
according to different values of the autoregressive coefficient of the common factor (coef-
ficient A). This coefficient takes the value of 0.1 (low correlation) in Table 1, the value of
0.5 (medium correlation) in Table 2 and the value of 0.75 (high correlation) in Table 3.
Second, each of these tables shows the accuracy of the models for different values of the
cross correlation within (measured by p;) and across (measured by p,) categories. The first
block of results refers to the case when the only cross-correlation presented in the idiosyn-
cratic components is due to series that belong to the same category, which occurs when
ps = 0, while the following blocks of results examine the effects of progressively increasing
the correlation across categories to 0.1, 0.5 and 0.75. Within each of these blocks, the
tables report the models’ accuracy in inferring the common factor when the correlation
within categories, which is measured by p;, increases from 0 to 0.1, 0.5 and 0.9. Third, the
first three columns of the tables refer, respectively, to MSEs from dynamic factor models
which use the set of ten less noisy indicators in a SSDF M (results labelled as MSE}), or
the set of ten series that exhibit the highest correlation within each category in a SSDF M
(results labelled as M SE?), or the complete set of 100 indicators in a LSDFM (results
labelled as MSE'), respectively. Fourth, it is a common practice in large scale factor
models to represent each category by different numbers of time series and frequently some

categories might be over represented.'> We address the effects of over sampling in the last

12Typically, the number of series of disaggregated industrial production indicators is somewhat higher
than the number of time series included in other categories. Significant examples are Stock and Watson

(2002a, 2002b), Giannone et al. (2008), and Angelini et al. (2011).
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two columns of these tables. For this purpose, we simulate ten categories of data but with
20 series instead of 10 in the first category, 5 series instead of 10 in the second and third
categories, and, as before, the 10 series of the other 7 categories.'® Fifth, in Tables 1 to
3, we assume that the idiosyncratic components and the within categories errors have low
serial correlation (values of ¢ = d = 0.1), that the sample is small (T" = 50), and that there
is only one common factor in the estimation.'* The robustness of the results when for
higher serial correlation in errors, larger samples, and numbers of common factors selected
as in Bai and Ng (2002), are analyzed in Tables Al to A6 in the Appendix.

A small summary of the main results follows. Overall, all the tables show that the
reasonably pre-screened SSDF M that uses the less noisy indicators presents smaller M SFE
than all the other specifications (MSE, < MSE; and MSE; < MSE'). This is an
important result since it implies that a good preselection in the categories is very difficult
to beat even if the alternatives use a lot of information from a big number of times series.
This result holds for all the possible assumptions about the dynamics of the shocks, about
the dynamics of the factors, about the presence of within categories correlations, and
to a lesser extent about the across categories correlations. The reasonably pre-screened
SSDFM is only beaten when the correlation across categories is extremely high and all
the other dynamic problems, such as persistence in the factor, persistence in shocks, or
within categories correlation do not appear in the analysis.

Notably, the tables also show that even in the case in which the pre-screened less
noisy series are not available, there are still valuable gains when the variables are pre-
selected to estimate a SSDF M with those series of each category that exhibit the highest
correlation with the of the same category. The relative performance of SSDF M with the
representative highly correlated series and the LSDF M, show that the former improves
upon the latter (MSE? < MSE') when the persistence of the factor and the within

categories correlation increase.

"3 The accuracy of SSDFM from the least noisy indicators does not depend on the number of series that
are included in each category since the model only uses the common component of each category. Hence,

the tables only show MSE:.and MSE".
"1n their simulations, Stock and Watson (2002b) consider that T is large when it is greater than 100,

that 7" is small when it is smaller than 50, and that 7" is very small when it is equal to 25.
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These results are in line with some recent findings proposed in the related literature.
First, our findings are in line with those of Stock and Watson (2002b). Using large scale
static factor models, these authors find some deterioration on the quality of the factor
estimates when the degree of serial correlation in the factor and in the idiosyncratic errors
is high, even when the number of variables and observations is large. This coincides with
the finding that we show in Tables 2 and 3, which report the results of increasing inertia
in the simulated common factor, with A ranging from 0.1 (almost no serial correlation) in
Table 1 to 0.5 (moderate correlation) in Table 2 and to 0.75 (high correlation) in Table
3. Although our results confirm the deterioration in factor estimation of all the factor
models, the relative losses are not uniformly distributed across the models. When the serial
correlation of the factor increases, the relative gains of pre-screening over representative
series in SSDF M still hold at similar rates, except for the case of very large correlation
across categories, where the relative gains attenuate. Notably, the MSEs also highlight
the significant losses in the relative accuracy of LSDFM with respect to SSDFM as
the inertia of the common factor increases. In fact, when A = 0.75 the SSDFM from
the representative (highly correlated) series of each category outperforms LSDF M in all
scenarios.

Second, our results are in concordance with those of Boivin and Ng (2006) who suggest
that the large scale (static) factor estimates are adversely affected by cross-correlation
in the errors and by oversampling.'> The MSEs displayed in Tables 1 to 3 suggest
that none of the two versions of SSDFM is beaten by LSDFM when the correlation
across categories is high. In addition, the effects of using oversampled categories in factor
analysis are analyzed in the last two columns of these tables, which report the MSFEs
of estimating the factor from the representative series from each category SSDF M and
the large scale LSDF M, which uses the 10 unbalanced sets of indicators described above.
Overall the LSDF M with unbalanced categories performs worse than the LSDF M with
balanced categories, especially when the correlation across categories is small. Again, the

relatively better accuracy of noisy SSDF M with respect to the oversampled LSDF M is

'5Recall that our benchmarks are different. They focus on choosing the optimal number of variables in a

large scale (static) factor model instead of on comparing small versus large scale dynamic factor estimation.
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more evident when the low correlation across categories is combined with high correlation
within categories and high persistence of the factor.

The tables that try to examine the robustness of our results to different assumptions are
included in the Appendix and are labelled as Tables A1 to A6. To begin with, Tables A1 to
A4 examine the effects of increasing the serial correlation of the idiosyncratic components
on the factor models. In particular, the effects of having higher autocorrelations of the
series specific shock (measured by d) are analyzed in Tables A1 and A2 whereas the effects
of assuming higher autocorrelations of the category specific shocks (measured by c¢) are
analyzed in Tables A3 and A4. Tables Al and A2 show the M SFEs of the models when
the serial correlation of the idiosyncratic component is assumed to grow from d = 0.1 to
d = 0.75 in two scenarios, when the serial correlation of the factor is low (A = 0.1 in
Table Al) and when it is high (A = 0.75 in Table A2). The M SEs reported in the tables
show that increasing the serial correlation in the idiosyncratic components contributes
to deteriorating the overall performance of the models even more than when the serial
correlation of the factor increases. For example, while Table 1 shows that when p; = 0,
ps = 0.75, and A = d = 0.1, the MSE, is 0.35, Table Al shows that the M SE increases
to 0.50 when d = 0.75. On comparing Table 3 and Table A2, we obtain that increasing
d from 0.1 to 0.75 leads the MSE to increase from 0.40 to 0.75 when A = 0.75. In
addition, the tables show a better accuracy of a SSDF M that uses the 10 representative
series versus a LSDFM that uses the 100 series when there is high serial correlation
in the idiosyncratic components. This result reveals that the large scale model is more
negatively affected by the increase of the serial correlation than the small scale model.
Finally, the tables also show that the relatively larger negative effects of increasing the
correlation of the idiosyncratic components in the large scale model are magnified in the
case of oversampled categories.

Tables A3 and A4 analyze the role of the serial correlation of the shock of each category,
which is measured by the parameter ¢. This parameter is allowed to increase from ¢ = 0.1
to ¢ = 0.75 when the serial correlation of the factor is low (A = 0.1 in Table A3) and when
it is high (A = 0.75 in Table A4). Interestingly, the M SE's of the small scale models do

not change significantly. However, the M.SFEs of the large scale model exhibited relatively
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better accuracy than when the serial correlation of the idiosyncratic component increases.
Consequently, the representative series SSDF M only outperform the large scale LSDF M
for high levels of serial correlation of the common factor.

The role of the number of observations in the performance of factor models under
different values is examined in Tables A5 and A6. According to the theory, in the absence
of the typical data problems which are accounted for by our simulations and that usually
appear in empirical applications, the larger the time series the better the expected per-
formance of LSDF M with respect to SSDF M. This theoretical result is documented in
Table A5 where the reported M.SEs show that under low serial correlation of the factor
and low correlation of the idiosyncratic errors, the accuracy of the small scale model that
uses the least noisy indicators with respect to the large scale model diminishes, and the
large scale model outperforms the small scale model that uses the ten representatives that
exhibit the largest correlation with the series of each category. However, the tables also
show that when the serial correlation of the factor increases, SSDF M clearly outperforms
LSDF M regarding the way in which the small set of indicators is selected. Interestingly,
the tables also reveal that the relative losses in accuracy due to oversampling in LSDF M
are still large when the sample size increases. In fact, although Table A6 shows that the
accuracy of large scale models deteriorates further when facing data problems, Table A5
reveals that the unsatisfactory empirical performance of oversampled large scale models
still holds even in the absence of these data problems.

As a final remark, it is worth noting that the number of factors has been restricted
to one according to the data generating process. However, the generation of time series
in different categories with high within-category and across-category correlation may lead
this assumption to be too restrictive.! To evaluate the effect of this potential restriction
in the accuracy of LSDF M in estimating the factor, we leave the large scale model to
select the number of factors according to the procedure described in Bai and Ng (2002),
where the maximum number of factor is 11. Tables A7 and A8 report the MSE! and

the averaged number of estimated factors across the 1000 replications both in the case

16 Although the datasets have been generated from one seminal factor, estimating the model from highly

correlated indicators of different categories could require more than one factor.

BANCO DE ESPANA 24 DOCUMENTO DE TRABAJO N.° 1204



of balanced sets of categories and in the case of oversampled categories. According to
the previous discussion, the tables reveal that the higher the correlation within categories
the larger the number of estimated factors since the high correlation in each category is
interpreted by the model as if the series belonging to this category shared a common factor.
Notably, although selecting the number of factors increases the accuracy of LSDF M, the

gains are not sufficiently large to qualitatively alter the results obtained in this section.

4.2 Forecasting accuracy

This section examines how close the one-step-ahead out-of-sample forecasts based on the
estimated factors from small and large scale dynamic factor models are to the target
series which has been generated by (27). Part of the forecast performance analysis has
already been developed in the previous section since, in absence of autocorrelation in the
target series (measured by <), the forecast performance is expected to increase when the
discrepancy between the actual and the estimated factors diminishes.!” Accordingly, this
section examines the effects of different values of 7 ranging from 0 (no inertia) to 0.8
(high degree of time series dependence) on forecast performance. In addition, the section
also addresses the effects of the data problems outlined above on the the relative forecast
performance of small versus large scale dynamic factor models.

Tables 4 to 6 evaluate the ability of factor models in forecasting.'® As in the case
of factor estimates, the relative forecasting accuracy of small versus large scale dynamic
factor models is examined under different scenarios and the Monte Carlo simulations allow
for different degrees of cross-correlation across (p, from 0 to 0.5) and within (p; from 0
to 0.9) categories. Table 4 shows the M SFFE of the models when the factor exhibits low
correlation (A = 0.1) while Tables 5 and 6 display the M SE of the models when the factor
autocorrelation increases to medium (A = 0.5) and to high (A = 0.75), respectively.

The robustness analysis can be conducted through Tables A9 to A14 in the Appendix.
Tables A9 and A10 display the M SFE of the models when the autocorrelation of the series

"Note that the variance of the errors has been normalized Oe, = 1.
1870 save space, the tables that show the in-sample forecast analysis were omitted. In addition, the

tables that show the forecast analysis have been simplified. Larger versions of these tables are available

from the authors upon request.
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specific shock increases to d = 0.75, Tables A10 and A1l show the effects of increasing the
sample size to T' = 150, and Tables A12 and A13 analyze the forecasting accuracy when
the number of common factors is selected, as Bai and Ng (2002) describe.’

Overall, the tables show that the typical data problems lead to similar effects on the
forecasting ability of the models to those observed in the analysis of factor estimation.
Hence, when the time series are over correlated, with the indicators already included in
some categories, the factor or the idiosyncratic components are persistent, or some cate-
gories are oversampled, forecasting with many predictors performs worse than forecasting
from a representative series dataset, especially when the categories are not highly cor-
related. The strategy of reasonably pre-selecting the indicators to be used by SSDFM
almost unambiguously outperforms LSDFM and SSDFM from representative chosen
indicators. When the data problems become large, SSDF M using representatives series
of each category leads to lower M SFFE than LSDF M.

However, these results depend heavily on the magnitude of the autocorrelation of the
target variable since it tends to mitigate the forecasts loses of those models which are more
contaminated with data problems. That is, the models that exhibits larger deteriorations
in factor estimation due to data problems present smaller increases in M SFE when the
autocorrelation of the target variable increases. The intuition is clear: the larger the
autocorrelation of the target variable the smaller the weights of the factor in forecasting
the time series and the lower the effect on forecasting of inappropriate factor estimation.

For example, Tables 1 to 3 show the sharp deterioration in factor estimation of LS DF M
when the inertia of the factor and the within and across categories correlation became
large. In particular, if the set of parameters that measure the data problems changes from
ps=0,p$=0,A=0.1t0 p, =0.5, p =0.9, A = 0.75, the tables reveal that the accuracy
of the factor estimation moves from MSE' = 0.12 to M SE' = 0.56 which implies a 366%
increase. However, under the same change in the set of parameters, the forecast accuracy

moves from MSFE' = 1.14 to MSFE! = 1.55 when v = 0 which implies a 36% increase
and to MSFE' = 1.40 when ~ = 0.8, which implies a 23% increase only.

YThe tables that examine the effects of higher category-specific autocorrelation, measured by ¢ are
omitted to save space. The results are similar to those obtained when the series-specific autocorrelation,

measured by d, increased in Tables A9 and A10.
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5 Empirical analysis

To shed some empirical light on this statement, this section examines the forecasting
accuracy of small versus large scale dynamic factor models by using the dataset that
comprises the 147 monthly macroeconomic indicators used in a balanced panel factor
estimation by Stock and Watson (2002a) for the US economy.?’ The variables, which
are available over the sample 1959:01-1998:12 are standardized and transformed to induce

stationarity following their indications.

5.1 Preliminary analysis of data

According to Stock and Watson (2002a), Table 7 classifies the data in 13 different cate-
gories: (1) real output and income (series 1-19); (2) employment and hours (series 20-44);
(3) retail and manufacturing trade (series 45-53); (4) consumption (series 54-58); (5) hous-
ing starts and sales (series 59-65); (6) inventories (series 66-76); (7) orders (series 77-92);
(8) stock prices (series 93-99); (9) exchange rate (series 100-104); (10) interest rates (105-
119); (11) money and credit (series 120-126); (12) price indexes (series 127-144); (13)
Average hourly earnings (series 145-146).21. This table also displays the name of the cat-
egories in column 1 and the number of the series included in each category in column 2.
Since there are more series from some categories than others, the problem of oversampling
outlined in the simulations may apply in this example.

According to the motivation of the paper, the time series included in each category are
expected to be very collinear. Hence, it would be reasonable to conjecture that dozens of
variables in a large scale model, including sectorial ones, might not all be useful to improve
the forecasting accuracy and that it might be worth focusing on some key variables in a

small scale model. In fact, the larger the correlation within the series of the same category

20 Although the unbalanced panel proposed by Stock and Watson (2002a) included 215 time series, we

concentrate on the 147 time series that form the balanced panel.
21 The last category, labelled miscellaneous, has been omitted from the empirical analysis since it included

only one series.
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that we find, the more likely to fail is the assumption of weak correlation across the
idiosyncratic components in large scale dynamic factor models that ensured the asymptotic
statistical properties to be held in this empirical exercise. To gauge the potential problem,
Table 7 also shows in the third column the averaged correlation across the series of each
category. Overall, the categories contains very collinear indicators which exhibit averaged
correlations of more than 0.5 in the cases of housing starts and sales and exchange rates
and of more than 0.4 in the cases of real output and income, consumption, stock prices,
and interest rates.

Besides, the name of the series that exhibit the largest averaged correlation with the
series of each category is displayed in the fourth column of Table 7. These series can
be considered as the representative series of each category. The last column of Table 7
reports the magnitudes of these averaged correlations. Overall, the representative series
exhibit averaged correlations with the series of the same category of more than 0.5, and
in some cases the correlations rise to 0.70 in the case of exchange rates and to 0.74 in
the case of housing starts. Interestingly, when finer disaggregations of sectorial data are
included in a category, the representative series of the category usually refers to the total
(non disaggregated) indicator.

In addition, it is of great interest in this paper to examine the correlation across the
indicators of different categories. If the correlations are not absorbed by the factor, the risk
of the required absence of cross-correlation across the idiosyncratic components of small
scale factor models grows dramatically when the empirical correlations are very large. For
this purpose, Table 8 displays the correlation across the thirteen representative series of
the different categories. The high correlation coefficients reported in the table for some
pairs of categories indicate that there is a high collinearity between these categories. As
expected, the highest correlations appear between industrial production and employment
(correlation of 0.64) and between manufacturing and trade sales and orders (correlation

of 0.60).
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5.2 Forecasting accuracy

In this paper we consider two real (industrial production and nonagricultural employment)
and two nominal (consumer and producer price indexes) target series, each of which is
called Y;. Accordingly, we investigate the accuracy of the different specifications of dy-
namic factor models to forecast industrial production using the following multi-step ahead
forecasting procedure described in Stock and Watson (2002a)

m v

yf+h =qap + Zﬁ;ﬁt—i + Z’szt—j + 5?+h- (30)

i=0 j=0
In this equation, yf+h is the h-step ahead covariance stationary transformation of the
original series Y;, where y" , = In(Yy4,/V3), F,_; is the i-lagged (i = 0, 1, ..., m) value of the
(rx1) vector of estimated factors, and z;_; is the j-lagged (j = 0, 1, ..., v) value of the 1-step
ahead covariance stationary transformation of Y3, where z; = In(Y;/Y;_1). Expressions 6;
and ~; refer to the standard parameters of autoregressive processes. The term 5?+h is a
homoskedastic martingale difference sequence with respect to the set of information at
time ¢. Finally, in line with previous studies in forecasting with empirical factors, our
model is allowed to choose values of m lying between 1 and 6 and v lying between 1 and
12 based upon the BIC selection criterion. In large scale factor specifications, r is either
imposed as one or selected as Bai and Ng (2002) describe.

The pseudo real-time forecasting exercise begins with data from 1959:3-1970:1. Using
this sample, m, v, and (in some cases) r are chosen, and an h period ahead forecast is
formed by using values of the regressors at 1970:1 to give 9?970:1 +n- Then, the sample
is updated by one period, the factors and the forecasting models (including m, v, and,
in some cases, r) are re-estimated, and an h-month forecast for 1970:14+h is computed
(for h =1 it would be 1970:2, for h = 6 1970:7 and for h = 12 1971:1). The forecasting
procedure continues iteratively until the final forecast ylggg.1, Which is made using data
until 1998:11 for h = 1, 1998:6 for h = 6 and 1997:12 for h = 12. In each iteration, the
root of the squared deviation of h-ahead forecasts from actual data are computed and the
average of these figures is labeled as RMSFE(h).

To investigate the benefits of forecasting with the two different versions of dynamic

factor models, we consider a forecast competition of different diffusion index forecasts

BANCO DE ESPANA 29 DOCUMENTO DE TRABAJO N.° 1204



from small and large scale datasets. The first competitor is a simple autoregressive model
which is obtained when s; = 0 in (30). The second competitor is an autoregressive model
that is enlarged with the factors obtained from a large scale dynamic factor model applied
to the 146 economic indicators. The number of factors included in the analysis is either
imposed as one or selected by using the Bai and Ng (2002) criterion. The third competitor
is an autoregressive model that is enlarged with the factors obtained from a small scale
dynamic factor model applied to the 13 representative indicators, which are the series of
each category that exhibit the highest averaged autocorrelation. In the case of small scale
factor models, the number of factors is also either imposed as one or selected by BIC.?

To facilitate comparisons, Tables 9 and 10 report the root mean square forecast errors
relative to the autoregressive models. Hence, an entry less than one indicates that the
diffusion index forecast is superior to the autoregressive univariate forecast. According
to Stock and Watson (2002a), regarding the factor model and the forecasting horizon
used in the analysis, the diffusion index forecasts generally improve over the benchmark
univariate forecasts. However, the forecasting accuracy largely depends on the number of
factors included in the analysis. For example, Table 9 shows that when only one factor
is included in the diffusion index forecasts, the relative mean squared errors are always
greater than 0.9, which implies that the factor forecasts are only slightly more accurate
than the univariate autoregressive forecasts. To gauge this property, Figure 1 plots the h-
step ahead growth of Industrial Production (IP), yf_Hl over the sample 1970:01-1998:12-h.
As expected, the persistence of the series increases with h, and the correlation is 0.37 when
h =1, and 0.96 when A = 12. When h = 12, the high persistence of the target variable is
better captured by the first factor of the small scale model (correlation of 0.98) than by
the first factor of the large scale model (correlation of 0.66). For easier comparisons, the
first two factors of SSDFM and LSDF M are plotted in Figures 2 and 3.

Accordingly, the performance of factor models that determines the number of factors
required in the factor estimation is much better than when the number of factor is re-

stricted to one, especially when the forecasting horizon becomes large. Notably, Table 9

22Tn the simulation exercise, we knew that the true number of factors was one. In the empirical appli-

cation, we found that the data are better characterized by using two factors.
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confirms the results obtained by the simulation study conducted throughout the paper.
There may be a similar forecast efficiency either when constructing the diffusion index
forecasts from a small scale dataset that includes a representative (highly correlated) time
series from each category or from a large scale dataset that contains larger, but redundant,
information about the factors. Although none of the factor models systematically perform
better than the other, the factor forecasts accuracy of the small scale model that uses 13
representative indicators is similar to (or, in many cases, better than) that obtained when
the forecasts of industrial production and employment are computed from a large scale
model that uses the 146 indicators

The results for nominal variables are presented in Table 10. As in the case of forecasting
real variables, the diffusion index forecasts of the consumer price index and the producer
price index for finished goods that are computed from small scale factor models uniformly
outperform the forecasts for those nominal variables computed from large scale factor
models when the number of factors is selected from the data. Regarding the forecast
horizon, the small scale factor model consistently performs better than the large scale
factor model when the number of factors used in the analysis are selected from the data,

with relative performance improving as the horizon increases.

6 Conclusions

Two versions of dynamic factor models have received growing attention in the recent
forecasting literature: the dynamic factors that use large datasets, and the dynamic factors
which use a small number of indicators that has been preselected reasonably. However,
the problem of systematically selecting many series from very many series that face the
typical data problems associated with empirical applications is still developing.

In this paper, we propose simulations which mimic different scenarios of empirical
forecasting, where the list of series, which are extracted from different economic categories,
is fixed (rather than tending to infinity), and potentially greater cross-correlation and
serial correlation may appear among idiosyncratic components than those warranted by

the theory. Accordingly, our Monte Carlo analysis allows for indicators which belong to
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different categories of data and whose idiosyncratic components show cross-correlation
within and across categories in addition to serial correlation. We also allow for categories
which are oversampled. Finally, the simulations examine the accuracy of small versus
large data sets under different degrees of serial correlation in the factor.

To gauge the problem, we compare the forecast accuracy of a large scale factor model
that uses the information provided by a large dataset with that of a small scale factor
model that uses information from one representative of each category and the time series
with large averaged correlation with the series of the same category. We find that adding
data that have little information on the factor components does not necessarily lead large
scale dynamic factor models to improve upon the forecasts of small scale dynamic factor
models. In fact, we show that when the additional data are over correlated with data
from some categories which are already included in factor estimation, forecasting with
many predictors performs worse than forecasting from a reasonably pre-screened dataset,
especially when the categories are not highly correlated. This result is stronger in the
case of high persistence of the common factor, in the case of high serial correlation of the
idiosyncratic components, in the case of using noisy series, and in the case of oversampled
categories. In these cases, even arbitrarily selecting one time series from each category
and using the resulting dataset in a small scale dynamic factor model outperforms the
forecasts from large scale dynamic factor models. In these situations, our results suggest
that it may be better to discard some redundant data even if such data are available.
Using the 147 indicators that form the balanced panel used by Stock and Watson (2002a),

we illustrate these results for US data.
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Table 1. Common factor estimation (7=50, c=0.1, d=0.1, 4=0.1)

. o me number of series in each T rsampling on T
Correlation within Same number of series in each category Oversampling one category

categories p;

MSE} MSE? MSE! MSE? MSE!

Correlation across categories p,=0

0 0.101 0.195 0.124 0.191 0.149
0.1 0.101 0.192 0.125 0.191 0.151
0.5 0.101 0.196 0.139 0.190 0.166
0.9 0.101 0.195 0.185 0.192 0.320

Correlation across categories p,=0./

0 0.116 0.207 0.139 0.204 0.159
0.1 0.116 0.205 0.141 0.204 0.162
0.5 0.116 0.205 0.152 0.203 0.175
0.9 0.116 0.206 0.197 0.202 0.310

Correlation across categories p,=0.5

0 0.223 0.289 0.236 0.285 0.235
0.1 0.223 0.286 0.239 0.284 0.234
0.5 0.223 0.286 0.246 0.284 0.243
0.9 0.223 0.287 0.281 0.284 0.300

Correlation across categories p,=0.75

0 0.350 0.383 0.350 0.382 0.346
0.1 0.350 0.380 0.349 0.383 0.344
0.5 0.350 0.381 0.359 0.376 0.346
0.9 0.350 0.377 0.376 0.378 0.376

Notes. The values of ps determine the cross-correlation of the idiosyncratic shocks
between series from different categories, and the values of pl determine the cross-
correlation of the idiosyncratic shocks between series from the same category. T is the
sample size. Parameters A and ¢ measure the serial correlation of the factor and the
idiosyncratic shocks, respectively. The Mean Squared Errors of the models uses the 10
representative series of each category, the model that uses the 10 series with higher
correlation with others of each category and the model that uses all the 100 series, all of
which are denoted by MSE!, MSE;, and MSE', respectively.
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Table 2. Common factor estimation (7=50, ¢=0.1, d=0.1, 4=0.5)

. o Same number of series in each category Oversampling one categor
Correlation within gory pling gory

categories p; N N
MSE; MSE" MSE' MSE? MSE'

Correlation across categories p,=0

0 0.100 0.191 0.175 0.190 0.202
0.1 0.100 0.190 0.175 0.188 0.200
0.5 0.100 0.192 0.190 0.188 0.217
0.9 0.100 0.191 0.236 0.187 0.350

Correlation across categories p,=0.1

0 0.115 0.204 0.191 0.201 0.207
0.1 0.115 0.203 0.191 0.201 0.208
0.5 0.115 0.204 0.206 0.200 0.229
0.9 0.115 0.203 0.250 0.199 0.340

Correlation across categories p,=0.5

0 0.227 0.293 0.294 0.290 0.290
0.1 0.227 0.291 0.297 0.288 0.289
0.5 0.227 0.291 0.305 0.290 0.304
0.9 0.227 0.291 0.343 0.288 0.368

Correlation across categories p,=0.75

0 0.372 0.399 0.414 0.403 0.409
0.1 0.372 0.400 0.415 0.405 0.415
0.5 0.372 0.407 0.430 0.402 0.422
0.9 0.372 0.400 0.450 0.402 0.448

Notes. See notes for Table 1.
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Table 3. Common factor estimation (7=50, ¢=0.1, d=0.1, 4=0.75)

. o Same number of series in each category Oversampling one categor
Correlation within gory pling gory

categories p; . )
MSE3 MSE! MSE' MSE? MSE'

Correlation across categories p,=0

0 0.097 0.182 0.382 0.180 0.395
0.1 0.097 0.182 0.384 0.180 0.427
0.5 0.097 0.183 0.397 0.181 0.429
0.9 0.097 0.182 0.444 0.180 0.525

Correlation across categories p,=0.1

0 0.112 0.195 0.398 0.192 0.417
0.1 0.112 0.195 0.400 0.193 0.421
0.5 0.112 0.196 0.413 0.194 0.428
0.9 0.112 0.195 0.459 0.191 0.559

Correlation across categories p,=0.5

0 0.230 0.290 0.510 0.289 0.515
0.1 0.230 0.291 0.512 0.286 0.506
0.5 0.230 0.291 0.524 0.288 0.524
0.9 0.232 0.289 0.565 0.286 0.574

Correlation across categories p,=0.75

0 0.406 0.425 0.644 0.432 0.650
0.1 0.406 0.425 0.646 0.430 0.652
0.5 0.406 0.425 0.655 0.426 0.680
0.9 0.406 0.425 0.688 0.427 0.711

Notes. See notes for Table 1.
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Table 4. Forecasting accuracy (7=50, ¢=0.1, d=0.1, 4=0.1)

Correlation within ~ Persistency of the

Same number of series in each

Oversampling one

5 ) category category
categories p; target series y MSFES MSFE® MSFE? MSFE® MSFE!
Correlation across categories p, =0
0 0 1.107 1.215 1.14 1.171 1.161
0.3 1.101 1.202 1.161 1.218 1.199
0.8 1.086 1.172 1.099 1.178 1.173
0.9 0 1.107 1.354 1.341 1.378 1.558
0.3 1.101 1.146 1.129 1.166 1.286
0.8 1.086 1.273 1.235 1.318 1.459
Correlation across categories p, =0.5
0 0 1.197 1.280 1.198 1.371 1.342
0.3 1.200 1.248 1.237 1.324 1.321
0.8 1.154 1.222 1.156 1.288 1.238
0.9 0 1.197 1.324 1.314 1.248 1.239
0.3 1.200 1.320 1.300 1.441 1.425
0.8 1.154 1.320 1.319 1.394 1.407

Notes. The estimated model is y,,, = BF, + , +e,,,, . See notes for Table 1.

Table 5. Forecasting accuracy (7=50, ¢=0.1, d=0.1, A=0.5)

Correlation within Persistency of the

Same number of series in each

Oversampling one

categories p; target series y cotegory calegory
MSFE), MSFE; MSFE' MSFE; MSFE'
Correlation across categories p, =0
0 0 1.169 1.299 1.248 1.279 1.27
0.3 1.121 1.203 1.184 1.289 1.292
0.8 1.222 1.363 1.343 1.411 1.36
0.9 0 1.169 1.300 1.377 1.302 1.415
0.3 1.121 1.313 1.335 1.306 1.413
0.8 1.222 1.328 1.306 1.204 1.307
Correlation across categories p, =0.5
0 0 1.220 1.290 1.249 1.291 1.286
0.3 1.299 1.357 1.349 1.433 1.399
0.8 1.218 1.382 1.351 1.374 1.297
0.9 0 1.220 1.259 1.275 1.238 1.276
0.3 1.299 1.395 1.397 1.397 1.445
0.8 1.218 1.357 1.372 1.293 1.345

Notes. See notes for Tables 1 and 4.
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Table 6. Forecasting accuracy (7=50, ¢=0.1, d=0.1, 4=0.75)

Correlation within Persistency of the

Same number of series in each

Oversampling one

categories p, target series category category
Y MSFE), MSFE; MSFE' MSFE; MSFE'
Correlation across categories p, =0
0 0 1.133 1.275 1.343 1.213 1.388
0.3 1.132 1.216 1.347 1.212 1.396
0.8 1.151 1.345 1.408 1.27 1.419
0.9 0 1.133 1.201 1.387 1.273 1.417
0.3 1.132 1.212 1.316 1.205 1.388
0.8 1.151 1.243 1.363 1.27 1.455
Correlation across categories p, =0.5
0 0 1.329 1.371 1.493 1.414 1.516
0.3 1.373 1.449 1.514 1.498 1.597
0.8 1.315 1.379 1.462 1.454 1.502
0.9 0 1.329 1.401 1.549 1.378 1.462
0.3 1.373 1.410 1.517 1.428 1.605
0.8 1.315 1.326 1.393 1.231 1.388

Notes. See notes for Tables 1 and 4.

BANCO DE ESPANA 39 DOCUMENTO DE TRABAJO N.° 1204



Table 7. Data description

Number Averaged . . Highest
Representative series of the
Category name of Cross- averaged cross-
. . category X
series  correlation correlation
1. Real output and income 19 0.422 Industrial production: total index 0.570
2. Employment and hours 25 0.323 Employees on nonagricultural 0.475
Payrolls: total
3. Real retail,
manufacturing and trade 9 0.381 Manufacturing & trade: total 0.623
sales
4. Consumption 5 0.403 Personal consumption expend, total 0.640
5. Housing starts and sales 7 0.559 Housing starts: total farm & 0.740
nonfarm
§. Real inventories and 1 0.272 Manufacturing & trade inventories: 0426
inventory-sales ratios total
7. Orders and unfilled 16 0.363 Mfg new orders: mfg industries 0.435
orders with unfilled orders
8. Stock prices 7 0476 S&P's common stogk price index: 0.635
composite
9. Exchange rates 5 0.515  Umited States eflective exchange 0.701
Spread US treasury bills, secondary
10. Interest rates 15 0.427 market 10-years and federal fund 0.517
rate

11. Money and credit 7 0.286 Money stock: M2 0.345
quantity aggregates
12. Price indexes 18 0.214 Cpi-u: all items 0.288
13. Average hourly Average hourly earnings of

. 2 0.313 . . 0.313
earnings production workers: manufacturing
Total 146 13

Notes. The dataset, the definition of the thirteen categories, and the distribution of the
indicators across these categories follows Stock and Watson (2002a). The representative
series of each category is the economic indicator that exhibits the largest averaged
correlation with the series of the same category. The last column reports these
correlations.
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Table 8. Correlation across categories

cat 1 cat 2 cat 3 cat 4 cat 5 cat 6 cat 7 cat 8 cat9 | cat10| catll| catl12| catl3
cat 1 1.00 0.64 0.52 0.19 0.32 0.18 0.39 -0.01 0.09 0.19 -0.06 0.03 0.16
cat 2 - 1.00 0.43 0.19 0.50 0.32 0.27 -0.04 | -0.01 0.09 -0.02 0.04 0.06
cat 3 - - 1.00 0.48 0.26 0.08 0.61 0.13 0.04 0.17 -0.07 | -0.01 0.03
cat 4 - - - 1.00 0.14 -0.11 0.23 0.17 0.03 0.14 -0.03 | -0.05 | -0.06
cat5 - - - - 1.00 0.20 0.20 0.01 -0.16 0.07 -0.05 0.03 0.01
cat 6 - - - - - 1.00 -0.01 -0.13 -0.06 | -0.12 | -0.05 | -0.02 | -0.01
cat 7 - - - - - - 1.00 0.02 0.06 0.08 -0.04 0.11 0.07
cat 8 - - - - - - - 1.00 -0.05 0.16 0.10 -0.02 | -0.02
cat9 - - - - - - - - 1.00 -0.10 | -0.12 | -0.04 | -0.02
cat 10 - - - - - - - - - 1.00 0.01 -0.01 0.02
cat 11 - - - - - - - - - - 1.00 0.01 0.05
cat 12 - - - - - - - - - - - 1.00 -0.04
cat 13 - - - - - - - - - - - - 1.00

Notes. The entries refer to the correlations between pairs of representative series of each
category. See notes for Table 7.

Table 9. Forecasting real variables

Industrial production

Nonagricultural employment

Forecast horizon

Forecast horizon

h=1 h=6 h=12 h=1 h=6 h=12
Forecast method RMSFE(h) RMSFE(h)
AR 0.007 0.031 0.049 0.002 0.009 0.017

Relative (to the AR) RMSFE(h) Relative (to the AR) RMSFE(h)

LSDFM, r=1 0.90
SSDFM, =1 0.96
LSDFM, r* 0.87

SSDFM with r* 0.87

0.92

0.96

0.66

0.73

0.97

0.92

0.52

0.52

0.88

0.92

0.84

0.91

0.92

0.89

0.79

0.78

091

0.86

0.65

0.63

Notes. The sample period is 1959:03-1998:12 and the out-of-sample forecast period is
1971:01-1998:12. The competing models are the autoregressive model, and the
autoregressive model extended with factors. The LSDFM is applied to the 146 indicators
and the SSDFM is applied to the 13 representative series of each category that exhibit the
largest average autocorrelation with the series of the same category. In some cases, the
number of factors is restricted to 7=1, while in others the optimal number of factors »* is
determined by using Bai and Ng (2002) in large scale models and by using BIC in small

scale models.
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Table 10. Forecasting nominal variables

Consumer price index Producer price index
Forecast horizon Forecast horizon
h=1 h=6 h=12 h=1 h=6 h=12
Forecast method RMSFE(h) RMSFE(h)
AR 0.002 0.010 0.021 0.008 0.026 0.046

Relative (to the AR) RMSFE(h) Relative (to the AR) RMSFE(h)

LSDFM, r=1 0.98 0.81 0.75 0.87
SSDFM, r=1 0.99 0.80 0.75 0.94
LSDFM, r* 1.02 0.94 0.87 1.14
SSDFM with r* 0.99 0.92 0.86 1.00

0.87

0.91

1.00

0.95

0.90

0.90

0.97

0.88

Notes. See notes for Table 9.
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Figure 1. Industrial production
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Notes. The % step ahead growth of Industrial production (IP) is yt’ﬁrh In(IP,,/IP).
The sample is 1970:01-1998:12-A.
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Figure 2. Factors estimated from the small scale model

Factor 1
L | / I\ —  Factor2
8 i [ ) I\

6l I | o \ -
/ "\ \\‘ ‘\M\ ‘\ u“ /‘
T g I [ . [y .

\ ‘ | W | \ \ ‘ . 1
A\ \/\ | | / u‘w/ \ ‘w NN \U \ 1 ‘1‘\ | /H |
‘A‘)h | /Mk/‘ \/;y/\ ; \J\ ’V\ W \ A ‘«/“ v ‘/ , 'K \A n :‘ | /w\\ ] U/ |,/ ‘\ ’\v/ il \ \(\ \/ ] ‘u )

‘ \

W “

. ‘ \ } M“J \ /”‘ V
s \ o

A N |
n

T4 e e e
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 8 87 88 89 90 91 92 93 94 95 96 97 98

Notes. The figure plots the first two factors obtained from SSDFM applied to the
thirteen representative categories by using data from 1959:03 to 1998:11.
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Figure 3. Factors estimated from the large scale model
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APPENDIX

Table A1l. Common factor estimation (7=50, c=0.1, d=0.75, 4=0.1)

. o Same number of series in each categor Oversampling one categor
Correlation within gory pling gory

categories p; . .
MSE} MSE! MSE! MSE? MSE!

Correlation across categories p,=0
0 0.101 0.278 0.145 0.278 0.167
0.9 0.101 0.276 0.296 0.276 0.410
Correlation across categories p,=0.75
0 0.346 0.421 0.356 0.421 0.349

0.9 0.346 0.422 0.426 0.422 0.431

Notes. See notes for Table 1.

Table A2. Common factor estimation (7=50, ¢=0.1, d=0.75, 4=0.75)

Correlation within Same number of series in each category Oversampling one category

categories p;

MSE ), MSE? MSE! MSE? MSE!

Correlation across categories p,=0
0 0.097 0.357 0.418 0.357 0.437
0.9 0.097 0.352 0.548 0.352 0.631
Correlation across categories p,=0.75
0 0.378 0.563 0.669 0.563 0.660

0.9 0.379 0.560 0.754 0.560 0.754

Notes. See notes for Table 1.
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Table A3. Common factor estimation (7=50, ¢=0.75, d=0.75, A=0.1)

. . Same number of series in each category Oversampling one categor
Correlation within gory pling gory

categories p; . .
MSE} MSE! MSE' MSE! MSE!

Correlation across categories p,=0
0 0.169 0.265 0.317 0.272 0.382
0.9 0.172 0.265 0.518 0.263 0.604
Correlation across categories p,=0.75
0 0.503 0.506 0.538 0.508 0.534

0.9 0.503 0.505 0.591 0.510 0.596

Notes. See notes for Table 1.

Table A4. Common factor estimation (7=50, ¢=0.75, d=0.75, A=0.75)

Correlation within Same number of series in each category Oversampling one category

categories
gories pi MSE, MSE? MSE! MSE® MSE'

Correlation across categories p,=0
0 0.251 0.470 0.507 0.482 0.558
0.9 0.251 0.461 0.696 0.496 0.833
Correlation across categories p,=0.75
0 0.751 0.820 0.885 0.843 0.874

0.9 0.749 0.819 0.964 0.845 0.961

Notes. See notes for Table 1.
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Table A5. Common factor estimation (7=150, ¢=0.1, d=0.1, 4=0.1)

Correlation within Same number of series in each category Oversampling one category

categories p; ) .
MSE} MSE? MSE! MSE? MSE!

Correlation across categories p,=0
0 0.095 0.175 0.108 0.176 0.134
0.9 0.094 0.176 0.161 0.175 0.333
Correlation across categories p,=0.75
0 0.350 0.376 0.340 0.375 0.333

0.9 0.350 0.377 0.370 0.375 0.364

Notes. See notes for Table 1.

Table A6. Common factor estimation (7=150, ¢=0.75, d=0.75, A=0.1)

Correlation within Same number of series in each category Oversampling one category

categories
gonies o1 MSE; MSE? MSE! MSE? MSE!

Correlation error term Series of SSDFM: p,=0
0 0.092 0.168 0.195 0.168 0.218
0.9 0.092 0.169 0.252 0.169 0.314
Correlation across categories p,=0.75
0 0.409 0.427 0.487 0.427 0.477

0.9 0.409 0.428 0.531 0.429 0.523

Notes. See notes for Table 1.
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Table A7. Common factor estimation (7=50, ¢=0.1, d=1, A=0.1).

Correlation Same number of series in each category Oversampling one category
within
categories p, 7 MSE' 7 MSE'

Correlation across categories p,=0
0 3.33 0.119 1 0.147
0.9 10.89 0.140 1.84 0.196
Correlation across categories p,=0.75
0 2.60 0.326 1.20 0.350

0.9 10.89 0.288 2.84 0.363

Notes. The number of common factors is selected as in Bai and Ng (2002). The values
of rare the averaged number of estimated number of factors across replications. See
notes for Table 1.

Table A8. Common factor estimation (7=50, ¢=0.1, d=1, 4=0.75).

Correlation Same number of series in each category Oversampling one category
within
categories p, 7 MSE' 7 MSE'

Correlation across categories p,=0
0 2.39 0.380 1 0.404
0.9 10.88 0.403 1.89 0.455
Correlation across categories p,=0.75
0 2.58 0.621 1.24 0.643

0.9 10.86 0.587 2.06 0.667

Notes. See notes for Tables 1 and A7.
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Table A9. Forecasting accuracy (7=50, c=0.1, d=0.75, A=0.1)

Correlation within ~ Persistency of the Same numt():zrteogoyrcyries in cach Over(s;zizgi)irr;g one
categories p; target series y MSFES VSFE? VSFE! VSFES MSFE!
Correlation across categories p, =0
0 0 1.184 1.257 1.213 1.255 1.236
0.3 1.190 1.265 1.217 1.263 1.238
0.8 1.194 1.274 1.205 1.273 1.227
0.9 0 1.184 1.409 1.402 1.409 1.491
0.3 1.190 1.415 1.413 1.415 1.497
0.8 1.194 1.431 1.415 1.431 1.493
Correlation across categories p, =0.5
0 0 1.270 1.416 1.302 1.415 1.303
0.3 1.277 1.422 1.310 1.420 1.310
0.8 1.277 1.434 1.302 1.425 1.301
0.9 0 1.270 1.439 1.439 1.434 1.487
0.3 1.277 1.446 1.449 1.442 1.496
0.8 1.277 1.457 1.453 1.455 1.496

Notes. See notes for Table 4.

Table A10. Forecasting accuracy (7=50, ¢=0.1, d=0.75, 4=0.75)

Correlation within ~ Persistency of the same numllerdl{[ec)goyrc},ries in cach Overzzzzlg)g;lyg one
categories p, target series y MSFE MSFE; MSFE' MSFE; MSFE'
Correlation across categories p, =0
0 0 1.327 1.572 1.587 1.582 1.630
0.3 1.335 1.579 1.579 1.586 1.619
0.8 1.343 1.597 1.547 1.596 1.584
0.9 0 1.327 1.590 1.753 1.580 1.841
0.3 1.335 1.587 1.737 1.574 1.828
0.8 1.343 1.591 1.724 1.580 1.861
Correlation across categories p, =0.5
0 0 1.509 1.603 1.680 1.617 1.713
0.3 1.493 1.589 1.653 1.600 1.688
0.8 1.532 1.631 1.629 1.644 1.672
0.9 0 1.509 1.598 1.771 1.597 1.857
0.3 1.493 1.573 1.743 1.579 1.827
0.8 1.532 1.624 1.747 1.644 1.872

Notes. See notes for Table 4.
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Table A1l1. Forecasting accuracy (7=150, ¢=0.1, d=0.1, 4=0.1)

Correlation within

Same number of series in each

Oversampling one

] Persistencylof the category category
categories p; target series y MSFE? MSFE® MSFE! MSFE® VSFE!
Correlation across categories p, =0
0 0 1.083 1.169 1.099 1.165 1.131
0.3 1.086 1.174 1.103 1.171 1.136
0.8 1.087 1.178 1.105 1.176 1.139
0.9 0 1.096 1.182 1.161 1.184 1.328
0.3 1.099 1.186 1.165 1.189 1.331
0.8 1.098 1.189 1.167 1.192 1.328
Correlation across categories p, =0.5
0 0 1.209 1.274 1.221 1.267 1.225
0.3 1.213 1.279 1.225 1.273 1.229
0.8 1.213 1.281 1.227 1.276 1.232
0.9 0 1.209 1.277 1.268 1.276 1.305
0.3 1.213 1.282 1.272 1.281 1.309
0.8 1.213 1.287 1.276 1.286 1.313

Notes. See notes for Table 4.

Table A12. Forecasting accuracy (7=150, ¢=0.1, d=0.1, 4=0.75)

) o Same number of series in each
Correlation within

Oversampling one

Persistency of the

; ) category category
categories p; target series y MSFE; MSFES MSFE' MSFE® MSFE!
Correlation across categories p, =0
0 0 1.019 1.101 1.085 1.117 1.100
0.3 1.021 1.101 1.082 1.118 1.097
0.8 1.028 1.107 1.092 1.123 1.105
0.9 0 1.088 1.179 1.205 1.182 1.267
0.3 1.091 1.185 1.206 1.187 1.267
0.8 1.098 1.195 1.210 1.195 1.276
Correlation across categories p, =0.5
0 0 1.228 1.300 1.315 1.297 1.319
0.3 1.231 1.303 1.311 1.301 1.316
0.8 1.237 1.317 1.318 1.314 1.322
0.9 0 1.228 1.305 1.365 1.303 1.386
0.3 1.231 1.312 1.363 1.310 1.382
0.8 1.237 1.322 1.372 1.320 1.393

Notes. See notes for Table 4.
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Table A13. Forecasting accuracy (7=50, c=0.1, d=0.1, A=0.1).

Same number of series in

Correlatioq within Persistency_of the cach category Oversampling one category
categorles p; target series y MSFE' MSFE'
Correlation across categories p, =0
0 0 1.335 1.252
0.3 1.328 1.246
0.8 1.303 1.229
0.9 0 1.515 1.339
0.3 1.518 1.335
0.8 1.510 1.332
Correlation across categories p; =0.5

0 0 1.426 1.367
0.3 1.418 1.361
0.8 1.415 1.359
0.9 0 1.732 1.439
0.3 1.721 1.432
0.8 1.696 1.419

Notes. The number of common factors is selected as in Bai and Ng (2002). See notes for

Table 4.

Table A14. Forecasting accuracy (7=150, ¢=0.1, d=0.1, 4=0.75).

Same number of series in

Correlatioq within Persistencylof the each category Oversampling one category
categories p; target series y VSFE' VISFE'
Correlation across categories p, =0
0 0 1.491 1.446
0.3 1.470 1.423
0.8 1.448 1.395
0.9 0 2.023 1.608
0.3 1.986 1.586
0.8 1.931 1.556
Correlation across categories p, =0.5
0 0 1.632 1.540
0.3 1.609 1.518
0.8 1.595 1.513
0.9 0 1.928 1.610
0.3 1.881 1.589
0.8 1.857 1.584

Notes. See notes for Tables 4 and A13.
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