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Abstract

I study the social formation of preferences in an environment in which children interact

strategically with each other and choose their preferences with the desire to conform, and

parents purposefully socialize their children to their own attitudes. To this end I use reli-

gious and alcohol consumption data from the Add Health Study. I first find that conditional

on child and school-specific controls, a childs behavior is a weighted average of her peers

and parental attitudes, suggesting that the main driving force in the transmission process is

the desire to conform. Using longitudinal data for a period of seven years, I then show that

these effects are enduring, with no signs of fading out. Finally, I show that parental effects

can be decomposed into exogenous, role-model effects, and endogenous parental nurturing

choices.
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1 Introduction

The question of Nature vs. Nurture— the relative importance of genetic and environmental
factors explaining outcomes— has received a considerable amount of attention from social
scientists in recent years,1 largely due to the wider availability of the specific data sets needed
for such an enterprise. Generally relying on twins and adoptees data, this literature shows
that under certain assumptions one can decompose the total variance of a specific outcome of
interest— eg. political participation, religious preferences, health issues, etc.— into its genetic,
family and environment components, and finds that on average, genetic effects account for half
of the variance of any given outcome, behavior or attitude.2

Due to the generality of these results, it is often taken for granted that genetic effects are
nontrivial, a phenomenon that could be called The Nature Assumption.3 The related term, the
“Nurture Assumption”, was coined by Harris (1999) in her critical assessment of evidence
coming from developmental psychology research, arguing that parental nurturing practices are
of critical importance in a child’s future behavior. Her basic claims are that (i) parental nurturing
effects are not important, (ii) peers and genes play important roles, with a preponderance of the
former, and (iii) that researchers that fail to account for genetic differences may overstate any
parental effects ascribed to a given behavior.

In this paper I argue that for a possibly small class of preferences the fundamental tension
is between Nurture vs. Nurture, and specifically, between parental and peer effects.

My objective is mainly empirical and threefold: first, I seek to estimate parental and peer
effects for a specific class of outcomes or preferences. Second, I argue that parental effects
can be decomposed into exogenous and endogenous components, the former associated with a
role-model effect, and the latter with endogenous parental socialization choices by the parents.
Third, I will argue that these effects are enduring in time.

In order to attain the first and second objectives, I build a model of social interactions and
endogenous parental effects that is perfectly suited for the use of the new econometric methods
for identification of peer effects. I assume that in the critical stage of preference formation,
children strategically choose their preferences with the desire to fit in, balancing the tradeoff

between being like their parents and being like their peers, i.e. their only desire is to conform
to their social environment. Building on the economics literature on cultural transmission,
I further assume that parents prefer children with preferences closer to their own, and they
rationally choose socialization schemes in order to guarantee so.4 Each component in the model

1Pinker (2004) provides a large list of recent references on the debate in the social sciences. A historical review
in psychology applications can be found in Kimble (1996).

2A methodological review on twin studies and behavioral genetics can be found in Neal and Maes (2004).
3See Turkheimer (2000).
4See Bisin and Verdier (2000) or Bisin and Verdier (2001).
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serves a specific role to attain my main empirical objectives: while the children’s component of
the model maps neatly to the econometric literature on peer effects, the parental socialization
component generates testable predictions from where I am able to find evidence of endogenous
parental effects.

To estimate peer and parental effects I use religious and alcohol consumption data from the
Add Health Study, a longitudinal survey that interviewed children and parents three times from
1994 to 2002.5 Since I do not have data on twins, I cannot say anything about genetic effects,
and as emphasized by Harris, this also challenges the interpretation I give to parental effects.
However, three different findings allow me to argue that the latter is correct, and suggests that
genetic effects are unlikely to be a cause of concern from an identification point of view.

First and foremost, I show that for the outcomes under study, marginal peer and parental
effects add up to one, i.e. after conditioning for individual and school-level effects, children
outcomes are a weighted average of their parents’ and peers’ outcomes. This finding is re-
markable because it depends crucially on the assumed functional form of the children’s utility
functions, and I show several natural examples where it fails to hold. For instance, if genetic
effects are also present, or if children are forward-looking, marginal effects add up to less than
one. Moreover, it is robust to the choice of peer group (school level vs. grade level) and to
school-level measurement error. I consistently find it across all waves of information, ethnic
groups and dependent variables. Using results from related ongoing research I show that this is
not caused by the particular choice of technique used to estimate peer effects: using schooling
data from the National Educational Longitudinal Study and a large array of political values from
the Student-Parent Socialization Study, I show that for the former, peer and parental effects add
up to less than unity, as expected when there are genetic effects (ability) or when children have
concerns other than fitting in (as in the standard human capital approach to education). With
the latter I show that for some outcomes peer and parental effects add up to one, but for the
majority they add up to less than one, as expected when other effects are present (eg. oblique
effects caused by adults different from their parents).6 Results from these papers suggest that
one can construct a typology of preferences depending on which effects are present.

Second, I show that parental and peer effects are stable across the seven years spanned by
the data, in contrast with the extensive empirical literature in behavioral genetics showing that
the heritability of preferences and attitudes increases in importance as a child matures into
adulthood.7,8

Third, the comparative statics analysis derived from the parental socialization problem allow
me test for the endogeneity of parental effects using reduced-form regressions.

5I use the public-use dataset that only includes the first three waves of information.
6See Vaughan (2011d) and Vaughan (2011b).
7Heritability of a trait is broadly defined as the fraction of phenotypical variance explained by genetic effects.
8See McGue, Bouchard, Iacono, and Lykken (1996)
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Also, as observed by Kremer (1997) and Borjas (1995), the study of peer and parental ef-
fects naturally raises questions on ethnic assimilation.9 I show that in the absence of genetic
effects, the social environment is sufficient to generate blending among different ethnic groups
as long as children from different ethnic groups interact with each other. This local Melting Pot

property is further explored theoretically by Vaughan (2011a), but here it is a natural byproduct
of the result that peer and parental effects add up to one. The empirical corollary is that within
each school, children of different ethnic groups blend with each other. The assimilation hypoth-
esis has been empirically validated in the economics literature, but some sociologists are less
optimistic about its general validity.10 The results here show one possible explanation for such
contrasting results.

This paper contributes to the literature that studies the process of preference transmission.
Researchers borrowing the methods of behavioral genetics have shown the importance of genes
in explaining the variation in economic outcomes and preferences.11 Peer and neighborhood
effects are also now part of a dynamic research agenda, motivated by the discussion of iden-
tification problems in Manski (1993).12 Finally, direct parental socialization effects have also
been studied extensively and independently, mainly in the psychology and sociology litera-
tures, and by researchers interested in the economics of cultural transmission.13 In contrast to
the behavioral genetics literature, my emphasis is on the social environment. Building on the
literature on peer effects and parental socialization, I put some structure on this environment in
order to disentangle the social transmission of preferences channel. Doing so, I also contribute
methodologically to each of these literatures.

First, while silent on genetic effects, this paper shows that the analysis can be enriched by
explicitly modeling the incentives that children and parents have. Moreover, the problem for
the children is set up in a way that corresponds closely to the linear, additive methods used
in behavioral genetics. The finding that parental effects can be decomposed into exogenous
and endogenous effects, and that the two enter multiplicately shows clearly how the behavioral

9To be sure, neither of these papers considers direct parental effects but rather, neighborhood effects where
other adults also affect a child’s outcome.

10In economics, see for example Blau (1992); Blau and Kahn (2007); Borjas (1998); Duncan and Trejo (2008);
Lazear (2007); Rosenfeld (2002). In sociology, Portes and Zhou (1993) among others, have argued that in contrast
to previous waves of immigrants, the new immigrants are following a path of segmented assimilation.

11See for example Wallace, Cesarini, Lichtenstein, and Johannesson (2007), Cesarini, Dawes, Johannesson,
Lichtenstein, and Wallace (2009), Cesarini, Dawes, Fowler, Johannesson, Lichtenstein, and Wallace (2009), Holm-
lund, Lindahl, and Plug (2011), Sacerdote (2002) and Sacerdote (2011).

12On peer effects, see for example Brock and Durlauf (2001), Epple and Romano (2011), Gaviria and Raphael
(2001), Glaeser and Scheinkman (2003), Graham (2008), Blume, Brock, Durlauf, and Ioannides (2011), Kremer
and Levy (2008), Moffitt (2001), Bramoullé, Djebbari, and Fortin (2009). On neighborhood effects see Borjas
(1995), Borjas (1998), Patacchini and Zenou (Forthcoming), Goux and Maurin (2007), Kremer (1997) and Topa
(2001)

13In sociology and psychology see Corsaro (2011) and Harris (1999), respectively. A recent survey on theoretical
and empirical results in economics can be found in Bisin and Verdier (2010).
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genetics analysis can be enriched by the use of economics.
By emphasizing the importance of parental effects, I contribute to the literature on peer ef-

fects in three ways: first, I show that parental and peer effects are systematically negatively
correlated, at least for the outcomes under study. Second, I show how parental effects can be
used to escape Manski (1993) reflection problem: if peers’ parents do not act as role models
for the children, endogenous interaction effects can be identified. Using evidence from devel-
opment psychology, I argue that this is indeed the case. Finally, I show that peer (and parental)
influences have long-lasting effects on the behavior of teenagers.

This paper is organized as follows. The next section develops a model of endogenous
parental and peer effects, describes its main properties and explores the comparative static re-
sults that will be used to answer the empirical questions. In the third section I discuss the
empirical implementation and estimate peer and parental effects for different ethnic groups and
dependent variables, discuss the stability of the effects, and test the main predictions coming
from the comparative static analysis of the problems. The final section concludes.

2 The Model

Consider a stationary population of N (asexual) adults and their corresponding children. For
ease of exposition, I will assume that at time zero, the adult population is partitioned into two
groups with population shares ω j = n j/N for j = 1, 2; individuals within each group are identi-
cal. I will make the necessary assumptions to ensure that these population shares remain con-
stant across time, so in practice I will be describing the transmission process of two different
dynasties.

I am interested in studying the transmission of preference e ∈ [0, 1]. Notably, this class of
preferences has an intensity interpretation, where, e.g. e = 0 (e = 1) is the lowest (highest)
preference intensity.

The game played at each time t has two stages: in the first stage parents get to choose actions
that affect the socialization outcomes of their children. Given these strategic choices, in stage
two children play a conformity game where the value of their preferences is chosen. Figure (1)
depicts the timing of decisions.

2.1 Children’s Game

The distinguishing characteristic of the childhood stage in the model is that children have not
yet formed their preferences. I assume that the driving force of the process of identity formation
is the desire to be accepted, leading them to attempt to conform to the people they interact with,



6

Figure 1: Timing of Decisions

i.e. their parents and peers. This is done by playing a conformity game. At each time t, each
child i = 1, · · · ,N solves the following problem

[C] : min
ei,t+1∈[0,1]

αi,t+1(ei,t+1 − ei,t)2 + (1 − αi,t+1)
(
ei,t+1 − ēt+1

)2

where ēt+1 = (1/N)
∑N

j=1 e j,t+1. Since I consider only symmetric equilibria, at each time t,
children from the same group have the same parental preferences et and parameters α. In this
section I will abuse notation by letting individual subscripts i denote groups, i.e. i , j ∈ {1, 2}.14

Problem [C] says that children decide between conforming to their parents or to their peers.
Contrary to other approaches where this desire to conform arises in equilibrium,15 here I assume
that it is part of the individual preferences during the childhood stage. Whenever αi = 0 the
game becomes a beauty contest which not only appears to be an appropriate approximation of
many games played by children and teenagers, but most importantly, is well known to have
multiple equilibria.

Proposition 1 (Existence and Uniqueness of Symmetric Nash Equilibrium). A necessary and
sufficient condition for the existence of a unique symmetric Nash Equilibrium of the conformity
game for any time t > 0, is that αi > 0 for at least one of the groups. �

Proofs of all propositions can be found in the Appendix. In general, whenever both groups
have α j = 0 there is a continuum of equilibria where all children choose the same e ∈ [0, 1].16

If αi = 0 and α j ∈ (0, 1] the unique symmetric Nash equilibrium is ei,t+1 = e j,t+1 = e j,t.

14In the empirical section I will treat the problem with all generality.
15As in Bernheim (1994) for example.
16In the empirical section it will be argued that this is not just an intellectual curiosity: in fact, alcohol consump-

tion patterns in high school appear to have this property.
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In general, Nash equilibrium choices generate a system of first-order linear difference equa-
tions:

e∗i,t = γiei,t−1 + (1 − γi)e j,t−1 (1)

where γi = Ai/(Ai + A j(1 − Ai)), and Ai = αi/(αi + (1 − αi)(1 − ωi)2) for i , j ∈ {1, 2}. It
is evident from Equations (1) that whenever γi ∈ (0, 1), the process of preference transmission
converges to a blending-type steady state, i.e. one where both groups assimilate to each other.
I now pursue a stronger characterization of the steady state. Without loss of generality, assume
that initial preferences for each group are e0 = [e10, e20] = [0, 1].

Proposition 2 (Blending-type Steady State). Assume that αi ∈ (0, 1), i = 1, 2. Given initial
conditions e0, there exists a unique interior stable steady state equilibrium e∗ = (e, e) ∈ (0, 1)2.
Furthermore the equilibrium will be unbiased, i.e. (1/2, 1/2), whenever

(1 − α1)(1 − ω1)/α1 = (1 − α2)(1 − ω2)/α2 (2)

biased towards type 1’s ethnic trait whenever (1 − α1)(1 − ω1)/α1 < (1 − α2)(1 − ω2)/α2 and
biased towards type 2’s ethnic trait when the inequality is reversed. �

The proof of the proposition can be found in the Appendix, but it is instructive to see the
role played by Equation (2). From Equation (1) it is straightforward to check that

(e1,t+1 − e2,t+1) = (γ1 + γ2 − 1)(e1,t − e2,t) (3)

(e1,t+1 − e1,t) = (1 − γ1)(e2,t − e1,t) (4)

In the Appendix it is shown that under the assumptions of the proposition 0 < γ1+γ2−1 < 1,
so from Equation (3) it follows that there is horizontal or intracohort convergence. Since γi ∈

(0, 1) it follows then that there is also vertical or intergenerational convergence. Using Equation
(4) for each time t one can also verify that

∣∣∣e1,t+1 − e1,t

∣∣∣ > ∣∣∣e2,t+1 − e2,t

∣∣∣ ⇔ 1 − γ1

1 − γ2
> 1⇔ A2 > A1

⇔
(1 − α1)(1 − ω1)

α1
>

(1 − α2)(1 − ω2)
α2

from where the qualitative properties of the steady-state discussed Proposition (2) follow: other
things equal, in the steady-state, the position of the relatively larger ethnic group is relatively
less distant from their initial preferences. An analogous condition holds for groups that put
relatively more weight on their parents. Graphically, these conditions are shown in Figure (2):
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in the right panel, a symmetric steady state where both groups have the same population weights
and parameters α is shown. The left panel shows the case of groups with equal parameters α
but where one has a considerably larger population share. While groups blend with each other
(“the melting pot”), the final mixture looks more like the original majority group.17

Figure 2: Equilibrium steady state and Transition

Having derived the properties of the Conformity Game in isolation, I proceed to study the
general game, that includes endogenous parental socialization.

2.2 General Preference Formation Game

I solve for the symmetric Nash equilibrium by backward induction (Figure 1). In the previ-
ous section I studied the properties of the second-stage conformity game, so I proceed now
to solve the first-stage socialization game. Parents are assumed to prefer having children with
preferences that are similar to their own, and that they can purposefully affect their socializa-
tion process and outcomes. Specifically, I assume that parents can choose parental weights α,
interpreted as exerting a socialization effort that maps monotonically to these metapreferences
α.18

Given children’s optimal strategies, the parental problem is:

[P] : max
αi,t+1∈[0,1]

−κ(ei,t − e∗i,t+1(αi,t+1))2 − c(αi,t+1)

I require that the cost function satisfies the following:

17Notably, the proposition says that there is a local Melting Pot, i.e. children in each peer group converges to
each other, a condition that is exploited later to identify and estimate peer effects.

18This makes the first-stage problem in the general preference formation game very similar to the class of games
studied by Bisin and Verdier (2000).
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Assumption A. 1. The cost function c : [0, 1] → R is of the class C3, strictly convex on [0, 1],
increasing and satisfying c(0) = 0.

Now that each cohort’s game has been defined I am are ready to define an equilibrium for
the class of games studied here.

Definition 1 (Equilibrium). For each time t ≥ 0, an equilibrium is a profile (α∗1,t+1, α
∗
2,t+1, e

∗
1,t+1, e

∗
2,t+1),

that (1) arises as a subgame perfect equilibrium to the intergenerational problem, and (2) is an
equilibrium for the intracohort games played by parents and children.

A first observation is that (α∗1,t+1, α
∗
2,t+1, e

∗
1,t+1, e

∗
2,t+1) = (0, 0, e, e) can only arise as an equilib-

rium when parents have already blended with each other. In fact, this is the unique equilibrium
when parents have completely converged, i.e. e1,t = e2,t = e. The first claim follows by noticing
that given α j = 0, parents of group i will only choose αi = 0 if they believe that all children will
choose ei,t+1 = e j,t+1 = ei,t in the beauty contest. But for this to be an equilibrium, it must be that
parents of group j also believe that e j,t+1 = ei,t+1 = e j,t. These beliefs are inconsistent with each
other whenever ei,t , e j,t so it cannot be an equilibrium when parents have not converged. To
see that it is the unique equilibrium, recall that whenever α j > 0, and αi = 0, all children will
choose to be like type j parents, i.e. ei,t+1 = e j,t+1 = e j,t. Since parents have already converged,
type i parents have no incentive to deviate, and because of the monotonicity of the cost function,
parents of type j will choose any smaller socialization effort α j. In the limit, they will choose
α j = 0 too, since (0, 0, x, x) with x , e cannot be an equilibrium, since parents of any type can
unilaterally deviate by choosing αi small enough.

This observation allow us to concentrate only on the case where α j > 0 for parents of both
types, and substitute children’s optimal choices to obtain the following version of the parental
problem:

max
αi,t+1∈[0,1]

−∆t(1 − γi,t+1(αi,t+1, α j,t+1))2 − c(αi,t+1)

where ∆t = κ(ei,t − e j,t)2, and i , j ∈ {1, 2}. Dropping the time subscript to simplify notation,
type i parents’ first-order conditions are given by

2∆(1 − γi)
∂γi

∂αi
− c′(αi) = 2∆

[
(1 − αi)k2

i

(ki + αi(1 − ki))3

]
− c′(αi) = 0 (5)

where ki = A j(1−ωi)ψN . Using Assumption (1) and the first-order condition it is straightforward
to verify that for any α j ∈ (0, 1] a unique interior solution αi ∈ (0, 1) always exists.
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Second-order conditions are given by

−2∆

(∂γi

∂αi

)2

− (1 − γi)
∂2γi

∂α2
i

 − c′′(αi)

= −
2∆k2

i [1 + 2(1 − αi)(1 − ki)]
(ki + αi(1 − ki))4 − c′′(αi) < 0

satisfied for all (α1, α2) ∈ (0, 1]2, since ki ∈ (0, 1) for all ω1 ∈ (0, 1). It now follows from the
Implicit Function theorem that best-reply functions are well defined on (0, 1].19 In the Appendix
it is shown that by carefully restricting the action space, a standard fixed-point theorem can be
used to prove existence of a Nash Equilibrium for the socialization problem.

Proposition 3 (Existence of an Equilibrium of the Parental Socialization Game). For any time
t such that ∆t > 0, under Assumption (1), the first-stage parental socialization game has at least
one symmetric Nash Equilibrium. �

Solving the model numerically one can also verify that at least for class of quadratic cost
functions the equilibrium is unique.20 This discussion, along with Propositions (1)-(3) show that
at least for the class of quadratic cost functions and under Assumption (1) the general preference
formation game has a unique interior equilibrium.

I end this discussion by noting that under these assumptions there is a unique blending-type
steady state. The intuition for this result is straightforward: if groups have not converged parents
will always choose α ∈ (0, 1). Equations (3) and (4) then show that intracohort (e1,t+1 − e2,t+1)
and intergenerational differences (e1,t+1 − e1,t) are decreasing. Once convergence is achieved the
unique Nash equilibrium sustains the blending-type steady state indefinitely. However, endog-
enizing parental effects affects the speed of convergence: intuitively, parents tend to retard the
convergence process at the beginning, but it is easy to show that ∂αi,t+1/∂∆t > 0, so that parental
incentives to socialize their children decrease as parents converge to each other, thus speeding
up the process.

Proposition 4 (Blending-type steady state for the General Preference Formation Game). As-
sume that for any time t, the cost function is of the type c(α) = kα2, k > 0. The unique steady
state equilibrium is of the blending-type. Moreover, when both groups have equal population
shares, the steady state is unbiased.

19As noted above, when ∆t > 0 the best-reply function is not defined at zero. This follows from the fact that
when type j parents choose α j = 0 any small enough αi guarantees that all children have ei,t+1 = e j,t+1 = ei,t, and
by continuity and monotonicity, the cost can be made as small as desired.

20The general class includes quadratic cost functions c(α) = kα2 and exponential cost functions.



11

2.3 Comparative Statics

I now collect a series of results that will be useful in the empirical section of the paper. Since the
relevant parameters for the parental socialization game are population weights ω and parental
differences ∆t = κ(e j,t − ei,t)2, rewrite children Nash equilibrium strategies as in Equation (4).

Start by noting that:

∂(ei,t+1 − ei,t)
∂(e j,t − ei,t)

= (1 − γi) − (e j,t − ei,t)
∂γi

∂(e j,t − ei,t)

In the absence of endogenous parental effects ∂γi
∂(e j,t−ei,t)

= 0 so the effect is bounded to the
unit interval, as 1 − γ ∈ (0, 1). After noting that ∂γi/∂αi > 0 and ∂α/∂∆ > 0 one can verify
that if parental effects are endogenous the sign is still positive. To get a sense of the relative
magnitudes, Figures (12)-(13) plot corresponding marginal effects when (e j,t − ei,t) T 0 for
alternative parametrizations of the model.

A stronger test of the endogeneity of parental effects is obtained by taking the second partial
derivative. If parental effects are exogenous this term is zero, otherwise these are

∂2(ei,t+1 − ei,t)
∂(e j,t − ei,t)2 = −

∂γi

∂(e j,t − ei,t)
− (e j,t − ei,t)

∂2γi

∂(e j,t − ei,t)2

Using alternative parameterizations, one can check numerically that the sign depends on the
sign of parental differences (e j,t − ei,t). Figures (14)-(15) show that when (e j,t − ei,t) > 0 the
sign is negative in general; otherwise for small enough parental differences, and depending on
population weight ωi, the term can be positive.

Turning now to the effects of population weights, from the children’s conformity game (see
the discussion of Proposition 2) it can be readily seen that if γi does not depend on population
weight ωi the partial derivative ∂(ei,t+1 − ei,t)/∂ωi = 0. Alternatively, the expression depends on
the sign of parental differences (e j,t − ei,t) since

∂(ei,t+1 − ei,t)
∂ωi

= −(e j,t − ei,t)


∂γi

∂ωi︸︷︷︸
Exo.E f f ects(+)

+
∂γi

∂αi

∂αi

∂ωi
+
∂γi

∂α j

∂α j

∂ωi︸                  ︷︷                  ︸
End.E f f ects(+|−)

 (6)

The first term inside the brackets captures the direct effect of ωi on children’s Nash equi-
librium strategies. The second term captures the endogeneity of parental effects. If these are
absent, this term is zero, and since ∂γi/∂ωi > 0— an increase in a child’s group share reduces
the child-parental differences as children interact more with children of parents of the same
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type— in general

sgn
(
∂(ei,t+1 − ei,t)

∂ωi

)
= −sgn(e j,t − ei,t)

If parental effects are endogenous, one needs to find the sign of ∂αi/ωi. In the Appendix
it is shown that this sign can be positive or negative depending on the sign of αi − ki/(2 + ki),
which itself depends on the shape of cost function.

Proposition 5. ∂αi/∂ωi < 0 if and only if αi > ki/(2 + ki). �

Figure (3) depicts reaction curves for the parental socialization game and the effect that an
increase in ω1 has on the Nash equilibrium strategies for parents.

Figure 3: Reaction Curves for the Socialization Game and An Increase in ω1

It follows that the second term inside the brackets in Equation (6) can be positive or negative.
If positive (∂αi/∂ωi > 0) the same condition as in the case of exogenous parental effects applies,
otherwise the sign can be positive, negative or zero.

3 Empirical Exercise

As discussed in the Introduction, this paper has an empirical motivation and the model was
tailor-made to serve such purpose: the conformity game maps clearly to a class of recent econo-
metric methods used to identify peer effects. The socialization game generates predictions that
allows us to test for the endogeneity of parental effects.
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3.1 Data

The National Longitudinal Study of Adolescent Health (Add Health) consists of a random sam-
ple of US high schools, with students from grades 7 to 12 interviewed in school and at home in
several waves, starting in 1994, with follow ups in 1996, 2001 and 2008.21 In this paper I use
the public-use data that includes only the first three waves of interviews and a smaller sample
size.

I will consider four ethnic groups including Hispanics, non-Hispanic Whites, Blacks and
Asians.22 and three dependent variables: religious importance (How important is religion for

you?), religious activity (How often do you pray?), and alcohol consumption (During the past

12 months, how often did you get drunk?). The criteria for selection is simple: answers should
have the continuous, linearly ordered intensity property used in the model, and exactly the same
question should be asked to parents and children. To study the stability of the effects I use
information on the first three waves of interviews. The median ages for each of these waves are:
15, 16 and 22 years old, but since all children in grades 7 to 12 were interviewed the age range
is larger. Table (1) presents descriptive statistics for all dependent variables across all waves
information.

Religious importance (relimpo) takes values from 1 to 4, 1 being Very Important and 4
Not Important. Religious activity or praying frequency (pray) and alcohol consumption were
recoded to measure the fraction of days per month and year, respectively.

Corresponding parental questions were asked only in Wave 1, so these remain fixed in the
subsequent analysis. Figure (4) summarizes the information on intergenerational differences
across ethnic groups and waves of information.

Finally, to get a sense of school average intergenerational differences, Figure (5) plots aver-
age children outcomes against corresponding parental outcomes in Wave 1, along with the 45
degrees line. The first two scatter plots show that the children’s cohort has become less religious
than the parental cohort, while no clear pattern emerges for alcohol consumption.

21A thorough description of the survey can be found online at http://www.cpc.unc.edu/projects/addhealth.
22Native Americans were dropped from our samples due to the small sample sizes.
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Table 1: Descriptive Statistics for Dependent Variables Across Waves of Information

N Mean Std Min Max q25 q50 q75 q99

Religious Importance
Wave 1 5614 1.64 0.76 1 4 1 1 2 4
Wave 2 4124 1.67 0.79 1 4 1 2 2 4
Wave 3 4829 2.51 0.86 1 4 2 2 3 4
Praying
Wave 1 5614 0.45 0.37 0 0.83 0.07 0.17 0.83 0.83
Wave 2 4128 0.44 0.37 0 0.83 0.07 0.17 0.83 0.83
Wave 3 4836 0.54 0.61 0 1.67 0.02 0.33 1.00 1.67
Alcohol Consumption
Wave 1 4480 0.05 0.16 0 1 0 0.004 0.03 1
Wave 2 4782 0.05 0.14 0 1 0 0 0.03 0.57
Wave 3 3704 0.16 0.21 0 1 0.03 0.08 0.21 1
Notes: Table shows descriptive statistics for each dependent variable and
wave of information. Last four columns correspond are the corresponding
percentiles.

Figure 4: Intergenerational Ethnic Differences: For each ethnic group (rows) and each dependent variable
(columns), the graph displays average children outcomes along with 95% confidence intervals (continuous lines)
and corresponding parental outcomes (dotted line). Parental outcomes were only asked in Wave 1 and remain fixed
across all waves of information.
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Figure 5: School Average Children and Parental Outcomes: Figure plots school averages of children outcomes
against corresponding average parental outcomes in Wave 1, along with the 45 degrees line.
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3.2 Estimating Parental and Peer Effects

To achieve full generality and make the model estimable, I introduce a source of uncertainty
by assuming that each child i in school s(i) receives a private signal εi,t

iid
∼ N(0, σ2), and let

νi,t = X′i,tβ̃ + Y ′s(i),tγ̃ + εi,t, where , Xi,t and Ys(i),t denote vectors of child-specific and school-
specific controls, and β̃ and γ̃ are the corresponding parameter vectors. Formally, I have gone
from the complete information, homogenous setting in Section 2, to a general setting that allows
for individual heterogeneity and incomplete information.23

The problem for each child is then24

min
ei,t+1∈[0,1]

αi(ei,t+1 − (ei,t + νi,t+1))2 + (1 − αi)
(

N − 1
N

)2 ( (
ei,t+1 − ē−i,t+1(ε−i,t)

)2 dF(ε−i,t)

where ē−i,t+1 = (1/(N − 1))
∑

j,i e j,t+1 denotes the sample average across all children different
from child i, ε−i,t+1 = (ε1,t+1, · · · , εi−1,t+1, εi+1,t+1, · · · , εN,t+1) is a vector of idiosyncratic shocks for
all other children j , i and F(ε−i,t) =

∏
j,i F(ε j,t) is the joint distribution function of the shocks

of all other children, where the equality follows from the iid assumption.
Using Leibniz’s rule for integration and the independence of the shocks, optimal choices for

the children become:

ei,t+1 = Aiei,t +
(1 − Ai)
N − 1

∑
j,i

E(e j,t+1|s(i)) + Ai(X′i,tβ̃ + Y ′s(i),tγ̃) + Aiεi,t+1

where the expectation is taken conditional on being in school s(i). This first-order condition
corresponds to the standard linear-in-means regression used to estimate peer effects and can be
conveniently expressed as25

ei,t+1 = αs(i) + αpei,t + X′i,t+1β + Y ′s(i),t+1γ + αgE(e−i,t+1|s(i)) + ζi,t+1 (7)

Here αp denotes the direct parental effect, and αg denotes the endogenous peer effect, β = Aβ̃

23Vaughan (2011a) studies the theoretical properties of the more general model. Notably the existence and
uniqueness results are maintained, as well as the convergence to a unique steady state, where convergence is now
defined as convergence in expectations. To focus on the empirical implementation and not on the technical details
I refer the reader to that paper.

24Needless to say, one can introduce uncertainty using other channels, e.g. through preference heterogeneity.
Our choice not only simplifies the analysis (since parameters are independent of controls), but allows us to map
the class of dynamic systems studied here, to those in Cavalli-Sforza and Feldman (1973).

25The linear-in-means peer effects model has been extensively studied, especially since the seminal work of
Manski (1993) was published. Conditions for (non)identification under this model have been further described and
extended in Manski (1995), Manski (2000), Brock and Durlauf (2001), Glaeser and Scheinkman (2003), Moffitt
(2001) and Graham and Hahn (2005). See also Graham (2008).
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and γ = Aγ̃. As observed by Manski (1993), one must control for exogenous (contextual) effects
(Ys(i),t), and unobserved correlated effects common to all children in each school αs(i) in order
to estimate endogenous social-interaction effects (E(e−i,t|s(i))). I describe now the identification
strategy.

3.2.1 Identification Strategy

I use the identification strategy proposed by Graham and Hahn (2005). Intuitively speaking,
whenever there are positive interaction effects, the variation between groups should be in ex-
cess of the within variation, in a process modulated by the social-multiplier.26 Graham and
Hahn’s (GH, thereafter) identification strategy consists of estimating a within-school regression
using the first-order condition of the children’s problem, and a between-school regression of
the reduced-form equation, and use the multiplier effect as the extra source of information to
credibly identify the endogenous and exogenous interaction effects. In order to do this one must
view the data as a quasi-panel, where the cross-sectional dimension corresponds to groups—
schools in our application— and the time dimension corresponds to children in each school.

As a first step, it is convenient to solve for equilibrium conditional expected actions:

E(ei,t+1|s(i)) =
αpE(ei,t|s(i)) + E(Xi,t+1|s(i))′β + Y ′s(i),t+1γ + αs(i)

1 − αg
(8)

from where it follows that whenever αg ∈ (0, 1) there is a social multiplier effect derived from
the fact that children are interacting with each other. Substituting this expression in (7), and
assuming that variables Y correspond exactly to the expected child characteristics at the school
level (i.e. Ys(i),t+1 = E(Xi,t+1|s(i))),27 one derives the reduced-form equation

ei,t+1 = αpei,t + X′i,t+1β +
αpαg

1 − αg
E(ei,t|s(i)) + E(Xi,t+1|s(i))′

γ + βαg

1 − αg
+

αs(i)

1 − αg
+ εi,t+1 (9)

Using the first-order condition (7) parental effects can be estimated consistently from the
within-schools regression:

ẽi,t+1 = αpẽi,t + X̃′i,t+1β + ε̃i,t+1 (10)

where for any variable zi,t, z̃i,t := zi,t − z̄s(i),t, denotes the deviation from the school sample mean.

26On the social multiplier, see Becker and Murphy (2000) or Glaeser and Scheinkman (2003).
27Brock and Durlauf (2001) assume that there is at least one child-specific characteristic that does not enter

as a school-specific variable, and rely on this assumption to derive necessary conditions for the identification of
interaction effects. Similarly, Graham and Hahn (2005) assume the existence of such variables in order to achieve
identification.
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Using the reduced-form equation, and replacing unobservable conditional expectations in terms
of observable sample means, the between-schools representation becomes

es(i),t+1 =
αp

1 − αg
es(i),t + X

′

s(i),t+1
β + γ

1 − αg
+ νs(i),t+1 (11)

where

νs(i),t+1 =
αpαg

1 − αg
(E(ei,t|s(i)) − es(i),t) + (E(Xi,t+1|s(i))′ − Xs(i),t+1)

γ + βαg

1 − αg
+

αs(i)

1 − αg
+ ε̄s(i),t+1

As GH remark, writing the reduced-form equation in terms of observables creates an error-
in-variables problem that depends crucially on the deviation between the sample and conditional
expectations of the child-specific variables; however, this deviation depends on the behavioral
assumptions made by the econometrician. It is shown later that a Hausman test allows us to test
the hypothesis of complete versus incomplete information.

The social multiplier (1/(1−αg)) provides the extra source of information needed to identify
both the endogenous and exogenous interaction effects, as seen by comparing Equations (10)
and (11). I rely on the following identification assumption:

Assumption A. 2 (Identification Assumption). Parental variables ei,t are excluded from the set
of child-specific variables that have school effects, Xi,t+1.

Two comments are in place. First, the assumption does not rule out that children may inter-
act occasionally with the parents of their peers, but merely they do not wish to conform to them.
Second, while the identification assumption appears to be rather extreme, there is a growing lit-
erature in sociology and development psychology on non-parental adults, or “adults who have
had a significant influence on the adolescent and on whom the adolescent can rely for support”
(Chen, Greenberger, Farrugia, Bush, and Dong, 2003, p.35). Galbo and Demetrulias (1996)
show that for a sample of 285 college students in the United States, only 4.6% of the subjects
report a friend’s parent being a significant adult, while 56.3% declared parents being such. Of
the reported nonrelated significant adults, teachers, coaches and counselors are the most widely
identified by the students (59.8%). In their survey of the existing literature, they report a study
by Garbarino, Burston, Raber, Russell, and Crouter (1978) where 60% of suburban children
do not report any significant nonparental adult. They also report a study by Blyth, Hill, and
Thiel (1982) where they find that out of 2800 public school students, only 10% report having
nonrelated significant adults. A more recent paper by Chen, Greenberger, Farrugia, Bush, and
Dong (2003) studies cross-cultural differences in the roles played by non-parental adults, for
the specific case of China and the United States. Out of 201 American students, only 8 report
a friend’s parent as a significant adult; of 502 Chinese students, only 2 report having such a
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significant adult. Overall, this suggests that the identification assumption is likely to be valid.28

3.2.2 Control Variables

The Add Health Study includes a rich battery of children, family and school questions that could
potentially be used as exogenous controls. In order to avoid running out of degrees of freedom
in the ethnic-group regressions reported below, I restricted the set of available controls using
the following approach: I first run a pooled regression with all ethnic groups and all control
variables listed in Table (4) from where I selected only those that achieve a minimum signif-
icance level, arbitrarily set at 20%. All other potential controls are excluded from subsequent
ethnic-group regressions. The subset of controls that classify are presented in Table (6), along
with those that remain significant in each ethnic-group regression.

3.2.3 Result 1: Parental and Peer Effects Sum to One

I first estimate parental and peer effects using the GH method under the assumption of complete
information— i.e. no measurement error of population expectations— for each ethnic group,
each dependent variable and wave of information. A total of 4 × 3 × 3 = 36 sets of coefficients
(αp, αg) are plotted in each panel of Figure (6)— left (right) panel corresponds to a specification
without (with) controls — and the corresponding table of results can be found in Table (5) in
the Appendix. In the Figure, for each variable v, ethnic group g and wave w, ordered couples
from each regression are denoted by vg

w.
It is noteworthy that estimates are on average very close to the theoretical prediction that

both effects add up to one.29 This is most clear with estimates for both religious variables
across all waves of information, while estimates for alcohol consumption peer effects display
large variation. Since parental effects are estimated by αp = 1 − θ/αg, where θ is the coef-
ficient for parental averages in the between-school regression (Equation 11), the variation in
αp is a direct result from the small estimated parental effect. One could question the validity
of the identification assumption when parents have no effect, but as reported in Table (5), in
four out of 12 regressions for alcohol consumption (Whites and Blacks in Wave 2, and Whites
and Asians in Wave 3) parental effects are statistically significant.30 These results show that
at least for alcohol consumption, teenagers appear to be in the “beauty-contest case” where

28The same identifying assumption is used by Gaviria and Raphael (2001). They argue that, contrary to identi-
fication of neighborhood effects where children interact with both peers and their parents, at the school level the
only source of interaction is through their peers.

29For expository reasons, the figure includes only the confidence intervals corresponding to peer effects— on the
vertical axis. Theoretically, one should plot confidence ellipses or rectangular regions, depending on the correlation
of parental and peer effect estimates.

30As discussed in the previous section, identification of peer effects relies on the explicit assumption that parental
effects have no indirect group level effects, but that they do have a direct effect, i.e. αp , 0.
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parental effects are negligible and peer effects dominate completely. As mentioned before, one
implication is that observed behavior is one along a continuum of equilibria where all children
coordinate, an interpretation that, at least for the case of alcohol consumption, does not seem to
be inappropriate at all.

Figure 6: Peer Effects vs. Parental Effects: Each panel plots parental and peer effect estimates (αp, αg) obtained
from ethnic-specific regressions (Table 5). Left (right) panel shows estimates from a specification without (with)
exogenous controls. Each ordered couple denotes results from a regression for each ethnic group g, each variable
v and each wave w, and are denoted as vg

w (eg. dA
1 denotes the estimates for the Asian subgroup, using alcohol

consumption (drink) for wave 1). Straight line corresponds to the theoretical αp + αg = 1. 95% cluster-robust
confidence intervals for peer effects are also plotted.

Theoretically, the result that αp + αg = 1 follows from the functional assumptions made
for the children’s problem. In particular, I posed that loss functions are (i) weighted quadratic
functions, and (ii) children care only about deviations from their parents and peers. To see
how remarkable the empirical result is, consider the following utility functions where either
assumption is not satisfied:

u(et+1) = −α(et+1 − et)2 − β(et+1 − et+1)2 − γ(et+1 − et)2 (12)

u(et+1) = −α(et+1 − et)2 − β(et+1 − et+1)2 − γ(et+1 − eg,t+1)2 (13)

u(et+1) = −α(et+1 − et)2 − β(et+1 − et+1)2 + V(et+1) (14)

u(et+1) = V(et+1; et, et+1) (15)

Equation (12) captures a conformity model where children dislike deviating from parents (ver-
tical effect), peers (horizontal effect) and other adults (oblique effect). Our identification as-
sumption forbids that peers’ parents have an oblique effect. Equation (13) captures the idea that
children dislike deviating from parents and peers, but also from what their genes dictate (eg,t+1).
Equation (14) captures the idea that children are myopic (only concerned about fitting in at the
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current time), but also possibly forward looking since their preferences have an intrinsic value
captured by V . Equation (15) takes a general functional form; it is straightforward to see that
both marginal effects add up to one whenever

−(Vet+1et+1 +Vet+1et)
Vet+1et+1

= 1, where subindexes denote
partial derivatives.

Notice that if parental, peer and genetic effects are present (Equation 13), the sum of parental
and peer effects must add up to less than one. This follows from the fact that the first and
third terms can never be the same— even when one is willing to make the assumption that
eg,t = eg,t+1—, since parental preferences will themselves be a weighted average of their own
parents’, peers’ and genetic effects, i.e. et , eg,t+1. This suggests that if present, genetic effects
play only a minor role for this particular class of outcomes. However, with this data we cannot
ascertain that this is indeed the case.

An example where at least one of these assumptions is violated is number of years of ed-
ucation, since genes (unobserved ability) and forward-looking behavior could both be present.
Figure (7), taken from Vaughan (2011d) shows that parental and peer effects in education do not
add up to one. Similarly, Vaughan (2011b) uses longitudinal data and a wide array of political
values and finds that both effects add up to one for some variables, but by no means for all of
them.

Figure 7: Parental vs Peer Effects: Each point corresponds to estimates (α̂p, α̂g) from a regression using a
different dependent variable and subsample (ethnic group) using the following notation: Schooling (s), Expecta-
tions Follow-up study 1,2,3,4 (e1,e2,e3,e4). Hispanics (h), Whites (w), Blacks (b), Asians (a). The straight lines
denote the theoretical αp + αg = 1. See Vaughan (2011d) for details.

Figures (8-9) present the same results in such a way as to facilitate the comparison of esti-
mates across ethnic groups. In general, magnitudes for parental and peer effects differ between
groups, but the differences are not statistically significant. There are two reasons why these
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could vary across groups: first, the comparative statics results for the parental socialization
problem show that, other things equal, parents from a minority may exert more socialization
effort, making their children relatively more parent-oriented.31 If this is true one should ob-
serve that children from minorities are relatively more vertical-oriented than White children.
Also, parents from different ethnic groups that have already blended enough should exert the
same parental efforts.32 Second, there is a literature that examines differences across ethnic
groups in personality traits such as familialism, individualism and collectivism. While this lit-
erature comes mainly from developmental psychology and sociology,33 Alesina and Giuliano
(2010) examine data from the World Values Survey, and rank countries according to an index of
strength of family values. If these values are themselves transmitted through the social environ-
ment, one would expect these to affect the relative weights given to both effects. However, with
the exception of Wave 3 parental effects on drinking behavior for Asians, most estimates are not
statistically different. Because of the one-to-one negative relationship between both effects, it
does not come as a surprise that the same conclusion is observed for peer effects across ethnic
groups.

Figure 8: Comparison of Parental Effects Across Ethnic Groups: Each panel plots estimated parental effects
across ethnic groups for each variable (rows) and wave (column). Dotted line corresponds to the case where
estimated effect is equal to zero. 95% robust confidence intervals are included. Specification includes controls
(Table 5).

31Theoretically, the opposite effect could also be true.
32It was shown that parents will not exert any socialization effort once all of them have already blended with

each other. Recall however that this result was derived for the case of identical agents within each group. In the
more general case with heterogeneity only convergence in expectations is achieved, so parental efforts will never
be zero.

33See Dikstra and Fokkema (2010), for example.
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Figure 9: Comparison of Peer Effects Across Ethnic Groups: Each panel plots estimated peer effects across
ethnic groups for each variable (rows) and wave (column). Dotted line corresponds to the case where estimated
effect is equal to zero. 95% robust confidence intervals are included. Specification includes controls (Table 5).

3.2.4 Result 2: Stability of Parental and Peer Effects

As described above, median age in Waves 1 and 3 were 15 and 22 years old, respectively. I
will now show that both peer and parental effects have enduring effects during the life-cycle of
teenagers in our sample. This is important, since the model proposed is one of preference trans-
mission, and not just a model of temporary changes in behavior due to peer or parental pressure.
While one cannot extrapolate these effects, and claim that by the age of 22 young adults prefer-
ences are fixed and invariant, a period of 7 years is long enough for us to assess whether peers
and parents during adolescence have an enduring effect. It is important to remember that the
peer group is fixed in this analysis, i.e. I do not update the peer or reference group with each
wave of information.34

Figure (10) rearranges graphically the parental effects in Table 5 to facilitate comparison
across time. Parental effects are increasing for the cases of religious importance in Asians, fre-
quency of praying in Blacks, and alcohol consumption for Whites, but most notably Asians. In
fact, only for the latter case the difference between first and third waves estimates is significant.
Similar patterns emerge for peer effects, which are not shown here. The stability of parental
and peer estimates is evidence of an enduring preference transmission mechanism, and not of a
temporary peer pressure effect.

34One can conjecture that this is indeed desirable, since once preferences are formed, selection effects— e.g.
choosing your friends inc college—, should bias the estimates.
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Figure 10: Stability of Parental Effects: Each panel plots estimated parental effects across waves of interview-
ing for each ethnic group (rows) and each variable (column). Dotted line corresponds to the case where estimated
effect is equal to zero. 95% robust confidence intervals are included. Specification includes controls (Table 5).

3.2.5 Result 3: Robustness to Measurement Error

As discussed in the previous section, while GH permits credible estimation of parental and peer
effects under identification assumption (2), replacing school-level population expectations with
observable sample means creates an error-in-variables bias whenever the environment is one
of incomplete information. This can be tested by noting that the measurement error caused
by replacing population moments with the observable sample counterparts operates only at the
school level, so a Hausman test of fixed versus random effects using the reduced-form equation
(9) can be used. To implement it, replace unobservable expectations with corresponding sample
means and estimate the parameters using two different estimators in the spirit of panel data
fixed vs. random effects tests. If both estimator systematically deviate from each other, the
measurement error is biasing the random effects estimates. Failure to reject the hypothesis that
both estimates are equal is evidence that the complete information assumption is not a likely
source of concern.

Table 2 reports F statistics and robust p-values corresponding to the Hausman test for each
ethnic group regression using all waves of information.35 Out of the 36 regression estimates,
only in four cases the Hausman test allow us to reject the hypothesis that both sets of estimates

35Covariance matrices for the chi-squared Hausman tests using vector of contrasts are generally negative def-
inite, yielding negative test statistics for all specifications. As argued by Greene (2008) this could be interpreted
as evidence of no systematic difference between the two estimators, or in the particular case under study, that the
complete information assumption does not bias the estimates. As a check, I ran augmented regressions that yield
asymptotically equivalent F statistics reported in Table 2.
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are equal: religious importance (Waves 2 and 3) and praying frequency (Waves 1 and 3) for
Whites. In all other cases I can conclude that no relevant school-level variables are being omit-
ted, and in particular, that the complete information assumption is not biasing the estimates.

Table 2: Hausman Test
RelImpo Pray Drink

Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3

Hispanics 0.9997 1.1229 0.8641 1.7256 1.6882 1.2639 0.7565 1.3666 1.5309
(0.425) (0.408) (0.648) (0.316) (0.273) (0.399) (0.641) (0.559) (0.442)

Whites 2.9571 4.8854 8.6934 4.1243 2.086 4.1318 1.2894 0.5423 1.6798
(0.12) (0.019) (0.007) (0.026) (0.187) (0.068) (0.258) (0.62) (0.114)

Blacks 2.3863 1.3819 2.1117 1.3373 1.0771 0.9234 0.5298 1.3467 1.1052
(0.223) (0.376) (0.134) (0.351) (0.412) (0.417) (0.754) (0.259) (0.32)

Asians 0.6513 0.1061 1.1053 1.2558 1.1626 0.8388 1.4485 0.2412 0.5394
(0.608) (0.667) (0.301) (0.314) (0.371) (0.482) (0.557) (0.805) (0.411)

Notes: The table shows the Hausman test statistic and and associated robust p-value in parenthesis for each regression per
ethnic group and dependent variable. P-values were bootstrapped with 2000 bootstrap samples. The null hypothesis is that
fixed and random school effects in the reduced-form regression (9) are statistically the same. Under the null, both the FGLS
and within-school estimators are consistent, but only FGLS is efficient. Under the alternative, FGLS is inconsistent.

The previous results give us some confidence that estimates are not biased, but the results
of the test for Whites may be a cause of concern. Since this is a standard measurement er-
ror problem, I now use independent samples to compute corrected estimates.36 Writing the
between-schools regression (11) in vector form:

y = X∗β + u

X = X∗ + V

where X∗ is a matrix with the true unobserved conditional expectations of parental and control
variables, and X denotes the corresponding matrix with observed sample means. A standard re-
sult is that the OLS estimator of the parameters β is inconsistent, but that the adjusted estimator

β̂a = (X′X − Σ̂VV)−1X′y

is consistent, where Σ̂VV is an estimator of the covariance matrix of the measurement error.
Under the assumption that measurement error for any two variables are independent (implying
that ΣVV = diag(σ2

1, · · · , σ
2
K)), given two independent measurements of the sample means for

36I follow the approach in Cameron and Trivedi (2005) which is somewhat standard. Graham and Hahn (2003),
in the unpublished, working paper version of the paper cited above, suggest a similar procedure to find suitable
instruments for the error-in-variables. See also Arellano (2003), who discusses the effect of measurement error
and unobserved heterogeneity in panel data.
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each variable Xk1, Xk2, the variance of each measurement error can be estimated by

σ̂2
k = σ̂2

Xk
− ˆCov (Xk1, Xk2)

I estimate each sample mean for e and X using two randomly drawn subsamples of the stu-
dents in each school, using the pooled data, i.e. using all the information, regardless of the
ethnic identification of children within each school, and estimate the corresponding covariance
matrix Σ̂VV . This covariance matrix is used to adjust the estimates in the between-school regres-
sion. Figure (11) depicts the results. In the left panel, corrected peer effects against parental
effects are plotted. The right panel plots the original peer effect estimate α̂g on the vertical axis,
and the corresponding adjusted estimates on the horizontal axis, along with the 45◦ line. Under
the null hypothesis of no measurement error (i.e. the complete information assumption), both
estimates should be the same, and therefore, should be very close to the diagonal. As the figure
shows, this is indeed the case for most estimates.

Figure 11: Measurement Error Correction: Left panel plots estimate peer effects against parental effects
correcting for measurement errors along with theoretical prediction αg + αp = 1 (straight line) and 95% cluster-
robust confidence intervals for peer effects. Right panel plots parental and peer effects using Graham and Hahn
method without correction against corresponding estimates correcting for measurement errors.



27

3.3 Result 4: Comparative Statics

I now summarize the findings presented in Section (2.3)

∂(ei,t+1 − ei,t)
∂(e j,t − ei,t)

=

(1 − γi) ∈ (0, 1) absence of endogenous parental effects (NPE)

(1 − γi) − (e j,t − ei,t)
∂γi

∂(e j,t−ei,t)
presence of endogenous effects (PE)

(16)

∂2(ei,t+1 − ei,t)
∂(e j,t − ei,t)2 =

0 (NPE)

−
∂γi

∂(e j,t−ei,t)
− (e j,t − ei,t)

∂2γi
∂(e j,t−ei,t)2 (PE)

(17)

∂(ei,t+1 − ei,t)
∂ωi

=



0 if γ is independent of ω

−(e j,t − ei,t)


∂γi

∂ωi︸︷︷︸
Exo.E f f ects(+)

+
∂γi

∂αi

∂αi

∂ωi
+
∂γi

∂α j

∂α j

∂ωi︸                  ︷︷                  ︸
End.E f f ects(+|−)

 if γ depends on ω
(18)

For the case of complete heterogeneity (equivalently, N groups), Vaughan (2011a) shows
that Nash equilibrium strategies in the conformity game can be written as

ei,t+1 = γiiei,t +
∑
j,i

γi je j,t

with γkl ∈ (0, 1) for all k, l = 1, · · · ,N and
∑

j γk j = 1 for any child k. It now follows that

ei,t+1 − ei,t = (1 − γii)(ẽi,t − ei,t)

where ẽi,t =
∑

j,i γ̃i je j,t with γ̃i j = γi j/(1 − γii) for all j , i, is a weighted average of all
other parents preferences. Since child-specific weighted averages ẽi,t are not observed, I use
the corresponding sample average e−i,t =

∑
j,i ei,t.37 I now estimate the following child-specific

regression pooling across all ethnic groups:38

ei,t+1 − ei,t = β0 + β1(e−i,t − ei,t) + β2(e−i,t − ei,t)2 + β3ωs(i) + β4ω
2
s(i) + X′iη + εi,t+1 (19)

where ωs(i) denotes the share of child i’s ethnic group in school s(i).
Results are presented in Table (3) where, for each Wave 1 dependent variable three alterna-

tive specifications are reported. Columns (1) show OLS estimates for β0 − β4 in Equation (19)

37While this creates a measurement error, I am only interested in observing the sign of the estimates. Also,
notice that a similar procedure as the used above for school averages cannot be used here, since the measurement
error is at the individual level and we have only one observation per individual (i.e. no independent measurements
can be obtained without a panel structure with repeated observations for each individual).

38Including further polynomial terms do not affect the results shown.



28

without additional controls (η = 0). Columns (2) include child-specific controls. Columns (3)
show results of a specification where each individual’s ethnic group share is replaced by shares
for all ethnic groups excluding Asians and the corresponding quadratic terms. In a setting with
more than two ethnic groups the latter is more appropriate, but interpretation of the results is
not as straightforward as in the former case.

A first result is that across all specifications β̂1 ∈ (0, 1). In the absence of parental effects—
(NPE) in Equation (16)— this value is an estimate of 1 − γii. Estimates for the quadratic effect
of parental differences β1 are negative in general, as the theory predicts (see Figures (14-15) for
a two-groups case), and significant for all specifications excluding those when the dependent
variable is frequency of praying. As Equation (17) shows, the sign should be zero in the absence
of parental effects, so at least for religious importance and alcohol consumption the hypothesis
that parents endogenously affect their children’s relative preference to conform to parents and
children cannot be rejected. Moreover, this also suggests that the estimate β1 , 1 − γii.

A group’s own ethnic share in the school is significant only for praying frequency. More-
over, quadratic effects are not significant either. This, however is the weakest test of the theory—
see Equation (18)— since a zero marginal effect could be either a sign of the children’s problem
being independent of ω, or a sign of presence of endogenous effects. When all ethnic groups’
shares are included— specification (3)— these are negative and significant for religious impor-
tance only, and there is no evidence that quadratic effects matter.

At this point it is worth discussing the role of ethnic weights in a heterogenous agents model.
The interpretation put forward in Vaughan (2011a) is that at time zero, a population of parents
is drawn from M distributions. An ethnic group is defined by the distribution from which the
original ancestors were drawn. Since population is stationary, the size of each ethnic group
remains fixed across time, as well as population shares ωm (m = 1, · · · ,M). In this context, the
concept of convergence proposed by Vaughan (2011a) is that of convergence in expectations,
that holds in this more general case whenever αi ∈ (0, 1) for all agents.
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Table 3: Comparative Statics - Individual Level Regressions
RelImpo1 Pray1 Drink1

(1) (2) (3) (1) (2) (3) (1) (2) (3)
Cons (β0) 0.290 -0.060 1.361 -0.127 0.061 0.277 -0.007 -0.134 -0.117

(0.036) (0.196) (0.651) (0.019) (0.103) (0.313) (0.009) (0.034) (0.075)
ParDi f f (β1) 0.611 0.592 0.575 0.730 0.812 0.811 0.753 0.746 0.792

(0.027) (0.039) (0.039) (0.024) (0.034) (0.035) (0.041) (0.05) (0.049)
ParDi f f 2 (β2) -0.050 -0.073 -0.089 0.004 -0.130 -0.136 -0.319 -0.335 -0.268

(0.023) (0.035) (0.034) (0.07) (0.104) (0.107) (0.067) (0.084) (0.083)
EthS hare (β3) -0.024 0.007 -0.145 -0.204 -0.003 0.085

(0.138) (0.22) (0.07) (0.12) (0.037) (0.051)
EthS hare2 (β4) 0.059 0.089 0.101 0.122 0.006 -0.077

(0.12) (0.184) (0.062) (0.102) (0.032) (0.045)
S hareH -1.681 -0.485 0.118

(0.739) (0.372) (0.131)
S hareW -1.710 0.010 0.031

(0.73) (0.345) (0.103)
S hareB -1.537 -0.389 -0.033

(0.669) (0.315) (0.096)
S hare2

H 0.318 0.224 -0.001
(0.522) (0.269) (0.139)

S hare2
W 0.361 -0.290 -0.053

(0.299) (0.155) (0.076)
S hare2

B 0.084 0.109 0.038
(0.297) (0.156) (0.08)

R2 0.218 0.262 0.266 0.300 0.371 0.370 0.400 0.444 0.452
Nobs 4729 2033 2033 4724 1934 1934 3912 2071 2071

Controls N Y Y N Y Y N Y Y
Notes: Table presents results from estimating Equation (19) for each dependent variable using only the first wave of information.
Columns (1) do not include controls, (2) include controls and own ethnic group’s school population share, and (3) include
controls, all ethnic groups’ shares (excluding Asians) and quadratic terms of these. Cluster-robust standard errors in parenthesis.



30

4 Conclusions

In her book, The Nurture Assumption, Harris (1999) forcefully argues that endogenous parental
effects— as opposed to those of genetic origin— have no enduring consequences on children’s
behavior. Since behavioral genetic studies usually find that around 50% of the variance of most
behavior can be accounted by genetic factors, she claims that researchers that fail to control
for these, overstate the importance of parental nurturing practices. In summary, she argues that
genes, but most importantly peers, are responsible for how “children turn out the way they do”.
Emphasizing the genetic and peer transmission channels, this subject has been increasingly
studied in recent years by economists, who are mostly interested in understanding the process
of preference transmission.

In this paper I develop a model that allows me to test both of Harris’ claims using a data
set that lacks the information needed to control for genetic differences. The model has two
components, each designed to attain my empirical objectives: first, in order to estimate peer
effects using a relatively novel econometric technique proposed by Graham and Hahn (2005),
I assume that children interact strategically and choose their preferences with the only desire
to fit in. Specifically, I assume that the main tradeoff they face is being like their parents or
like their peers. Second, I assume that parents purposefully socialize their children in order to
reduce any significant deviation from their own preferences. This second component allows
me to derive testable predictions from the static comparative analysis of the game, necessary to
separate between exogenous, role-model effects and endogenous parental nurturing choices.

Empirically, I find that for two religious variables and teenage alcohol consumption both of
Harris’ claims are not substantiated. First, I show that parental and peer effects are important.
While parental effects are relatively small for alcohol consumption, these are non-negligible
for the importance that children ascribe to religion and explaining the frequency of praying.
Second, I show that at least for the seven years covered by the data, both of these effects are
enduring. Specifically, I show that high school peers and parental attitudes during the first
wave of interviewing affect attitudes that are measured repeatedly across the three waves of
interviewing under study, with no signs of “fading out”. While I cannot extrapolate these results
to later stages in life, the period of seven years is long enough to argue that parental and peer
effects are not merely temporary deviations from another more fundamental source.

Nonetheless, taken in isolation, these findings are consistent with the view that genes and
peer effects dominate, but the next two results allow me to question the nature hypothesis.
First, I find that on average, parental and peer marginal effects on their children outcomes
add up to one, implying that children’s attitudes are a weighted average of the corresponding
parental and peer attitudes, conditional on other exogenous controls. As Equations (12)-(15)
show, this result depends crucially on the functional assumptions made on children’s payoff
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functions, and in general, one should expect the sum of both effects to be less than one. To see
how remarkable this empirical finding is, I also present results from one of two related papers
on the transmission of schooling outcomes and political preferences: Figure (7)— taken from
Vaughan (2011d)— shows that parental and peer effects in years of schooling (estimated with
the same exact econometric method as the one used here) in general add up to less than one, as
expected if genetic (eg. ability) effects are present, if children have nonparental adult mentors
(oblique effects), or if they are forward-looking and education has an intrinsic value (increased
lifetime consumption). The conclusion is that as long as children view their parents and peers
as role models, if genetic effects are also present the sum of parental and peer effects will
be less than one. The outcomes under study here— religious practices and beliefs and alcohol
consumption— are such that dismissing the role model effect in favor of the genetic explanation
is at odds with common intuition, thereby suggesting that genetic effects are absent.

However, since Harris’ critique of the “Nurture Assumption” attacks precisely this type of
intuition-based arguments, I perform some formal testing using the comparative statics analysis
of the parental socialization problem. By running reduced-form regressions, I find evidence
consistent with the endogenous socialization hypothesis that would be hard to defend if genes,
and not parenting practices, were responsible for children’s behavior. Specifically, I show that
other things equal, intrafamily parental-child differences ei,t+1 − ei,t are concave with respect to
intracohort parental differences e−i,t − ei,t, consistent with the endogeneity of parental practices
in the model.

It is important to emphasize that these results do not show that genes play no role, but only
that conformity is an important driving force in the transmission of preferences. While the
results suggest that genes play a minor role if any, the data used does not allow to identify these
effects.

I now discuss the validity of the econometric method used to estimate peer effects. Graham
and Hahn (2005) method depends crucially on the existence of at least one child-specific vari-
able that has no school-level effects, in order to circumvent Manski’s reflection problem.39 My
identification assumption is that the corresponding parental outcome serves that specific role,
i.e. that school-level parental averages do not have a direct effect on children’s outcomes. An
example will help clarify this: suppose that there are only two children, with their two corre-
sponding parents. In general, one can pose that children’s outcomes are generated from the

39Brock and Durlauf (2001) emphasize that in linear models this is indeed a general necessary condition for
identification of peer effects.



32

following first-order condition:

e1,t+1 = α0 + α1e1,t + α2e2,t + α3e2,t+1 + ε1,t+1

e2,t+1 = α0 + α1e2,t + α2e1,t + α3e1,t+1 + ε2,t+1

Here α1 corresponds to each child’s own parental effect and α3 denotes to the peer effect. My
identification assumption corresponds to the exclusion restriction that α2 = 0 i.e. that parents of
a child’s peers do not have a direct effect on her outcomes. In terms of the model, this amounts to
assuming that peers’ parents are not role models for the children. I argue that since interactions
with peers take place mostly within the school— that is the definition of the peer group used
in this paper— other parents only have an indirect effect through the direct effect they have on
their own children. I also show evidence coming mainly from developmental psychology that
shows that while nonparental adults may act as role models for children and teenagers, it is
mostly through school-specific actors, such as teachers and councelors and not through friends’
parents.

I further perform two robustness checks: first, I test that replacing observable school-level
sample means for unobservable expectations is not creating an error-in-variables problem, or in
behavioral terms, that the conformity game is not one with incomplete information. Graham and
Hahn (2005) show that the econometric method they design to estimate peer effects is sensitive
to this specific type of problem, so I use a fixed-versus-random effects Hausman test using the
reduced-form equation of the children’s problem. I am not able to reject the hypothesis that
the complete information assumption is systematically biasing the results for the majority of
my estimates, and for the remaining I use a standard method to adjust OLS estimates in the
presence of measurement error.

Second, while I do not report these results here, I have also checked the robustness of the
choice of peer group.40 Results shown in this paper take the school to be the group, but I have
also checked that using each grade does not alter my main results. While it could argued that it
is better to use the restricted networks reported by each student in the private-use data,41 there
are two sources of concern with such approach. First, children select their friends. Second,
the restricted nature of this information — up to six friends are reported— may itself bias the
results. In a Monte Carlo study, Vaughan (2011c) shows that using the more aggregated school-
level peer group is not a source of concern as long as the complete network is connected, that is,
whenever for any two respondents, there is a path of friends connecting them. Needless to say,

40Results available from the author upon request.
41The restricted-use Add Health data includes information for up to 6 of self-reported friends in school for each

child.
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when schools are segregated by ethnic groups, for example, in which case the full network has
several unconnected components, the more aggregate choice will most likely bias the estimates.

Finally, it is worth commenting on a result that follows naturally in a model of peer and
parental effects without genetic effects. As long as children put positive weight on both parents
and peers, and these effects add up to one, a Local Melting Pot will take place, i.e. within
a school, children from different ethnic groups will converge to each other.42 Importantly, a
Global Melting Pot where immigrants and natives blend with each other, will not necessarily
follow, a view consistent with the type of segmented assimilation proposed by Portes and Zhou
(1993).43

The results in the paper suggest a future research agenda that is worth discussing. From
an empirical point of view, verifying these results with twin data is necessary to ascertain if
genes play such a minor role as the results suggest. Moreover, to assess the stability of peer
and parental effects along the life cycle one should use a data set that goes beyond the seven
years spanned in the present study. From a theoretical point of view, this paper has shown that
economics can help improving the methods used in behavioral genetics. Specifically, behavioral
genetics assumes that agents— children and parents— play no active role in the transmission
process— other than assortative mating. It follows that the tools used in economics can provide
testable predictions that are not currently present. For example, in this paper I have shown
that, contrary to standard practice in behavioral genetics, parental effects can enter through two
different environmental channels. Moreover, these enter multiplicatively, and provide a rather
convoluted testable prediction.

42The condition that effects add up to one is by no means necessary for convergence.
43A limited list of sufficient conditions is provided by Vaughan (2011a). Clearly, a connected network of of

schools will suffice, but other conditions are that schools are not ethnically segregated, or that there is intergenera-
tional spatial mobility for all ethnic groups.
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Appendix: Proofs

In this Appendix we proof all propositions for the case of M = 2 groups. Proofs of the general
case M = N can be found in Vaughan (2011a).

Proposition 1: Existence and Uniqueness of a Nash Equilibrium for the Conformity Game
A necessary and sufficient condition for the existence of a unique symmetric Nash Equilibrium

of the conformity game for any time t > 0, is that αi , 0 for at least one of the groups.

Proof. We will show that the statement is true at time t = 0; an analogous argument will
show that it also holds for any finite time t > 0. Since the objective functions are quadratic,
using the second-order conditions, after some algebra it can be seen that the problem is strictly
convex whenever α j > −

(N−1)2

2N−1 , satisfied under our assumptions. Since the problem is quadratic,
from the first-order conditions and remembering that we are restricted to the set of symmetric
equilibria, we get reaction functions that are linear in the parents’ and other group’s preference:

e∗i,1 = Aiei,0 + (1 − Ai)e∗j,1 (20)

where Ai = αi/(αi + (1 − αi)ψN(1 −ωi)), ψN := (N − 1)/N, for i , j = 1, 2. The reaction curves
(20) constitute a system of two linear equations 1 −(1 − A1)

−(1 − A2) 1

  e∗1,1
e∗2,1

 =

 A1e1,0

A2e2,0


A necessary and sufficient condition for existence and uniqueness of a Nash Equilibrium is that
the matrix in the left-hand side is invertible. The determinant of this matrix is Ai + A j(1 − Ai).
After some algebra, it is easy to see that:

Ai + A j(1 − Ai) =
αiα j(1 − ψN) + ψN(αiωi + α jω j)

(αi + (1 − αi)ψN(1 − ωi))(α j + (1 − α j)ψN(1 − ω j))

Since we are restricting α to be in the closed unit interval this term is always well defined, and
it is non-zero if and only if αi , 0 for at least one of the groups. �

Proposition 2: Existence and Uniqueness of a Blending-Type Steady State
Assume that αi ∈ (0, 1), i = 1, 2. Given initial conditions e0, there exists a unique interior stable

steady state equilibrium e∗ = (e, e) ∈ (0, 1)2.

Proof. It is straightforward to verify that αi ∈ (0, 1) implies Ai, γi ∈ (0, 1) and γ1 + γ2 > 1,
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i = 1, 2. Nash Equilibrium strategies generate a system of linear difference equations: e1,t+1

e1,t+1

 =

 γ1 1 − γ1

1 − γ2 γ2

  e1,t

e1,t


for which a general solution is et = λ1c1v1 +λ2c2v2, where λi, vi, i = 1, 2 are the eigenvalues and
eigenvectors of the matrix Γ = [γi, j] and c1, c2 are constants determined by the initial conditions.
Since Γ is a stochastic matrix, it follows from the Perron-Frobenius theorem that

lim
t→∞

et = c1v1

where v1 is the eigenvector corresponding to the unit vector, showing that a steady state exists.
To see that it is interior, notice that since et = Γte0 and Γt is a stochastic matrix for any t, at each
time t ei,t ∈ (ei,t−1 ∧ e j,t−1, ei,t−1 ∨ e j,t−1). �

Proposition 4: Existence of a Nash Equilibrium: Socialization Game
For any time t ≥ 0 such that At > 0, under Assumption (1), the first-stage parental socialization

game has at least one symmetric Nash Equilibrium.

Proof. Our strategy will be to choose a small enough ε > 0 such that the restriction Gε :
[ε, 1]2 → R2 is a continuous self-map on [ε, 1]2, satisfying the conditions of Brouwer’s fixed-
point theorem.

The slope of the reaction function for a type i parent is given by:

∂gi

∂α∗j
=

2A(1 − α∗i )ki(∂ki/∂α
∗
j)(α

∗
i (2 + ki) − ki)

2Ak2
i [1 + 2(1 − α∗i )(1 − ki)] + Dic′′(α∗i )

where Di = (ki+αi(1−ki))4. Since limα j→0 gi(α j) = 0, both the numerator and denominator go to
zero as α j → 0, but it is straightforward to check that the denominator is a polynomial of higher
order in α j than the numerator from which it follows that as long as c′′(αi) > 0, the slope of the
best-reply function is unbounded (from above) in a sufficiently small neighborhood of zero. For
each player of type i, we can therefore choose ε i

1 > 0 small enough such that ∂gi(αi)/∂α∗j > 1
for all αi ∈ (0, ε i

1). This condition guarantees that gi(ε i
1) > ε i

1.
The Implicit Function theorem guarantees that gi(α j) is continuous on (0, 1] so, in particular,

the restriction on [ε1, 1] is also continuous and has a minimum; as we already saw, this minimum
is strictly positive. Denote by αmi = arg minα j∈[ε1,1] gi(α j) ∈ (0, 1]. Let εi = min{ε i

1, gi(αmi)}, and
ε = min{εi, ε j}.44 From the above discussion, it follows that the restriction Gε((ε, 1]2) ⊆ (ε, 1]2

44Clearly, εi = ε i
1 whenever the best-reply function gi(α j) is increasing. However, Proposition (??) shows that gi

could be decreasing on a subset of the domain, when the condition αi(2 + ki) < 0 is met. For this reason we need
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is a continuous selfmap, and therefore has a fixed point. This guarantees that the parental
socialization game has a symmetric Nash Equilibrium. �

Monotonicity of Best-Reply Functions in the Socialization Game
Under Assumption (1)

∂α∗i
∂α∗j

> 0⇐⇒ α∗i > ki/(2 + ki) for i , j ∈ {1, 2}

Proof. After total differentiation of the first-order condition, it is straightforward to show that

dα∗i
dα∗j

=

2A
[
(1 − γi)

∂2γi
∂αi∂α

∗
j
−

∂γi
∂α∗j

∂γi
∂α∗j

]
2A

[(
∂γi
∂α∗j

)2
− (1 − γi)

∂2γi

∂α2
i

]
+ c′′(αi)

From the second-order conditions, we know that the denominator is well-defined and positive
for αk ∈ (0, 1], k = 1, 2, so we need only check the sign of the numerator. After some algebra,
it can be shown to be

2A
Di

(1 − α∗i )ki

(
∂ki/∂α

∗
j

)
(2α∗i − ki(1 − α∗i ))

where Di = (ki +α∗i (1− ki))4 and
∂ki

∂α∗j
= ψN(1−ωi)

∂A j

∂α∗j
> 0, yielding the desired condition. �

Proposition 5: Comparative Statics
∂αi/∂ωi < 0 if and only if 2αi − ki(1 − αi) > 0.

Proof. Totally differentiating the first-order conditions for both players we get

∂αi

∂ωi
=

2A
[
(1 − γi)

∂2γi
∂αi∂ωi

−
∂γi
∂αi

∂γi
∂ωi

]
2A

[(
∂γi
∂αi

)2
− (1 − γi)

∂2γi

∂α2
i

]
+ c′′(ωi)

Since the denominator is positive (from the second-order condition), the sign of the partial

to allow for the possibility that 0 < gi(1) < ε1, in order to guarantee that the restriction is indeed a selfmap.
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derivative depends only on the sign of the numerator. After some algebra we can verify that

∂2γi

∂αi∂ωi
= (1/D1)

∂ki

∂ωi
(αi − ki(1 − αi))

∂ki

∂ωi
= −(1/Dk)α jψN(α j + (1 − α j)ψN) < 0

∂γi

∂αi
=

ki

(ki + αi(1 − ki))2

∂γi

∂ωi
=

−αi(1 − αi) ∂ki
∂ωi

(ki + αi(1 − ki))2

where D1 = (ki + αi(1 − ki))3, Dk = (α j + (1 − α j)ψNωi)2. With these it is straightforward to
check that the sign of the numerator depends on the sign of

(1 − αi)ki
∂ki

∂ωi
(2αi − ki(1 − αi))

so that the property in the proposition holds whenever best-reply functions are increasing:

2αi − ki(1 − αi) > 0⇐⇒
∂α∗i
∂ωi

< 0 (21)

for i = 1, 2. These conditions correspond to the ones derived for the monotonicity of the best-
reply functions. �
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Data Appendix

Table 4: Description of Control Variables
Variables Description Min Max Mean Median Nobs

age Age 12 21 16.04 16 6501
female w1 Female Dummy 0 1 0.52 1 6503
attract w1 Interviewer subjective assessment: Attractive 1 5 3.58 4 6494
persona w1 Interviewer subjective assessment: Personality 1 5 3.59 4 6499
physmat w1 Interviewer subjective assessment: Physically

Mature
1 5 3.38 3 6496

build1 Type of dwelling: detached single-family house 0 1 0.75 1 6504
build2 Type of dwelling: Mobile home-trailer 0 1 0.07 0 6504
build3 Type of dwelling: Single-family row-town

house
0 1 0.05 0 6504

street w1 How well kept is the building where R lives 1 4 1.62 1 6413
street2 w1 Description of immediate area or street 1 6 2.14 2 6432
smokehh w1 Were there signs of smoking at home? 0 1 0.21 0 6435
drinkhh w1 Signs of drinking at home 0 1 0.03 0 6435
feel appe (How often, in the last week) Didn’t feel like eat-

ing
0 3 0.46 0 6487

feel mind (How often, in the last week) You had trouble
keeping your mind on what you were doing

0 3 0.81 1 6485

feel hope (How often, in the last week) You felt hopeful
about the future

0 3 1.84 2 6475

catholic Dummy variable for catholic denomination 0 1 0.51 1 6365
protestant Dummy variable for protestant denomination 0 1 0.23 0 6365
none Dummy variable for atheist/agnostic denomina-

tion
0 1 0.12 0 6365

phys limit Dummy for physical limitations 0 1 0.02 0 6493
work hrs Hours a week R works. 0 140 7.66 2 6435
adopted Dummy variable for adopted respondent. 0 1 0.03 0 4610
tvhours Hours a week watching TV. 0 4 2.33 2 4558
siblings no Number of Siblings 1 14 2.55 2 6457
work tp m What kind of work does she do? 1 16 8.17 6 6101
work mom Does she work for pay? 0 1 0.90 1 5238
home mom How often is she at home when you return from

school?
0 5 2.66 2 6120

warm mom Most of the time, your mother is warm and lov-
ing toward you

1 5 1.63 1 6119

warm dad Most of the time, your father is warm and loving
toward you.

1 5 1.86 2 4541

indep mom Your mother encourages you to be independent 1 5 1.79 2 6118
talk mom When you do something wrong that is important,

your mother talks about it
1 5 1.88 2 6120

number chi Which child are youthe first, the second, or
what?

1 14 2.03 2 5083

quality chi You have a lot of good qualities 1 8 1.74 2 6504
income par About how much total income, before taxes did

your family receive in 1994?
0 999 47.70 40 4929

bills par Do you have enough money to pay your bills? 0 1 0.82 1 5505
welfare par Last month, did you or any member of

your household receive (SS,SSI,AFDC,Food
Stamps,Unemployment Compensations)

0 6 0.44 0 5528
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Wave 1 Wave 2 Wave 3

H W B A H W B A H W B A

R
el

Im
po

Parents 0.152 0.349 0.305 0.252 0.239 0.365 0.398 0.42 0.212 0.326 0.305 0.424
(0.07) (0.023) (0.046) (0.109) (0.107) (0.032) (0.056) (0.116) (0.096) (0.026) (0.084) (0.107)

Peers 0.836 0.564 0.673 0.686 0.75 0.635 0.451 0.558 0.691 0.656 0.674 0.626
(0.077) (0.057) (0.059) (0.146) (0.115) (0.046) (0.13) (0.137) (0.155) (0.048) (0.104) (0.106)

Nwith 349 2658 955 93 169 1542 644 99 179 2295 640 113
Nbet 89 124 96 55 83 116 96 58 89 124 96 58

Pr
ay

Parents 0.192 0.239 0.203 0.378 0.219 0.208 0.215 0.417 0.094 0.271 0.389 0.251
(0.062) (0.022) (0.049) (0.119) (0.078) (0.029) (0.048) (0.148) (0.159) (0.039) (0.083) (0.171)

Peers 0.75 0.711 0.733 0.576 0.698 0.775 0.722 0.371 0.916 0.74 0.65 0.727
(0.084) (0.042) (0.071) (0.141) (0.114) (0.039) (0.073) (0.257) (0.143) (0.05) (0.089) (0.197)

Nwith 445 1967 761 107 292 1234 749 72 147 1671 881 113
Nbet 89 116 96 58 89 116 96 55 83 116 96 58

D
ri

nk

Parents -0.039 0.03 0.056 -0.102 0.035 0.061 0.131 0.118 0.039 0.12 -0.053 0.539
(0.086) (0.024) (0.069) (0.112) (0.122) (0.018) (0.046) (0.185) (0.157) (0.035) (0.129) (0.123)

Peers 1.331 0.744 6.386 -0.957 -0.589 0.571 -0.25 -0.582 0.839 0.309 1.207 -0.073
(0.778) (0.274) (43.653) (4.74) (8.026) (0.229) (0.909) (3.16) (0.657) (0.561) (0.509) (0.344)

Nwith 254 1813 455 115 142 2133 377 68 122 1400 355 96
Nbet 83 116 92 55 83 124 96 55 83 115 95 58

Notes: Robust standard errors in parenthesis. Each column displays estimated parental and peer effects (αp, αg) for separate ethnic group-specific
regressions with the following notation: Hispanics (H), Whites (W), Blacks (B), Asians (A). Samples sizes for within (Nwith) and between (Nbet)
regressions are also included.

Table 5: Parental and Peer Effects Estimates
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Table 6: Significant Regressors in Peer Effect Regressions
Hispanic White Black Asian

R P D R P D R P D R P D

age Y Y
female w1 Y Y Y Y Y Y Y
attract w1 Y Y Y
persona w1 Y Y Y
physmat w1 Y Y Y Y Y
build1 Y Y Y Y
build2 Y Y Y
build3 Y Y Y
street w1 Y Y Y Y
street2 w1 Y Y
smokehh w1 Y Y Y Y Y Y Y Y
drinkhh w1 Y Y
feel appe Y
feel mind Y Y Y
feel hope Y Y Y Y Y Y Y
catholic Y Y Y
protestant Y Y
none Y Y Y
phys limit Y
work hrs Y Y
adopted Y
tvhours Y Y
siblings no Y Y Y Y
work tp m Y Y Y Y
work mom
home mom Y Y Y
warm mom Y Y Y
warm dad Y Y Y
indep mom Y
talk mom Y Y
number chi Y Y
quality chi Y Y Y Y Y
income par Y
bills par Y Y Y
welfare par Y Y Y
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Comparative Statics: Simulation Results

In this Appendix we solve the model numerically for different parametrizations to show several
comparative static results that are difficult to get analytically. Our first result is related to the
following partial derivative

∂ei,t+1 − ei,t

∂(ẽ−i,t − ei,t)
= (1 − γii,t+1) − (ẽ−i,t − ei,t)

∂γii,t+1

∂(ẽ−i,t − ei,t)
(22)

In Figures (12) and (13) we plot numerical partial derivatives as function of the parental
differences e−i,t − ei,t for four different plausible population shares. In order to do so we solve
numerically the parental socialization problem

max
αi,t+1∈[0,1]

−κ(ei,t − e∗i,t+1(αi,t+1))2 − c(αi,t+1)

assuming κ = 1 and assuming c(α) = 0.5kα2, with k = 1. Recall that for fixed At = κ(ẽ−i,t − ei,t)2

smaller values of k make the marginal cost of exerting a larger socialization effort relatively
smaller, which itself implies that parental best-reply functions will be monotonic increasing.
By assuming a larger value of k we are in effect assuming a larger deviation from the pure-
selfishness assumption used for parents.

Figure 12: ∂(ei,t+1−ei,t)
∂(ei,t−e j,t)

: case (ei,t − e j,t) > 0

Figures (14) and (15) plot estimated second partial derivatives making the same parametric
assumptions, but considering a different set of population shares. Our selection is motivated by
the fact that these are better approximations of actual population shares in our data, and these
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Figure 13: ∂(ei,t+1−ei,t)
∂(ei,t−e j,t)

: case (ei,t − e j,t) < 0

have an important effect on the sign of the effect. Importantly, the signs of these and the previous
simulations do not depend crucially on the parameter values assumed for the cost function.45

∂2(ei,t+1 − ei,t)
∂(ẽ−i,t − ei,t)2 = −2

∂γii,t+1

∂(ẽ−i,t − ei,t)
− (ẽ−i,t − ei,t)

∂2γii,t+1

∂(ẽ−i,t − ei,t)2

Figure 14: ∂2(ei,t+1−ei,t)
∂(ei,t−e j,t)2 : case (ei,t − e j,t) > 0

We now turn to the effects that the own ethnic group’s population share ωi has on the
parental-child deviations. In Figures (16)-(17) the second partial derivative of parental-child
differences with respect to the population shares, for different parameter values of k in the cost

45Matlab programs available upon request.
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Figure 15: ∂2(ei,t+1−ei,t)
∂(ei,t−e j,t)2 : case (ei,t − e j,t) < 0

function, for the the cases where (e j,t − ei,t) is positive and negative, respectively. Analytically,
this can be found by differentiating the following equation with respect to group i’s population
share:

d(ei,t+1 − ei,t)
dωi

= −(e j,t − ei,t)
(
∂γi,t+1

∂ωi
+
∂γi,t+1

∂αi

∂αi

∂ωi
+
∂γi,t+1

∂α j

∂α j

∂ωi

)
As both figures show, departures from the pure-selfishness assumption (larger k’s) generate

a wider variation in the sign of the second partial derivative. In particular, a unique sign is con-
sistent only with a small k, and the larger the deviation the wider the range over the population
shares where there is a change in sign. Also important is the fact that for a large subset of
possible population shares, the second partial derivative is close to zero.

Figure 16: ∂2(ei,t+1−ei,t)
∂ω2

i
: case (e j,t − ei,t) > 0
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Figure 17: ∂2(ei,t+1−ei,t)
∂ω2

i
: case (e j,t − ei,t) < 0
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