Study Time and Scholarly Achievement in PISA*

Zoë Kuehn ${ }^{\dagger}$
Pedro Landeras ${ }^{\ddagger}$

This version: February 2012

Abstract

We take a different look at the PISA data set considering time input as the main ingredient for scholarly achievement. Across countries, absolute time spent studying is negatively related to scholarly achievement, while a larger fraction of total study time spent in the classroom is associated to better performance. However, at the country level more total study time (class time plus homework time) is associated to better performance. When considering different groups of students, this positive relationship between time input and scholarly achievement breaks down. In particular girls and students with a migratory background spend more time in class rooms and doing homework but perform worse. We estimate a non-linear production function for education which allows us to consider marginal rates of substitution among various input factors for the production of education: different time inputs, family characteristics, and aspects of school environment. We find that compensating for less class time or lower socio-economic background by individual study time, is enormously time-costly or even impossible for students in Spain, as well as for students in the three best and the three worst performing OECD countries. Our results also show that in particular additional hours of class time rather than more teachers or better-equipped schools can compensate for a less advantageous family background.

JEL classification: I21, I21, Z13
Keywords: PISA, time input, effort, scholarly achievement, family background, school environment, complements, substitutes

[^0]
1 Introduction

Various international programs for assessing educational systems (TIMMS - Trends in International Mathematics and Science Study, PISA -Programme for International Student Assessment, etc.) have shown that countries that spend similar amounts on education do very differently in terms of educating their young generations. This is important given that as Hanushek and Woessmann [2010] point out, there exists a positive relation between trend economic growth and trend in scholarly achievement. In this sense, Spain's performance gives reason to worry. Despite the fact that Spain's expenditure in primary and secondary education is very similar to the OECD average, the performance of Spanish students in all PISA studies has been below average (see OECD [2010], OECD [2007], OECD [2004a] y OECD [2004b]). ${ }^{1}$ However, expenditure is just one of many possible ingredients into the production of education. This papers focuses on time spent studying as the main ingredient to learning and educational outcomes. We present an empirical cross-country study using data from the "Program for International Student Assessment" (PISA) that jointly analyzes students' study time, possible interdependencies with aspects of the students' school environment and family background, and their effects on scholarly achievement. For our analysis we focus on seven OECD countries, Spain, the three best performing countries (Finland, Canada, and Korea), and the three lowest ranked countries (Mexico, Greece, and Turkey). The current paper contributes to a better understanding of one of the key determinants for scholarly achievement: individual student effort measured as individual student study time. Our results allow us to address questions like: Does more study time always lead to better scholarly achievement or are there decreasing returns to scale in effort? Do better-off students, in terms of family background and/or school environment, exert more or less effort?; and Can students compensate for less advantageous school environments or socio-economic backgrounds by exerting more individual effort?.

Since the pioneering work of Schultz [1960], Becker [1962], and Ben-Porath [1967] who first formulated a production function of education with time as the central input factor, there have been important advances in the theory of the production of education. ${ }^{2}$ Apart from considering individual student effort as key to scholarly achievement these advances

[^1]have suggested interdependencies of effort with aspects of family background and school environment. Considering the latter for instance, Correa and Gruver [1987] analyze the interplay between teachers and students in a game-theoretical framework. More recently, De Fraja and Landeras [2006] show that an increase in incentives and in the efficiency in competition among schools can result in a decrease in effort by students. On the other hand, on the relation between effort and family background, Lin and Lai [1996] propose a simple economic model and find that if leisure is a normal good and students are paid monetary rewards for their achievement, those from better-off family backgrounds exert less effort. Landeras [2010] shows that the way individual effort and family background interact, is related to the student's degree of risk aversion. However, while time spent studying has been a centerpiece of many theoretical papers on education, a large part of the empirical literature has ignored the relationship between time input and achievement in education. Instead, the focus has been on the direct influence of aspects of school environment on scholarly achievement. Numerous studies have compared teacher-student ratios, the way schools are funded, different pedagogical methods, class size, etc. in order to explain differences in scholarly achievement. The fact that many empirical studies lack an analysis of time input to studying is to a great extent due to data limitations. In the TIMSS study for instance, teachers instead of students report information about homework time, turning the variable homework time into an estimate by teachers of the time needed for homework assigned, rather than a measure of study time by students.

There are only few empirical studies in the economics literature that measure effort and estimate its effect on aspects of scholarly achievement. Examples are Bonesrønning ([2004] who finds that for Norwegian secondary schools parental effort in education decreases as student's class size increase, making the two complementary inputs to education. Cooley [2010] estimates how peers' effort and achievement influence in student's scholarly performance. The paper by De Fraja et al. [2010] provides a theoretical model of effort by students, parents and schools. The authors then test their model empirically for the UK and find parents' effort to be more decisive for student's achievement than students' or schools' effort. Stinebrickner and Stinebrickner [2008] consider data for college students and find that more study time can make up for initial low scores of college entrance exams. ${ }^{3}$ A very interesting paper from the field of education science is Polacheck et al. [1978] who propose a production function for education of the CPES type ('constant partial elasticity of substitution') and estimate marginal rates of substitution between class

[^2]time, individual study time, and ability for college students.

Our paper is also related to the empirical literature that consider data from the "Progam for International Student Assessment" (PISA). Using data from PISA 2000, Fuchs and Wößmann [2007] estimate a linear education production function for the sample of all participating countries and find that in particular institutional factors of a country's educational system can account for differences in a student's performance. Considering the below-average performance in PISA of Spanish students, Ciccone and Garcia-Fontes [2008] find that while migration patterns have no explanatory power, average low parental education of Spanish students is partly responsible for this result. Among those that include the variable individual study time in country-regressions or cross-country studies, are de Bortoli and Cresswell [2004] who compare PISA 2000 results for Aborigines and NonAborigines students in Australia and find a positive relationship between time spent doing homework and scholarly achievement for both groups, with Aborigine students obtaining worse results that are partly due to fewer hours of homework. Another analysis of the PISA 2000 results for New Zealand points out the possibility of decreasing returns to scale for time spent doing homework, given similar outcomes for those spending a moderate amount of time doing homework and those spending a lot of time. However, as the study also states, this result could also be due to differences in unobserved ability among students (Ministry of Education, New Zealand [2002]). Looking at Canadian PISA data, Frempong and Ma [2006] confirm the positive relationship between time spent doing homework and scholarly achievement, while Looker and Thiessen [2004] establish a positive relationship between homework time and students' future aspirations. Findings by the OECD [2008] quantify the positive relationship between homework time and scholarly achievement at a 3.1 percentage points higher PISA score in science for students at schools with one extra hour of science homework a week. Among the few comparative analysis are Kotte et al [2005] who reject the hypothesis that differences in scholarly achievement between Spanish and German students can be explained by differences in time spent doing homework. Rindermann and Ceci [2009] compare results of the first three PISA studies and find that across countries individual student effort is negatively related to scholarly achievement. The authors thus propose two distinct interpretations of student effort: i) on the individual level where homework time has a positive effect on cognitive growth, and ii) on the country level where a lot of homework time indicates low quality of educational institutions that instead of internalizing, delegate an important part of the learning process towards parents and students.

Hence, while many studies using PISA data include the variable individual study time, few works consider individual student effort a central theme and none considers potential interdependencies of study time with aspects of family background and school environment.

Hence, to the best of our knowledge, the current paper is the first one to focus on students' individual effort as a central theme and to empirically test advances in the theoretical literature regarding the interdependencies of effort with aspects of family background and school environment. The remaining of the paper is organized as follows. We first present briefly the PISA 2006 data set used and provide some descriptive statistics for the seven countries considered. Section 3 presents an analysis of students' individual effort and its interdependence with various aspects of family background and school environment. In Section 4 we estimate a non-linear production function for education and marginal rates of substitution among different input factors for the production of education. Section 5 concludes.

2 Data: PISA 2006

For our analysis we use data from the "Progam for International Student Assessment" (PISA), administered by the OECD. PISA tests samples of around 4,000 to 30,0000 students of age 15 (independently of the grade they are in) in all OECD countries, as well as a couple of non-OECD countries. Up to now, PISA has been carried out four times, in 2000, 2003, 2006, and 2009. Test subject are reading, maths, and science, with each PISA wave paying particular attention to one of these subjects. Thirteen different booklets containing different combinations of these three subjects are designed and assigned randomly to approximately 35 students in selected representative schools. The test lasts for two hours. In addition, PISA administers individual student questionnaires, school questionnaires, and in some countries parent questionnaires gathering information not only on students' performance but also on their study habits, interests, family background, and school environment. It is important to note that PISA scores are estimated values, so called, plausible values, that contain student test scores as well as their background information from questionnaires. They thus are meant to reflect the distribution of students' performance in a country rather than a student's individual performance. Regarding the distribution of students' performance, PISA defines six levels of proficiency: low, moderate, strong and top, for all three subjects. These categories are thought to reflect a student's literacy in maths, science, and reading. While, the first three PISA reports (2000, 2003, and 2006) all include the variable time spent studying reported by students, in particular, PISA 2006 clearly differentiates between class time, individual study time (doing homework), and private lessons for each subject. That is why we focus on data from PISA 2006 for our analysis. We restrict our attention to results from seven of the fifty-six countries that carried out PISA 2006: Spain as well as the three best (Korea, Finland, Canada) and the three worst performing OECD countries (Mexico,

Greece, Turkey). Apart from time spend studying we also consider a student's gender and migrant status as well as different information on student's parental background, as are highest parental occupation, as well as the constructed ESCS-Index that also incorporates households' wealth and household's possessions. The school characteristics we take into account in our analysis are teacher-student ratios, computers per students, and school's ownership (private vs. public). In addition for part of our analysis we also consider low and top achievers separately. Table 2.1 provides descriptive statistics for these variables from PISA 2006 for the seven countries considered as well as the number of corresponding students. ${ }^{4}$

In total more than 200 thousands students participated in PISA 2006 across 30 OECD countries. In Finland, Korea, Turkey and Greece around 4,000-5,000 students participated while Spain, Canada and Mexico increased the number of participating students to almost 20,000 to 30,000 . Regarding the performance of students across these countries, Finish students did best in Maths and Science, while Korean students rank first in reading and second in maths. Canadian students came second in maths and third in reading. Mexican student were ranked last in all subjects, while Turkey and Greece came in 29th and 28th position. The time that students spend studying, in class, at home, or in private lessons varies across countries. While Finish students spend around 14 hours per week in class, Korean students spend on average 3 hours more per week in the class room. Around half of all students in our samples are girls in all seven countries considered. However, the fraction of first or second generation immigrants varies strongly with Canada, Greece, and Spain having between 21% and $7-9 \%$ respectively of students that took the PISA test being immigrants. Considering students' parental background, more students in Spain, Turkey, and Mexico have parents with blue collar occupations compared to students in Korea and Canada. This is also reflected in the value of the ESCS index, positive in Kore and Canada while negative in all other countries. School environments also differ across countries, with private schools being more important in Spain, Korea and Mexico compared to Finland, Turkey, or Greece. The average student-teacher ratio is lowest in Greece with only 7 students per teacher, and highest in Mexico with and average of more than 20 students per teacher. Canadian and Korean schools tend to be best equipped with computers while schools in Turkey report to have fewer computers per student. Top and low achiever are distributed differently across countries and subjects, however their distribution is very much related to the average score.

[^3]Table 2.1: Descriptive Statistics PISA 2006: Weighted Means

Countries:	Spain	Finland	Korea	Canada	Mean OECD	Mexico	Turkey	Greece
Number of Students	19,047	4,579	5,172	20,965	242,402*	30,922	4,941	4,808
Mean Score								
[Rank among 30 OECD countries]								
Maths	484 [24]	548 [1]	547 [2]	527 [5]	484	406 [30]	424 [29]	459 [28]
Science	488 [23]	563 [1]	522 [7]	534 [2]	491	410 [30]	424 [29]	473 [28]
Reading	461 [26]	547 [2]	556 [1]	527 [3]	484	410 [30]	447 [29]	460 [28]
Average Study Time								
Class	13.6	14.2	16.5	17.3	14.8	14.5	14.8	13.1
Homework		7.8	5.2	7.1	7.3	8.5	8.6	7.8
Private Lessons	3.0	1.8	6.2	3.5	3.8	4.5	7.2	7.8
Individual Characteristics								
Girls	0.49	0.50	0.49	0.50	0.50	0.52	0.45	0.50
Immigrants								
1 st or 2 nd generation	0.07	0.02	$\simeq 0$	0.21	0.09	0.02	0.01	0.08
Parental Background								
High White Collar	0.40	0.56	0.68	0.67	0.54	0.33	0.36	0.54
Low White Collar	0.26	0.27	0.18	0.22	0.25	0.22	0.16	0.19
High Blue Collar	0.23	0.11	0.09	0.06	0.13	0.24	0.36	0.17
Low Blue Collar	0.10	0.05	0.05	0.06	0.08	0.21	0.13	0.11
ESCS-Index	-0.31	0.26	-0.01	0.37	-0.10	-0.99	-1.28	-0.15
School Environment								
Private Schools	0.48	0.08	0.30	0.17	0.19	0.23	0.02	0.04
Teacher-Student Ratio	12.7	10.6	17.8	15.1	14.3	20.4	20.2	7.8
Computers per 100 students	13.4	19.7	28.6	27.6	21.1	13.7	7.5	13.1
Proficiency Levels								
Low achievers								
Maths	24.7\%	5.9\%	8.8\%	10.8\%		56.5\%	52.1\%	32.3%
Science	19.6\%	4.1\%	11.3\%	10\%		51%	46.6\%	24.1%
Reading	25.7\%	4.8\%	5.7\%	11\%		47\%	32.2\%	27.7%
Top achievers								
Maths	8.3\%	24.4\%	27.1\%	17.6\%		0.9\%	4.2\%	5.1\%
Science	4.8\%	20.9\%	10.3\%	14.4\%		0.3\%	0.9\%	3.4%
Reading	1.8\%	16.7\%	21.7\%	14.5\%		0.6\%	2.1\%	3.5\%

*Total OECD.

Countries ranked highest tend to have a larger fraction of their students among the group of top achievers and only few students being low achiever.

2.1 Time Input to Education

We start out with a descriptive analysis of the student's individual time input. We distinguish between time in class, time spent doing homework and private lessons and consider the effect each has on scholarly achievement. Citing Ben-Ponrath [1967] " It is hard to think of forms of human capital that the individual can acquire as final goods-he has to participate in the creation of his human capital." (p.352); How much time do 15 years old spend creating their human capital? Table 2.2 contains country means of study time in terms of weekly hours spent in class, doing homework, and receiving private lessons for each of the three subjects. Across countries, there does not seem to be a clear relationship between total study time and scholarly achievement. While in Spain students spend on average a total of around 6 hours and 25 minutes per week studying mathematics, in some countries with better scholarly achievement students spend more time studying (Korea and Canada) while in others (Finland) they spend less time. On the other hand, students in the three worst ranked OECD countries (Mexico, Turkey, and Greece) spend more time studying math, science, and language/reading than students from better performing countries. ${ }^{5}$ However, when instead we take a look at how students divide their total study time among class time, homework time and private lessons, students in better performing countries seem to spend on average more of their total study time in the classroom and less doing homework or receiving private lessons. Among all OECD countries, students from countries ranked above average in all three subjects spend less total time studying; they receive fewer private lessons and spend less time doing homework. However, these students spend more time in the classroom and hence allocate a larger fraction of their study time to time in class and a smaller fraction to private lessons compared to students from other countries. Korea, one of the best-ranked countries according to PISA 2006, is an exception in this case with Korean students spending a large amount of time in private lessons. Our observations are in line with findings by Rindermann and Ceci [2009] who report a negative cross-country correlation of -. 22 between average time spent doing homework and PISA test scores.

[^4]Table 2.2: Average Study Time

	Class	Weekly hour (\% of total Homework	edicated to: udy time): Private Lessons	Total
Mathematics				
Spain	3.42 (58\%)	1.92 (30\%)	0.99 (13\%)	6.41
Finland	3.45 (71\%)	1.20 (23\%)	0.37 (6\%)	5.02
Korea	4.70 (57\%)	2.31 (22\%)	2.28 (21\%)	9.32
Canada	4.50 (63\%)	1.97 (26\%)	0.94 (11\%)	7.45
Mean OECD	3.89 (57\%)	1.97 (29\%)	1.07 (16\%)	6.83
Mexico	3.95 (55\%)	2.26 (32\%)	1.18 (14\%)	7.35
Turkey	3.82 (51\%)	2.31 (32\%)	2.08 (27\%)	8.17
Greece	3.45 (49\%)	2.01 (25\%)	2.23 (26\%)	7.71
Science				
Spain	3.12 (59\%)	1.74 (31\%)	0.68 (11\%)	5.56
Finland	3.13 (71\%)	1.07 (23\%)	0.32 (6\%)	4.52
Korea	3.58 (67\%)	1.22 (19\%)	1.02 (14\%)	5.84
Canada	4.00 (66\%)	1.55 (26\%)	0.55 (9\%)	6.13
Mean OECD	3.21 (60\%)	1.56 (29\%)	0.70 (13\%)	5.37
Mexico	3.16 (49\%)	2.12 (37\%)	1.01 (15\%)	6.24
Turkey	2.86 (51\%)	1.64 (28\%)	1.35 (21\%)	5.81
Greece	3.18 (48\%)	1.85 (26\%)	1.99 (26\%)	7.02
Reading				
Spain	3.60 (61\%)	1.89 (27\%)	0.58 (12\%)	6.10
Finland	3.13 (71\%)	1.14 (23\%)	0.36 (6\%)	4.63
Korea	4.48 (66\%)	1.40 (17\%)	1.45 (17\%)	7.34
Canada	4.43 (66\%)	1.74 (24\%)	0.87 (11\%)	7.06
Mean OECD	3.84 (60\%)	1.78 (28\%)	0.92 (14\%)	6.44
Mexico	3.73 (55\%)	2.06 (31\%)	1.10 (15\%)	6.87
Turkey	3.99 (55\%)	$2.18(26 \%)$	1.81 (20\%)	7.96
Greece	3.18 (51\%)	$1.94(28 \%)$	1.63 (22\%)	6.75

On the other hand, at the country level we observe a clear positive relationship between scholarly achievement and time input (see Table 2.3). This might be due to i) more hours studying leading to better achievement or ii) more able students being more productive studying and thus spending more time doing so. However, differentiating among the three types of time inputs reveals a negative relationship between hours of private lessons and achievement except for Korea and Greece, and for Turkey in maths and science. ${ }^{6}$ This finding could be explained by the fact that in most countries students of low ability attend private lessons more frequently than high ability students. Class time and scholarly achievement and time spent doing homework and scholarly achievement are positively correlated in all countries, with correlations ranging from .09 to .43 and .01 to .26 respectively.

When grouping students at the country level into low, moderate, strong, and top achievers, we observe that top achievers spend more time studying (doing homework) than any other group of achievers. ${ }^{7}$ Table 2.4 shows an increasing function of belonging to one of the four groups and spending time studying or being in class. However, there are some exceptions. In Canada strong achievers spend more time doing maths homework than top achievers and low achievers spend more time on their reading assignments than moderate achievers, and in Finland moderate achievers instead of low achievers spend the least time on science and reading assignments. For the subject of reading the same holds true for Korea and the OECD average, and in Spain, Mexico, Turkey, Greece, and for the OECD average, students who are strong achievers spend more time doing their reading assignments than top achievers. In all countries considered and across all three subjects (with the exception of the average OECD for reading) students in higher achievement groups are the ones who spend more time in the classroom.

However, when considering fractions instead of absolute time spent being in class or doing homework the relationship between scholarly achievement and time input weakens. ${ }^{8}$ While in Spain, Mexico, and Greece belonging to a higher achievement group is associated to a larger fraction of time spent in class, in Korea the relationship is inverted. Regarding all subjects, Korean top achievers spend a smaller fraction of their study time in class than low achievers.

[^5]Table 2.3: PISA 2006: Correlations between Study Time and PISA Scores

	Correl Class	ion PISA tes Homework	score and weekly Private Lessons	dedicated to: Total time
Mathematics				
Spain	0.21	0.11	-0.16	0.10
Finland	0.15	0.02	-0.17	0.05
Korea	0.31	0.41	0.33	0.48
Canada	0.20	0.04	-0.18	0.08
Mean OECD	0.26	0.07	-0.11	0.13
Mexico	0.26	0.03	-0.12	0.14
Turkey	0.35	0.23	0.24	0.35
Greece	0.28	0.14	0.18	0.26
Science				
Spain	0.36	0.21	-0.13	0.27
Finland	0.30	0.09	-0.16	0.20
Korea	0.24	0.25	0.19	0.32
Canada	0.28	0.12	-0.12	0.20
Mean OECD	0.30	0.06	-0.13	0.17
Mexico	0.09	0.01	-0.17	0.03
Turkey	0.43	0.26	0.29	0.41
Greece	0.43	0.13	0.17	0.33
Reading				
Spain	0.23	0.10	-0.27	0.08
Finland	0.15	0.10	-0.16	0.08
Korea	0.26	0.22	0.20	0.33
Canada	0.20	0.08	-0.16	0.10
Mean OECD	-0.06	0.03	0.08	0.01
Mexico	0.20	0.01	-0.17	0.08
Turkey	0.23	-0.01	-0.03	0.09
Greece	0.29	0.08	0.04	0.19

Table 2.4: PISA 2006: Study Time and Proficiency Level

Mathematics	Weekly hours dedicated to homework/class: according to type of achiever			
	Low (<420)	Moderate (420-544)	Strong(545-606)	Top(>607)
Spain	1.67/2.97	2.02/3.48	2.13/3.70	2.14/3.79
Finland	1.17/2.83	1.17/3.33	1.23/3.55	1.24/3.67
Korea	1.01/3.45	1.71/4.50	2.50/4.97	3.42/5.11
Canada	1.77/3.51	1.96/4.39	2.08/4.75	2.01/4.98
Mean OECD	1.84/3.18	1.93/3.96	1.97/4.37	$2.26 / 4.52$
Mexico	2.20/3.49	2.33/4.44	$2.40 / 4.94$	2.48/5.15
Turkey	1.93/3.22	2.58/4.29	3.13/4.93	3.20/5.19
Greece	1.77/2.86	1.99/3.58	2.36/4.04	2.76/4.35
Science	Low (<409)	Moderate (409-558)	Strong(559-632)	Top(>632)
Spain	1.34/2.23	1.65/2.95	2.21/4.05	2.52/4.86
Finland	1.08/2.15	0.99/2.74	1.09/3.31	1.21/3.79
Korea	0.72/2.84	1.07/3.50	1.49/3.89	1.84/3.98
Canada	1.21/2.71	1.47/3.73	1.69/4.41	1.79/4.89
Mean OECD	1.45/2.35	1.52/3.13	1.67/3.87	1.79/4.32
Mexico	2.11/3.00	2.13/3.26	2.19/3.85	2.56/4.43
Turkey	1.25/1.94	1.81/3.33	3.04/5.53	3.05/6.03
Greece	1.63/1.99	1.79/3.29	$2.25 / 4.22$	2.70/4.77
Reading	Low (<407)	Moderate (407-552)	Strong(553-625)	Top(>625)
Spain	1.92/2.97	1.94/3.48	2.07/3.70	2.02/3.79
Finland	1.14/2.83	1.05/3.33	1.20/3.55	1.30/3.67
Korea	1.41/3.45	1.15/4.50	1.51/4.97	1.85/5.11
Canada	1.74/3.51	1.68/4.39	1.80/4.75	1.95/4.98
Mean OECD	1.78/3.89	1.74/3.97	1.74/4.22	1.86/3.76
Mexico	2.05/3.49	2.06/4.44	2.09/4.94	2.02/5.15
Turkey	2.20/3.22	2.30/4.29	1.94/4.93	1.45/ 5.19
Greece	1.98/2.86	1.99/3.58	2.10/4.04	2.10/4.35

And while Spanish students across all groups of achievers dedicate around 30% of their time to homework, in Korea the fraction of study time dedicated to homework is clearly increasing in the type of achiever. For all other countries considered as well as for the OECD average, the fraction of time spent in maths or science class is increasing in the type of achiever (with the exception of Turkey) whereas for reading no clear relationship between the fraction of study time spent in class and performance emerges. Numbers of Table 2.4 thus seem to suggest a clearly positive and almost monotonous relationship between scholarly achievement and time input.

3 Time Input, Family Background, and School Environment

In order to better analyze the effect of individual study time on scholarly achievement we consider the probability of belonging to one of the four groups of achievers as a function of students' effort in terms of homework time $\left(e_{i}\right)$, his family background $\left(b_{i}\right)$ defined by the highest occupation among his parents, school characteristics, i.e. private or public school $\left(a_{i}\right)$, and individual characteristics $\left(z_{i}\right)$, namely gender and immigrant background. We thus formulate and estimate the following logit regression,

$$
\begin{equation*}
z_{k}=\beta_{0}+\beta_{1} e_{i}+\beta_{2} a i+\beta_{3} b_{i}+\beta_{4} z_{j} \tag{3.1}
\end{equation*}
$$

with $k=1,2,3,4$, denoting the four different groups of achievers. The reference group in all countries is a male public school student without immigrant background whose parents' occupation is of low white-collar type. ${ }^{9}$

A strong relationship between the probability of belonging to one of these different groups of achievers and certain aspects of a student's family background and school environment emerges. In particular, for mathematics being a girl reduces the probability of being a top achiever (or strong achiever in Mexico) across all countries considered. With the exception of Finland and Korea where the effect is not statistically significant, the same holds true for science. On the contrary, the probability of being a top or strong achiever in reading is positively related to being a girl. In Spain, Finland, and the average OECD being an immigrant of 1 st or 2 nd generation reduces the probability of being a strong or top achiever while it increases the probability of being a low achiever in maths and science. Considering aspects of the students' school environment, in Korea and Turkey,

[^6]being a public or private school student has no effect on the probability of belonging to one of the different groups of achievers. In Finland however, private school students have a higher probability of being low achievers in maths and science and a lower probability of being low achievers in reading, but also a lower probability of being strong achievers in maths. On the other hand for the average OECD as well as for Spain, Canada, Mexico, and Greece private school attendance tends to be related to a higher probability of better scholarly achievement.

Furthermore a student's family background clearly affects the probability of belonging to a certain group of achiever. Having a parent whose occupation is classified as high whitecollar increases the probability of being in the highest group of achiever in any of the three subjects while it decreases the probability of being a low achiever in maths and science. Surprisingly, the probability of being a low achiever in reading is higher for students whose parents are high white collar employees compared to those with parents whose occupation is classified as low white collar. Finally, the variable homework time for the corresponding subject tends to show the expected sign, increasing the probability of being a top or strong achiever while reducing the probability of being a low or moderate achiever. However, only in the case of Korea are coefficients for this variable significant across all subjects and across all groups of achievement. In general, the relationship between homework time and the probability of being in high achiever tends to be less significant for the subject of language/reading compared to maths or science. Given this strong relationship between scholarly achievement and aspects of a student's family background and school environment the question arises if scholarly achievement is mainly determined by time input or if differences in achievement arise because of other factors associated with different aspects of family background and school environment. Put differently: Do sons of non-migrant parents with white-collar occupations who attend private schools perform better because they spend more time studying or is their performance due to other factors that differentiate them from immigrant working class girls who attend public schools? In case difference in performance turn out to be due to differences in time inputs results of Table 2.4 could be confirmed. However, mean study time (class time and homework time) and average performance of different groups displayed in Tables 3.5 and 3.6 show that this is generally not the case.

Table 3.5: PISA 2006: Study time and Individual Characteristics

	Boys	Weekly hours dedicated to homework/class (score): by group		
Mathematics				
Spain	1.7/3.3 (484)	2.2/3.5 (476)	2.0/3.2(429)	2.0/3.4 (485)
Finland	1.1/3.3 (554)	1.3/3.6 (543)	1.4/3.1 (466)	$1.2 / 3.5$ (550)
Korea**	2.3/4.7 (552)	2.3/4.8 (543)		
Canada	1.7/4.4 (534)	2.2/4.7 (520)	2.5/4.5 (524)	1.8/4.5 (531)
Mean OECD*	1.8/3.8 (489)	2.1/4.0 (478)	$2.1 / 3.7(458)$	2.0/3.9(489)
Mexico	$2.2 / 3.9(410)$	2.3/4.0 (401)	2.4/2.9 (321)	2.3/4.0 (411)
Turkey	2.2/3.7 (427)	2.5/3.9 (421)	1.9/3.4 (456)	$2.3 / 3.8$ (425)
Greece	$2.1 / 3.4$ (461)	1.9/3.5 (457)	1.8/3.2 (424)	2.0/3.5 (463)
Science				
Spain	1.5/3.0 (491)	2.0/3.3 (486)	1.8/2.9 (434)	1.7/3.2 (494)
Finland	1.0/2.9 (562)	1.2/3.4 (565)	1.1/2.8 (472)	1.1/3.1(566)
Korea**	1.2/3.6 (521)	1.2/3.6 (523)		
Canada	1.4/3.8 (536)	1.8/4.2 (532)	$2.1 / 4.0(524)$	1.4/4.0(541)
Mean OECD	1.5/3.1 (492)	1.7/3.3 (490)	1.7/3.1(457)	1.5/3.2(497)
Mexico	2.1/3.1 (413)	2.2/3.2 (406)	$2.2 / 3.0(319)$	2.1/3.2 (415)
Turkey	1.6/2.9 (418)	1.8/2.9(430)	1.4/3.1 (440)	1.7/2.9 (425)
Greece	1.9/3.0 (468)	1.8/3.4 (479)	1.5/2.6 (433)	1.9/3.2 (478)
Reading				
Spain	1.6/3.5 (443)	2.1/3.8 (479)	1.9/3.2 (415)	1.9/3.6 (465)
Finland	1.0/3.0 (521)	1.3/3.3 (572)	1.2/2.9 (490)	1.1/3.1 (549)
Korea**	1.4/4.4 (539)	1.4/4.5 (574)		
Canada	1.5/4.2 (511)	2.0/4.6(543)	2.1/4.3 (523)	1.6/4.5 (532)
Mean OECD	1.6/3.7(466)	1.9/4.0(502)	1.9/3.6(455)	1.8/3.9 (488)
Mexico	2.0/3.7 (393)	2.1/3.8 (427)	2.2/2.8 (299)	2.1/3.8 (417)
Turkey	1.9/3.8 (427)	2.5/4.2 (471)	2.2/4.3 (437)	$2.2 / 4.0$ (448)
Greece	1.6/2.7 (432)	2.2/3.6 (488)	1.7/2.7 (431)	2.0/3.2 (464)

**For Korea, means for migrants and natives are not considered given that there is only one student in the PISA 2006 sample who is a 2 nd generation migrant.

In particular girls clearly spend more time studying in class and at home but perform worse in math and science assignments. With the only exception of Greece where girls spend less time studying math but obtain better results, we observe the same pattern in all other countries considered as well as for the OECD average. While Finish girls outperform Finish boys in science they also do spend more time studying than boys.

Focusing on individual study time, i.e. homework time, we observe a similar phenomenon when comparing students according to their migratory background. Students who are 1st or 2nd generation immigrants tend to spend more time doing homework but perform worse. The only exception is Greece where immigrant students spend less time doing homework and perform worse and Turkey where 1st or 2nd generation migrants spend less time doing math or science homework but obtain better results than native students. However, different from the comparison between boys and girls, immigrant students tend to receive fewer classes, equating or even lowering their sum of class time and study time received, compared to native students. Hence, when grouping students according to different individual characteristics, the positive relationship between more individual study time (homework time) and better scholarly achievement cannot be confirmed. For the comparison between boys and girls even the positive relationship between the sum of class time and study time and scholarly achievement is generally rejected.

On the other hand, when grouping students according to their parents' occupation or the ownership of their schools, both the positive relationship between hours of study time (class time plus homework time) and better performance, as well as the positive relationship between individual study time (homework time) and scholarly achievement are maintained (see Table 3.6). Children whose parents have a white-collar occupation perform better in all countries, with the exception of Mexico for mathematics and science and Turkey for reading. Students whose parents are white-collar employees also spend more time doing homework and receive more classes compared to children of working class background. Considering the OECD average, working class children spend more time doing reading assignments than those whose parents have white-collar occupations, while there are no differences in time spent on science homework. Regarding mathematics white-collar children spend more time on their homework than working class children. However, the sum of class time and homework time is always larger or at least equal for children whose parents hold a white-collar occupation, which might be the central reason why they always outperform children of blue-collar parents.

Table 3.6: PISA 2006: Study time, Parental Background and School Environment

	Weekly hours dedicated to homework/class (score): by group			
	bluecollar	whitecollar	public	private
Mathematics				
Spain	1.9/3.3 (457)	2.0/3.5 (495)	1.9/3.3 (466)	$2.1 / 3.7(505)$
Finland	1.2/3.4 (525)	1.2/3.5 (554)	1.2/3.5 (549)	1.6/3.3 (533)
Korea	2.0/4.6 (529)	2.4/4.7 (551)	2.2/4.6 (549)	2.4/4.8 (545)
Canada	1.8/4.3 (496)	2.0/4.6 (534)	2.0/4.5 (524)	2.4/4.5 (575)
Mean OECD	1.9/3.7 (438)	2.0/4.0(501)	2.0/3.9(476)	2.0/4.1 (518)
Mexico	2.3/3.8 (383)	2.3/4.1 (428)	2.3/3.9 (398)	$2.1 / 4.3$ (448)
Turkey	2.2/3.6(404)	2.4/4.1(446)	2.3/3.8 (423)	2.5/5.2 (444)
Greece	1.8/3.2(423)	2.1/3.6 (476)	2.0/3.4 (455)	$2.1 / 4.2(526)$
Science				
Spain	1.6/2.8 (463)	1.8/3.3 (504)	1.6/2.8 (475)	1.9/3.6 (513)
Finland	1.0/3.0 (540)	1.1/3.2 (569)	1.1/3.1 (564)	1.3/3.5 (557)
Korea	1.1/3.5 (507)	1.3/3.6 (525)	1.3/3.7 (524)	1.2/3.4 (520)
Canada	1.4/3.6 (497)	1.6/4.1 (543)	1.6/4.0 (532)	1.7/4.0 (575)
Mean OECD	1.6/2.8(442)	1.6/3.3 (509)	1.6/3.2(485)	1.5/3.3(520)
Mexico	2.1/3.1 (388)	2.1/3.2 (432)	2.2/3.1 (402)	2.0/3.6 (450)
Turkey	1.6/2.6 (406)	1.8/3.2 (443)	1.6/2.9 (424)	1.6/2.7 (431)
Greece	1.6/2.6 (436)	1.9/3.4 (490)	1.8/3.1 (469)	2.1/4.6 (544)
Reading				
Spain	1.8/3.5 (438)	1.9/3.7 (475)	1.8/3.5 (446)	2.0/3.7 (488)
Finland	1.0/3.1 (523)	1.2/3.2 (553)	1.1/3.1 (547)	1.3/2.9 (540)
Korea	1.2/4.4 (543)	1.5/4.5 (559)	1.4/4.4 (554)	1.4/4.6 (558)
Canada	1.7/4.2 (489)	1.8/4.5 (536)	1.8/4.4 (524)	1.6/4.3 (573)
Mean OECD	1.9/3.7 (437)	1.7/3.9 (504)	1.8/3.8 (477)	1.5/4.0(510)
Mexico	2.0/3.7 (385)	2.1/3.8 (436)	2.1/3.7 (402)	1.9/4.0 (459)
Turkey	2.2/3.8 (427)	2.1/4.2 (468)	2.2/4.0 (447)	2.3/5.0 (441)
Greece	1.8/2.9 (419)	2.0/3.3 (478)	2.0/3.2 (455)	1.7/3.6 (542)

Similarly, private school students tend to spend more time doing homework and they receive more classes than those attending public schools with these additional hours of time input being associated to better achievement. In Mexico private school students spend less time doing math or science homework but given additional hours in class their total study time is larger and they perform better. On the other hand, in Finland those attending private schools do worse in science and math even though they spend more total time doing homework or being in a classroom. However, being in class represents a smaller fraction of total study time for Finish private school students compared to public school students. In Korea public school students do also better in maths and science, spending more time on science and less on maths than those attending private schools. However, in reading Korean private school students spend more time and perform better than those attending public schools.

4 Production Function of Education - Effort and other determinants of scholarly achievement in PISA

More individual effort in terms of time spent doing homework is not necessarily linked to better achievement, as descriptive statistics of Tables 3.5 and 3.6 have shown. Other factors such as parental background and school environment seem to play an important role in determining scholarly performance. In this part of the paper we thus propose an analysis that simultaneously takes into account various factors of scholarly achievement, allowing us to determine the impact of each one of these factors and to estimate marginal rates of substitution among different factors. This latter step permits us to address questions like: How many more hours of homework time are necessary to offset the negative effect caused by fewer classes? Or can children from less advantageous family backgrounds compensate by more individual study time? The approach in this section follows Polacheck et al [1978] who propose a production function for education of the CPES type ('constant partial elasticity of substitution') and estimate marginal rates of substitution between class time, individual study time, and ability for college students. The authors find that less able students can compensate for their disadvantages by spending more time studying. This approach allows us to estimate marginal rates of substitution among different inputs for the production of education and to thus study the existence of complementarities between individual effort, family background, and school environment. Similarly we specify a flexible functional form for the production function of scholarly achievement

$$
\begin{equation*}
q=\gamma\left[\sum_{i=1}^{n} \delta_{i} X_{i}^{-\rho}\right]^{-\mu / \rho}+\epsilon_{i} \tag{4.2}
\end{equation*}
$$

with $i=1, \ldots . . n$, being the number of explanatory variables and q the measure of scholarly achievement. We impose $\sum_{i=1}^{n} \delta_{i}=1$, interpreting each coefficient as the share of the corresponding variable in the production of scholarly achievement. Marginal products of each input factor are given by:

$$
\begin{equation*}
M P_{i}=\frac{\partial q}{\partial X_{i}}=\frac{q^{\frac{\mu+\rho}{\mu}}}{X_{i}^{\rho+1}} \mu \delta_{i} \gamma^{-\rho / \mu} \tag{4.3}
\end{equation*}
$$

Given marginal products we can estimate the marginal rates of substitution of X_{i} for X_{j}, by

$$
M R S_{i j}=\frac{\delta_{i}}{\delta_{j}} \frac{X}{j}_{X_{i}}{ }^{\frac{1}{\sigma_{i j}}}
$$

where $i \neq j$ and $\sigma_{i j}=\frac{1}{1+\rho}$.

For our analysis we estimate scholarly achievement q measured by the PISA test score, as a function of the students' effort in terms of homework time $\left(X_{1}\right)$, class time $\left(X_{2}\right)$, his family background (X_{3}) measured by an index of socioeconomic background calculated by PISA and characteristics of his school environment $\left(X_{4}\right)$ and $\left(X_{5}\right)$, in particular the number of computers to students and the teacher-student ratio. ${ }^{10}$ We interpret the computers to students ratio as an indicator for a school's funding and we include the teacher-student ratio in order to tests its highly disputed effects on scholarly achievement. ${ }^{11}$ The index of parental socio-economic background reported by PISA includes information on parental occupational status, parents' years of education - the highest among the two parents and household wealth measured by an index of household possessions. The original index has been adjusted to a positive scale, adding a values of 10 in order to avoid negative values unsuitable for estimation of Equation 4.2. ${ }^{12}$

Figure 4.1 displays the results of the nonlinear least square estimation of Equation 4.2 for science and mathematics for the seven countries considered as well as for the OECD average.

[^7]Figure 4.1: Nonlinear Estimation

All parameters are significant with the exception of the coefficient δ_{1} related to homework time for students in Finland and for science homework in Canada and Greece and the coefficient δ_{4} related to the computer-student ratio in Finland and Canada for the science score and Spain for the math score. ${ }^{13}$ To be able to better interpret results we calculate the marginal products (Equation 4.3) of each factor for both subjects (evaluated at the weighted means for each group). The marginal product of one additional hour of class time per week in science and math is clearly positive across all countries and lays in the range of an increase of 1.2% to 3.1% in the test score (evaluated at the mean PISA score), with the exception of science classes in Mexico with an additional hour incrementing the science score by only 0.3%. One additional unit, i.e. one standard deviation, of the socioeconomic EDSCS index has an important effect on the PISA test score in all countries; ranging from around 4% to 7% for most countries for both subjects. One additional hour of individual study time has strong effects in Korea, even stronger than one additional hour of class time, increasing students' test scores by $2-3 \%$. In all other countries effects are clearly smaller or even negative for Canada, and the average OECD and Mexico and Greece for the science test score. This seems to indicate that in most countries more individual effort, everything else equal, does not lead to better scholarly achievement and can even be counterproductive.

The other two variables concerning school environment show contradicting signs but have little effect on the PISA tests core for most countries. More computers per students, i.e. one more computer per 100 students is associated to a higher PISA test score in Finland, Greece and Mexico but to a lower test score in Spain, Korea, and Turkey. While more computers per student might indicate better funding in some cases and thus be associated to a higher test score, this variable might also indicate less funding in other areas which might be better for improving students' test scores, thus related to lower test scores. Contrary to our expectations a higher teacher-student ratio is associated to slightly worse achievement in most countries. PISA test scores are reduced in all countries but Korea, the average OECD and Turkey when considering math scores only. In Korea the effect of more teachers is quite important. Increasing the number of teachers by one for 10 Korean students leads to an increase in science and math scores by 9% and 17% respectively, while in Canada, Mexico, and Greece one additional teachers are associated to a reduction test score of around $4-5 \%$.

In a last step we consider the marginal rates of substitution among factors. Figure 4.2 displays matrices for the marginal rates of substitution.

[^8]Figure 4.2: Marginal Rates of Substitution

SCIENCE	homework time	$\begin{aligned} & \text { class } \\ & \text { time } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { index_ESCS } \\ \text { adjusted } \end{array}$	computers per 100 students	teachers per 10 students	MATH	homework time	$\begin{aligned} & \text { class } \\ & \text { time } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { index_ESCS } \\ \text { adjusted } \end{array}$	computers per 100 students	teachers per 10 students
SPAIN											
homeworktime	1,00	0,06	0,03	-2,36	-0,34	homeworktime	1,00	0,30	0,10	-18,81	-0,14
classtime	16,18	1,00	0,55	-38,13	-5,52	classtime	3,35	1,00	0,33	-63,02	-0,46
index_ESCS (adj.)	29,30	1,81	1,00	-69,04	-10,00	index_ESCS (adj.)	10,28	3,07	1,00	-193,29	-1,41
computers per 100	-0,42	-0,03	-0,01	1,00	0,14	computers per 100	-0,05	-0,02	-0,01	1,00	0,01
teachers per 10	-2,93	-0,18	-0,10	6,90	1,00	teachers per 10	-7,27	-2,17	-0,71	136,70	1,00
FINLAND											
homeworktime	1,00	0,17	0,08	43,13	-0,23	homeworktime	1,00	0,20	0,05	8,48	-0,26
classtime	5,79	1,00	0,46	249,82	-1,35	classtime	4,90	1,00	0,25	41,54	-1,26
index_ESCS (adj.)	12,61	2,18	1,00	543,99	-2,93	index_ESCS (adj.)	19,58	4,00	1,00	166,01	-5,04
computers per 100	0,02	0,00	0,00	1,00	-0,01	computers per 100	0,12	0,02	0,01	1,00	-0,03
teachers per 10	-4,30	-0,74	-0,34	-185,42	1,00	teachers per 10	-3,88	-0,79	-0,20	-32,94	1,00
KOREA											
homeworktime	1,00	1,66	0,49	-11,08	0,23	homeworktime	1,00	1,33	0,66	-13,76	0,17
classtime	0,60	1,00	0,29	-6,66	0,14	classtime	0,75	1,00	0,49	-10,31	0,12
index_ESCS (adj.)	2,05	3,41	1,00	-22,75	0,47	index_ESCS (adj.)	1,52	2,03	1,00	-20,94	0,25
computers per 100	-0,09	-0,15	-0,04	1,00	-0,02	students/computers	-0,07	-0,10	-0,05	1,00	-0,01
teachers per 10	4,40	7,32	2,14	-48,76	1,00	students/teacher	6,06	8,08	3,98	-83,32	1,00
CANADA											
homeworktime	1,00	-0,07	-0,02	-16,95	0,02	homeworktime	1,00	-0,41	-0,10	18,10	0,13
classtime	-14,64	1,00	0,29	248,08	-0,29	classtime	-2,43	1,00	0,24	-43,93	-0,32
index_ESCS (adj.)	-49,98	3,41	1,00	846,99	-0,98	index_ESCS (adj.)	-9,93	4,09	1,00	-179,78	-1,30
computers per 100	-0,06	0,00	0,00	1,00	0,00	computers per 100	0,06	-0,02	-0,01	1,00	0,01
teachers per 10	50,91	-3,48	-1,02	-862,79	1,00	teachers per 10	7,64	-3,15	-0,77	138,39	1,00
MEXICO											
homeworktime	1,00	-0,08	-0,02	-0,29	0,02	homeworktime	1,00	0,07	0,02	0,44	-0,04
classtime	-13,14	1,00	0,32	3,85	-0,23	classtime	14,41	1,00	0,35	6,27	-0,53
index_ESCS (adj.)	-41,68	3,17	1,00	12,22	-0,73	index_ESCS (adj.)	41,07	2,85	1,00	17,88	-1,51
computers per 100	-3,41	0,26	0,08	1,00	-0,06	computers per 100	2,30	0,16	0,06	1,00	-0,08
teachers per 10	57,23	-4,36	-1,37	-16,78	1,00	teachers per 10	-27,18	-1,89	-0,66	-11,83	1,00

With our initial questions of this section in mind: How many more hours of homework time are necessary to offset the negative effect caused by fewer classes? Or can children from less advantageous family backgrounds compensate by more individual study time? , results of Figure 4.2 are rather disappointing. Given the production function specified before, it seems almost impossible for students to compensate for fewer science classes by more individual study time. As expected and as results of Figure 4.1 already indicated, for countries where marginal products of homework time are negative, students cannot compensate for fewer classes by more study time. In case science classes are reduced it is even optimal for students in Canada, Greece, Mexico and the average OECD to reduce their individual study time, given its negative marginal product. On the other hand compensation would require the enormous increase of science homework time of 5.8, 9.2 or even 16.2 hours a week for each hour of class time in Finland, Spain, or Turkey. Results for Korea stick out as rather counterintuitive, with students being able to compensate for 1 hour less of science class by 36 minutes of science homework, something that was already indicated by the larger marginal product for homework time compared to class time in Korea. Considering marginal rates of substitution calculated for the PISA math score, results are a little more promising. Only Canada and the average OECD show negative rates of substitution and thus do not allow for any compensation of fewer math classes by
more individual study time. While additional homework hours required to make up for the reduction of one hour of math class a week are somewhat lower and are 2.6, 3.4, 4.2, 4.9 and to 14.2 hours a week in Turkey, Spain, Greece, Finland and Mexico respectively. The result for Korea again sticks out as 45 minutes of additional homework time make up for one hour of math class.

Considering the possibility of compensating for a less advantageous family backgrounds by putting in more individual study time, results are even worse. While compensating for fewer classes seems to require a large or even impossible increase in homework time, compensation for a lower socio-economic status (by about one standard deviation) requires more than double the amount of additional individual study time. Ranging from a relatively low and possible 1.5 and 2 hours in Korea to an impossible 29 hours a week for science in Spain and 41 hours of math homework in Mexico, even in Finland compensating for a lower socio-economic background would require an increase of 12 or 19.6 hours of homework time. It seems more promising to consider the possibility of compensating for a lower socioeconomic background by additional class time. Across all countries and for both subjects, math and science, increasing hours of class time by between 1.8 and 4.1 hours a week could compensate for a lower socioeconomic background. Results for variables concerning the school environment, i.e. computers and teachers relative to students are mixed. While in some countries like Spain and Finland more teachers cannot compensate at all for fewer classes or study time or lower socio-economic background, in Korea, more teachers can make up for deficiencies in all of these areas. By hiring between 1 and 5 more teachers for any 100 students the effect of the reduction of these input factors can be set off. More computers per students cannot offset the effect of fewer classes, homework of lower parental background in Korea, Spain, nor Turkey while in Finland Mexico and Greece there seems to be the possibility of investing in computers to offset the negative effect of the reduction in these other inputs to education. Note though that the required investment would be particularly large n Finland, requiring an increase of up to 544 computers per 100 students to offset the effect of a lower socioeconomic background.

5 Conclusion

Time input is one of the main ingredient for scholarly achievement. Looking at data from PISA 2006, we find that across countries, absolute time spent studying is negatively related to scholarly achievement, while a larger fraction of total study time spent in the classroom is associated to better performance. However, at the country level more total study time (class time plus homework time) is associated to better performance. When
considering different groups of students, this positive relationship between time input and scholarly achievement breaks down. In particular girls and students with a migratory background spend more time in the class room and doing homework but perform worse. We estimate a non-linear production function for education and the resulting marginal rates of substitution among different input factors for the production of education as different time inputs, family background, and school environment. We find that compensating for fewer class time or lower socio-economic background by individual study time, is enormously time-costly or even impossible for students in Spain, as well as for students in the three best and the three worst performing OECD countries. Our results also show that in particular additional hours of class time rather than more teachers or better-equipped schools can compensate for a less advantageous family background.

In order to be able to further explain cross country differences in the effectiveness of time inputs a closer look at students' studying techniques is necessary. We think that along this line an interesting road for future research could emerge that might help us to better understand the negative cross-country relationship between individual study time and scholarly achievement as well as the differences in effectiveness of time input across genders and socio-economic groups of students.

References

Becker, Gary S. (1962): "Investment in Human Capital: A Theoretical Analisis", The Journal of Political Economy, 70 (5), (Part 2: Investment in Human Beings), 9-49.

Ben-Porath, Yoram (1967): "The Production of Human Capital and the LifeCycle of Earnings", The Journal of Political Economy, 75 (4), 352-365.

Bønesronning, Hans (2004): "The Determinants of Parental Effort in Education Production: Do Parents Respond to Changes in Class Size?", Economics of Education Review, 23, 1-9.

Bressoux, Pascal; Kramarz, Francis and Corinne Prost (2004): "Teachers' Training, Class Size and Students' Outcomes: Learning from Administrative Forecasting Mistakes", Economic Journal, 119(536), 540-561.

Ciccone, Antonio and Wallter Garcia-Fontes (2008): "The Quality of the Catalan and Spanish Education Systems", Universidad Pompeu Fabra.

Cooley, Jane (2010): "Desegregation and the Achievement Gap: Do Diverse Peers Help?", Department of Economics, University of Wisconsin-Madison.

Correa, Hector and Gene W. Gruver (1987): "Teacher-Student Interaction: A Game Theoretic Extension of the Economic Theory of Education", Mathematical Social Sciences, 13, 19-47.

Costrell, Robert M. (1994): "A Simple Model of Educational Standards", The American Economic Review, 83 (4), 956-971.

De Bortoli, Lisa and John Cresswell (2004): "Australia's Indigenous Students in PISA 2000 : Results from an International Study", Indigenous Education.

De Fraja, Gianni and Pedro Landeras (2006): "Could Do Better: The Effectiveness of Incentives and Competition in Schools", Journal of Public Economics, 90, 189-213.

De Fraja, Giani; Oliveira, Tania and Luisa Zanchi (2010):"Must Try Harder. Evaluating the Role of Effort on Examination Results", Review of Economics and Statistics, 92, 577-597.

Fan, Xitao and Michael Chen (2001): "Parental Involvement and Students' Academic Achievement: a Meta-analysis", Educational Psychology Review, 13, 1-22.

Fuchs, Thomas and Ludger Wößmann (2007): "What accounts for international differences in student performance? A re-examnination using PISA data", Empirical Economics, 32, 433-464.

Frempong, George and Xin Ma (2006): "Improving Reading Skills: Policy Sensitive Non-School and Family Factors", Final Report Learning Policy Directorate, Strategic Policy and Planning, Human Resources and Skills Development, Canada.

Hanushek, Eric and Ludger Woessmann (2010): "The Economics of International Differences in Educational Achievement", NBER Working Paper, No. 15949.

Kotte, Dieter; Lietz, Petra and Maria Martinez Lopez (2005): "Factors influencing reading achievement in Germany and Spain: Evidence from PISA 2000", International Education Journal, 6(1), 113-124.

Landeras, Pedro (2010): "The Effect of Family Background on Student Effort", Documento de Trabajo 2010-30, FEDEA.

Lin, Chung-Cheng and Ching-Chong Lai (1996): "Why Parents and Teachers May Prefer Punishment to Encouragement for Child Education?", Southern Economic Journal, 63, 244-247

Looker, Dianne and Victor Thiessen (2004): "Aspirations of Canadian Youth for Higher Education", Final Report, Learning Policy Directorate, Strategic Policy and Planning, Human Resources and Skills Development, Canada.

Ministry of Education of New Zealand (2002): PISA 2000, Overview of Selected New Zealand Findings.

OECD (2010): PISA 2009 Results: Executive Summary, Organization for Economic Co-Operation and Development, Paris.

OECD (2009): PISA 2009. Assesment Framework, Key competencies in reading, mathematics and science, Organization for Economic Co-Operation and Development, Paris.

OECD (2009): PISA Data Analysis Manual SPSS Second Edition, Organization for Economic Co-Operation and Development, Paris.

OECD (2008): Informe PISA 2006. Competencias científcas para el mundo del mañana, Organization for Economic Co-Operation and Development, Paris.

OECD (2007): PISA 2006: Science Competencies for Tomorrow's World Executive Summary, Organization for Economic Co-Operation and Development, Paris.

OECD (2004): Learning for Tomorrow's World First Results from PISA 2003, Organization for Economic Co-Operation and Development, Paris.

OECD (2004): Messages from PISA 2000, Organization for Economic Co-Operation and Development, Paris.

Polacheck, Solomon W.; Knieser Thomas J. and Henrick J. Harwood (1978): "Educational Production Function", Journal of Educational Statistics, 3 (2), 209-231.

Rindermann, Heiner and Stephen J. Ceci (2009): "Educational Policy and Country Outcomes in International Cognitive Studies", Perspectives on Psychological Science, 4 (6), 551-577.

Stinebrickner, Ralph and Stinebrickner, Todd R. (2008): "The Causal Effect of Studying on Academic Performance", The B.E. Journal of Economic Analysis \& Policy, 8/1 (Frontiers), Article 14.

Schultz, Theodore W. (1960): "Capital Formation by Education", The Journal of Political Economy, 68 (6), 571-583.

Trautwein, Ulrich (2007): "The homework-achievement relation reconsidered: Differentiating homework time, homework frequency and homework effort", Learning and Instruction, 17, 372-388.

Woessmann, Ludger and Thomas Fuchs (2008): "What Accounts for International Differences in Student Performance? A Re-examination using PISA Data,<<< in The Economics of Education and Training, eds. Christian Dustmann, Bernd Fitzenberger and Stephen Machin, Heidelberg.

Worldbank (2011): World Bank Data: http : //data.worldbank.org/indicator/

A-1 Appendix

Table A-1.1: Fractions of Study Time and Proficiency Level

Mathematics	Fraction of weekly hours dedicated to class/homework: according to type of achiever			
	Low (<420)	Moderate (420-544)	Strong(545-606)	Top(>606)
Spain	0.28/ 0.55	0.30/0.58	0.31/0.61	0.32/0.64
Finland	0.24/0.63	0.23/0.70	0.23/0.72	0.23/0.74
Korea	0.18/0.69	0.19/0.63	0.23/0.55	0.28/0.48
Canada	0.27/0.55	0.26/0.62	0.26/0.66	$0.25 / 0.69$
Mean OECD	0.29/0.54	0.27/0.61	0.27/0.64	0.28/0.64
Mexico	0.33/0.52	0.30/0.59	0.28/ 0.64	$0.28 / 0.66$
Turkey	0.27/0.52	0.27/0.52	0.27/0.49	0.26/0.50
Greece	0.27/0.50	0.24/ 0.50	0.25/0.50	0.27/0.51
Science	Low (<409)	Moderate (409-558)	Strong(559-632)	Top(>632)
Spain	0.30/ 0.55	0.31/0.59	0.32/0.63	0.31/0.66
Finland	0.27/0.60	0.23/ 0.69	0.23/0.73	0.23/0.74
Korea	0.17/0.74	0.18/0.70	0.20/0.64	0.23/0 . 62
Canada	0.28/0.58	0.26/0.65	0.26/0.69	0.25/0.72
Mean OECD	0.32/0.53	0.28/ 0.61	0.27/0.66	0.26/0.69
Mexico	0.37/0.48	0.37/0.51	0.34/0.59	0.33/0.60
Turkey	0.30/0.51	0.27/0.54	0.25/0.52	0.23/0.52
Greece	0.31/0.42	0.24/0.51	0.24/0.53	0.25/0.53
Reading	Low (<407)	Moderate (407-552)	Strong(553-625)	Top(>625)
Spain	0.30/0.64	0.30/0.64	0.32/0.67	0.31/0.69
Finland	0.23/0.71	0.22/0.70	0.24/0.72	0.25/0.71
Korea	0.17/0.67	0.16/0.70	0.18/0.65	0.20/0.61
Canada	0.24/0.66	0.24/0.64	0.24/0.69	0.25/0.71
Mean OECD	0.26/0.63	0.25/0.65	0.25/0.68	0.28/0.59
Mexico	0.30/0.58	0.30/0.59	0.29/0.65	0.27/0.67
Turkey	0.25/0.56	0.26/0.56	0.22/0.63	0.19/0.68
Greece	0.27/0.53	0.27/0.53	0.27/0.56	$0.27 / 0.59$

Figure A-1: Table A2: Logit: Resultados

Subject:	Science				Mathematics				Reading			
Achievers:	low	moderate	strong	top	low	moderate	strong	top	low	moderate	strong	top
Average OECD												
girl	$\begin{aligned} & \hline-0.004 \\ & (0.046) \end{aligned}$	$\begin{aligned} & \hline 0.164^{\star \star *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & \hline-0.078^{*} \\ & (0.044) \end{aligned}$	$\begin{aligned} & \hline-0.350^{* * *} \\ & (0.062) \end{aligned}$	$\begin{aligned} & \hline 0.229^{* * *} \\ & (0.040) \end{aligned}$	$\begin{aligned} & \hline 0.135^{* * *} \\ & (0.029) \end{aligned}$	$\begin{aligned} & \hline-0.149^{* * *} \\ & (0.038) \end{aligned}$	$\begin{aligned} & \hline-0.504^{* * *} \\ & (0.043) \end{aligned}$	$\begin{aligned} & 0.814^{* * *} \\ & (0.062) \end{aligned}$	$\begin{aligned} & \hline 0.036 \\ & (0.025) \end{aligned}$	$\begin{aligned} & \hline 0.335^{* \star \star} \\ & (0.030) \end{aligned}$	$0.520^{\star \star \star}$ (0.054)
private school	$\begin{aligned} & -0.476^{* * *} \\ & (0.084) \end{aligned}$	$\begin{aligned} & -0.026 \\ & (0.042) \end{aligned}$	$\begin{aligned} & 0.232^{* * *} \\ & (0.056) \end{aligned}$	$\begin{aligned} & 0.311^{* * *} \\ & (0.082) \end{aligned}$	$\left\{\begin{array}{l} -0.592^{\star \star *} \\ (0.091) \end{array}\right.$	$\begin{aligned} & -0.104^{\star \star} \\ & (0.043) \end{aligned}$	$\begin{aligned} & 0.266^{* * *} \\ & (0.055) \end{aligned}$	$\begin{aligned} & 0.530^{* * *} \\ & (0.070) \end{aligned}$	$\begin{aligned} & 0.475^{\star * *} \\ & (0.116) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.179^{* * *} \\ & (0.054) \end{aligned}$	$\begin{aligned} & 0.243^{* * *} \\ & (0.065) \end{aligned}$
1st or 2nd generation immigrant	0.486***	-0.009	-0.431***	-0.476***	0.195**	0.097	-0.280***	-0.404***	-0.548***	-0.118***	-0.178***	-0.170**
Highest occupation among parents	(0.072)	(0.054)	(0.092)	(0.100)	(0.076)	(0.076)	(0.089)	(0.104)	(0.093)	(0.045)	(0.055)	(0.080)
High white-collar occupation	$\begin{array}{\|l} -0.583^{\star * *} \\ (0.044) \end{array}$	$\begin{aligned} & -0.158^{* * *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.370^{* * *} \\ & (0.042) \end{aligned}$	$\begin{aligned} & 0.687^{* * *} \\ & (0.064) \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.602^{\star \star \star} \\ & (0.041) \end{aligned}\right.$	$\begin{aligned} & -0.123^{\star * *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.353^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.722^{* * *} \\ & (0.049) \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.721^{* * *} \\ & (0.060) \end{aligned}\right.$	$\begin{aligned} & -0.213^{\star \star *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.448^{* \star \star} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.812^{\star * *} \\ & (0.056) \end{aligned}$
High blue-collar occupation	$\begin{aligned} & 0.538^{* * *} \\ & (0.055) \end{aligned}$	$\begin{aligned} & -0.092^{\star *} \\ & (0.043) \end{aligned}$	$\begin{aligned} & -0.491^{* * *} \\ & (0.055) \end{aligned}$	$\begin{aligned} & -0.725^{* * *} \\ & (0.106) \end{aligned}$	$\begin{aligned} & 0.559^{\star * *} \\ & (0.051) \end{aligned}$	$\begin{aligned} & -0.164^{* * *} \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.412^{\star * *} \\ & (0.056) \end{aligned}$	$\begin{aligned} & -0.570^{\star * *} \\ & (0.077) \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.591^{* * *} \\ & (0.079) \end{aligned}\right.$	$\begin{aligned} & -0.145^{\star \star *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & -0.453^{* * *} \\ & (0.041) \end{aligned}$	$\begin{aligned} & -0.644^{\star * *} \\ & (0.096) \end{aligned}$
Low blue-collar occupation	$\begin{array}{\|l} 0.717^{\star * *} \\ (0.056) \end{array}$	$\begin{aligned} & -0.143^{* * *} \\ & (0.054) \end{aligned}$	$\begin{aligned} & -0.796^{\star \star *} \\ & (0.115) \end{aligned}$	$\begin{aligned} & -1.024^{\star \star *} \\ & (0.202) \end{aligned}$	$\text { (} \begin{aligned} & 0.785^{* * *} \\ & (0.049) \end{aligned}$	$\begin{aligned} & -0.276^{* * *} \\ & (0.048) \end{aligned}$	$\begin{aligned} & -0.642^{* * *} \\ & (0.094) \end{aligned}$	$\begin{aligned} & -0.904^{* * *} \\ & (0.118) \end{aligned}$	$\left[\begin{array}{l} -0.684^{\star \star \star} \\ (0.065) \end{array}\right.$	$\begin{aligned} & -0.121^{* * *} \\ & (0.038) \end{aligned}$	$\begin{aligned} & -0.741^{* * *} \\ & (0.054) \end{aligned}$	$\begin{aligned} & -0.839^{* * *} \\ & (0.092) \end{aligned}$
homeworktime_subject	$\begin{aligned} & 0.067^{* * *} \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0.025^{*} \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.029^{*} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.046^{* * *} \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0.044^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.045^{* * *} \\ & (0.012) \end{aligned}$	$\left\{\begin{array}{l} -0.108^{* * *} \\ (0.017) \end{array}\right.$	$\begin{aligned} & -0.011^{*} \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.047^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.032^{\star * *} \\ & (0.011) \end{aligned}$
classtime_subject	$\begin{aligned} & -0.258^{\star \star \star} \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.036^{\star \star *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.164^{\star \star *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.260^{* * *} \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.272^{* * *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.037^{\star * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.157^{* * *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.179^{* * *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.277^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.033^{\star * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.113^{\star * *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.132^{\star \star *} \\ & (0.010) \end{aligned}$
Constant	$\begin{aligned} & -0.596^{* * *} \\ & (0.069) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.197^{* * *} \\ & (0.049) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.044^{\star \star *} \\ & (0.056) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.376^{\star * *} \\ & (0.086) \\ & \hline \end{aligned}$	$\begin{array}{\|l} -0.197^{* *} \\ (0.082) \\ \hline \end{array}$	$\begin{aligned} & -0.116^{\star *} \\ & (0.055) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.267^{* * *} \\ & (0.070) \end{aligned}$	$\begin{aligned} & -3.075^{* * *} \\ & (0.063) \end{aligned}$	$\begin{aligned} & 1.376^{\star * *} \\ & (0.068) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.054 \\ & (0.035) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.090^{* * *} \\ & (0.044) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.552^{\star * *} \\ & (0.071) \\ & \hline \end{aligned}$
Observations	207.927	207.927	207.927	207.927	208.758	208.758	208.758	208.758	204.250	204.250	204.250	204.250
Spain												
girl	$\begin{aligned} & 0.229^{* * *} \\ & (0.084) \end{aligned}$	$\begin{aligned} & \hline 0.131^{*} \\ & (0.068) \end{aligned}$	$\begin{aligned} & \hline-0.240^{\star \star *} \\ & (0.073) \end{aligned}$	$\begin{aligned} & \hline-0.487^{* * *} \\ & (0.123) \end{aligned}$	$\begin{aligned} & 0.217^{\star \star \star} \\ & (0.078) \end{aligned}$	$\begin{aligned} & \hline 0.145^{* * *} \\ & (0.054) \end{aligned}$	$\begin{aligned} & \hline-0.177^{*} \\ & (0.100) \end{aligned}$	$\begin{aligned} & \hline-0.645^{* * *} \\ & (0.111) \end{aligned}$	$\begin{aligned} & 0.969^{* * *} \\ & (0.208) \end{aligned}$	$\begin{aligned} & \hline 0.156^{\star *} \\ & (0.079) \end{aligned}$	$\begin{aligned} & \hline 0.528^{* \star \star} \\ & (0.108) \end{aligned}$	$\begin{aligned} & \hline 0.776^{* * *} \\ & (0.286) \end{aligned}$
private school	$\begin{aligned} & -0.339^{\star * *} \\ & (0.115) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.073) \end{aligned}$	$\begin{aligned} & 0.233^{\star * *} \\ & (0.089) \end{aligned}$	$\begin{aligned} & 0.157 \\ & (0.152) \end{aligned}$	$\left[\begin{array}{l} -0.513^{\star \star *} \\ (0.113) \end{array}\right.$	$\begin{aligned} & 0.011 \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.245^{* * *} \\ & (0.082) \end{aligned}$	$\begin{aligned} & 0.489^{\star * *} \\ & (0.151) \end{aligned}$	$\begin{aligned} & 0.823^{\star \star *} \\ & (0.205) \end{aligned}$	$\begin{aligned} & 0.047 \\ & (0.087) \end{aligned}$	$\begin{aligned} & 0.564^{\star \star *} \\ & (0.112) \end{aligned}$	$\begin{aligned} & 0.764^{\star * *} \\ & (0.274) \end{aligned}$
1st or 2nd generation immigrant	0.937***	-0.356**	-0.521**	-1.029*	0.975***	-0.357**	-0.788***	-0.775**	-0.770***	-0.425***	-0.504*	-0.595
Highest occupation among parents	(0.141)	(0.151)	(0.228)	(0.543)	(0.160)	(0.179)	(0.236)	(0.320)	(0.208)	(0.132)	(0.281)	(0.796)
High white-collar occupation	$\begin{aligned} & -0.719^{\star \star \star} \\ & (0.100) \end{aligned}$	$\begin{aligned} & -0.214^{\star * *} \\ & (0.078) \end{aligned}$	$\begin{aligned} & 0.544^{\star \star *} \\ & (0.094) \end{aligned}$	$\begin{aligned} & 0.935^{* * *} \\ & (0.151) \end{aligned}$	$\begin{aligned} & -0.661^{* * \star} \\ & (0.104) \end{aligned}$	$\begin{aligned} & -0.168^{\star *} \\ & (0.071) \end{aligned}$	$\begin{aligned} & 0.469^{\star * *} \\ & (0.096) \end{aligned}$	$\begin{aligned} & 0.911^{* * *} \\ & (0.183) \end{aligned}$	$\begin{aligned} & 0.704^{\star \star \star} \\ & (0.177) \end{aligned}$	$\begin{aligned} & 0.023 \\ & (0.071) \end{aligned}$	$\begin{aligned} & 0.649^{* * *} \\ & (0.105) \end{aligned}$	$\begin{aligned} & 0.905^{* * *} \\ & (0.312) \end{aligned}$
High blue-collar occupation	$\begin{aligned} & 0.182 \\ & (0.117) \end{aligned}$	$\begin{aligned} & -0.060 \\ & (0.086) \end{aligned}$	$\begin{aligned} & -0.147 \\ & (0.141) \end{aligned}$	$\begin{aligned} & -0.136 \\ & (0.216) \end{aligned}$	$\begin{aligned} & 0.226^{*} \\ & (0.126) \end{aligned}$	$\begin{aligned} & -0.060 \\ & (0.088) \end{aligned}$	$\begin{aligned} & -0.224^{\star *} \\ & (0.104) \end{aligned}$	$\begin{aligned} & -0.176 \\ & (0.227) \end{aligned}$	$\begin{aligned} & -0.242^{*} \\ & (0.136) \end{aligned}$	$\begin{aligned} & -0.131^{*} \\ & (0.078) \end{aligned}$	$\begin{aligned} & -0.211^{*} \\ & (0.122) \end{aligned}$	$\begin{aligned} & -0.125 \\ & (0.314) \end{aligned}$
Low blue-collar occupation	$\begin{aligned} & 0.235^{*} \\ & (0.136) \end{aligned}$	$\begin{aligned} & -0.050 \\ & (0.109) \end{aligned}$	$\begin{aligned} & -0.196 \\ & (0.165) \end{aligned}$	$\begin{aligned} & -0.181 \\ & (0.268) \end{aligned}$	$\begin{aligned} & 0.245^{*} \\ & (0.148) \end{aligned}$	$\begin{aligned} & -0.111 \\ & (0.102) \end{aligned}$	$\begin{aligned} & -0.177 \\ & (0.159) \end{aligned}$	$\begin{aligned} & -0.067 \\ & (0.311) \end{aligned}$	$\begin{array}{\|l} -0.114 \\ (0.218) \end{array}$	$\begin{aligned} & -0.143 \\ & (0.121) \end{aligned}$	$\begin{aligned} & -0.151 \\ & (0.268) \end{aligned}$	$\begin{aligned} & 0.187 \\ & (0.360) \end{aligned}$
homeworktime_subject	$\begin{aligned} & -0.043 \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.038^{\star *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.075^{* * *} \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.082^{* *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & -0.092^{* * *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.029 \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.032 \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.033 \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.011 \\ & (0.056) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.014 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.044 \\ & (0.073) \end{aligned}$
classtime_subject	$\begin{aligned} & -0.266^{* * *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.087^{\star \star *} \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.222^{\star \star *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.367^{* * *} \\ & (0.047) \end{aligned}$	$\begin{aligned} & -0.214^{* * *} \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.040^{*} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.118^{* * *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.135^{* * *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.376^{\star * *} \\ & (0.056) \end{aligned}$	$\begin{aligned} & 0.139^{* * *} \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.126^{\star * *} \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.153^{\star *} \\ & (0.064) \end{aligned}$
Constant	$\begin{array}{\|l} -0.700^{* * *} \\ (0.108) \\ \hline \end{array}$	$\begin{aligned} & 0.765^{* * *} \\ & (0.074) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.549^{* * *} \\ & (0.103) \\ & \hline \end{aligned}$	$\begin{aligned} & -4.797^{* * *} \\ & (0.265) \\ & \hline \end{aligned}$	$\begin{array}{\|l} -0.247^{*} \\ (0.142) \\ \hline \end{array}$	$\begin{aligned} & -0.059 \\ & (0.101) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.173^{\star \star *} \\ & (0.141) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.401^{* * *} \\ & (0.201) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.670^{\star \star *} \\ & (0.186) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.069 \\ & (0.105) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.162^{\star \star *} \\ & (0.155) \\ & \hline \end{aligned}$	$\begin{aligned} & -5.776^{* * *} \\ & (0.392) \\ & \hline \end{aligned}$
Observations	18.312	18.312	18.312	18.312	18.308	18.308	18.308	18.308	18.340	18.340	18.340	18.340
Finland												
girl	$\begin{array}{\|l\|} \hline-0.273 \\ (0.224) \end{array}$	$\begin{aligned} & \hline 0.149^{* *} \\ & (0.061) \end{aligned}$	$\begin{aligned} & \hline 0.083 \\ & (0.061) \end{aligned}$	$\begin{aligned} & \hline-0.259^{* * *} \\ & (0.091) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.142 \\ (0.194) \end{array}$	$\begin{aligned} & \hline 0.303^{* * *} \\ & (0.068) \end{aligned}$	$\begin{aligned} & \hline-0.001 \\ & (0.074) \end{aligned}$	$\begin{aligned} & -0.421^{* * *} \\ & (0.074) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.757^{* *} \\ (1.094) \end{array}$	$\begin{aligned} & -0.763^{\star \star *} \\ & (0.076) \end{aligned}$	$\begin{aligned} & 0.479^{* * \star} \\ & (0.080) \end{aligned}$	$\begin{aligned} & 1.045^{* * *} \\ & (0.117) \end{aligned}$
private school	$\begin{aligned} & 1.314^{\star \star *} \\ & (0.485) \end{aligned}$	$\begin{aligned} & -0.146 \\ & (0.241) \end{aligned}$	$\begin{aligned} & -0.377^{*} \\ & (0.221) \end{aligned}$	$\begin{aligned} & 0.182 \\ & (0.366) \end{aligned}$	$\begin{aligned} & 0.991^{* *} \\ & (0.467) \end{aligned}$	$\begin{aligned} & -0.036 \\ & (0.194) \end{aligned}$	$\begin{aligned} & -0.407 \\ & (0.255) \end{aligned}$	$\begin{aligned} & 0.054 \\ & (0.365) \end{aligned}$	$\begin{array}{\|l} -1.938^{\star \star *} \\ (0.645) \end{array}$	$\begin{aligned} & -0.498 \\ & (0.314) \end{aligned}$	$\begin{aligned} & -0.037 \\ & (0.221) \end{aligned}$	$\begin{aligned} & 0.210 \\ & (0.404) \end{aligned}$
1st or 2nd generation immigrant	2.030***	0.555*	-0.985**	-1.819**	1.834***	0.255	-0.943*	-1.337**	-0.910	0.566	-0.979*	-0.723
Highest occupation among parents	(0.514)	(0.334)	(0.440)	(0.766)	(0.429)	(0.303)	(0.506)	(0.631)	(1.502)	(0.416)	(0.577)	(0.694)
High white-collar occupation	$\begin{aligned} & -0.448^{\star} \\ & (0.261) \end{aligned}$	$\begin{aligned} & -0.486^{\star * *} \\ & (0.087) \end{aligned}$	$\begin{aligned} & 0.182^{\star *} \\ & (0.089) \end{aligned}$	$\begin{aligned} & 0.564^{\star * *} \\ & (0.106) \end{aligned}$	$\begin{array}{\|l} -0.517^{* *} \\ (0.214) \end{array}$	$\begin{aligned} & -0.554^{\star * *} \\ & (0.083) \end{aligned}$	$\begin{aligned} & 0.138 \\ & (0.123) \end{aligned}$	$\begin{aligned} & 0.728^{\star * *} \\ & (0.137) \end{aligned}$	$\begin{array}{\|l\|l} 0.018 \\ (0.714) \end{array}$	$\begin{aligned} & -0.492^{* * *} \\ & (0.090) \end{aligned}$	$\begin{aligned} & 0.196^{*} \\ & (0.105) \end{aligned}$	$\begin{aligned} & 0.733^{\star \star *} \\ & (0.141) \end{aligned}$
High blue-collar occupation	$\begin{aligned} & -0.012 \\ & (0.394) \end{aligned}$	$\begin{aligned} & 0.057 \\ & (0.134) \end{aligned}$	$\begin{aligned} & -0.025 \\ & (0.126) \end{aligned}$	$\begin{aligned} & -0.053 \\ & (0.165) \end{aligned}$	$\begin{aligned} & 0.075 \\ & (0.250) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.122) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.143) \end{aligned}$	$\begin{aligned} & -0.046 \\ & (0.149) \end{aligned}$	$\begin{array}{\|l} -0.321 \\ (0.784) \end{array}$	$\begin{aligned} & 0.171 \\ & (0.119) \end{aligned}$	$\begin{aligned} & -0.218^{\star} \\ & (0.130) \end{aligned}$	$\begin{aligned} & -0.063 \\ & (0.227) \end{aligned}$
Low blue-collar occupation	$\begin{aligned} & 0.273 \\ & (0.487) \end{aligned}$	$\begin{aligned} & 0.396^{\star *} \\ & (0.196) \end{aligned}$	$\begin{aligned} & -0.358^{*} \\ & (0.190) \end{aligned}$	$\begin{aligned} & -0.402 \\ & (0.277) \end{aligned}$	$\begin{array}{\|l\|l} 0.392 \\ (0.303) \end{array}$	$\begin{aligned} & 0.376^{\star *} \\ & (0.156) \end{aligned}$	$\begin{aligned} & -0.389 \\ & (0.303) \end{aligned}$	$\begin{aligned} & -0.432 \\ & (0.361) \end{aligned}$	$\begin{array}{\|l} -0.567 \\ (1.198) \end{array}$	$\begin{aligned} & 0.347^{*} \\ & (0.206) \end{aligned}$	$\begin{aligned} & -0.423^{\star *} \\ & (0.212) \end{aligned}$	$\begin{aligned} & -0.501 \\ & (0.422) \end{aligned}$
homeworktime_subject	$\begin{aligned} & 0.208^{\star} \\ & (0.113) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.039) \end{aligned}$	$\begin{aligned} & -0.040 \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.043 \\ & (0.038) \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.048 \\ & (0.103) \end{aligned}\right.$	$\begin{aligned} & -0.007 \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.005 \\ & (0.042) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.146 \\ & (0.549) \end{aligned}$	$\begin{aligned} & -0.065 \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.007 \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.075 \\ & (0.049) \end{aligned}$
classtime_subject	$\begin{aligned} & -0.456^{* * *} \\ & (0.072) \end{aligned}$	$\begin{aligned} & -0.258^{\star * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.097^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.317^{* * *} \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.354^{\star \star \star} \\ & (0.069) \end{aligned}$	$\begin{aligned} & -0.117^{* * *} \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.068^{* *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.170^{\star * *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.467 \\ & (0.307) \end{aligned}$	$\begin{aligned} & -0.074^{* *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.099^{* \star *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.068^{*} \\ & (0.038) \end{aligned}$
Constant	$\begin{array}{\|l} -2.185^{* * *} \\ (0.257) \\ \hline \end{array}$	$\begin{aligned} & 0.688^{\star \star *} \\ & (0.108) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.108^{\star \star *} \\ & (0.133) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.588^{* * *} \\ & (0.151) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.804^{\star \star *} \\ & (0.298) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.195 \\ & (0.120) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.210^{\star * *} \\ & (0.145) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.905^{\star \star *} \\ & (0.212) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.546^{* * *} \\ & (0.772) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.784^{\star \star *} \\ & (0.135) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.373^{* * *} \\ & (0.139) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.944^{\star \star *} \\ & (0.186) \\ & \hline \end{aligned}$
Observations	4.475	4.475	4.475	14.475	4.484	4.484	4.484	4.484	4.482	4.482	4.482	4.482
Korea												
girl	$\begin{array}{\|l\|} \hline-0.222 \\ (0.159) \end{array}$	$\begin{aligned} & \hline 0.133^{*} \\ & (0.073) \end{aligned}$	$\begin{aligned} & \hline 0.006 \\ & (0.095) \end{aligned}$	$\begin{aligned} & \hline-0.137 \\ & (0.129) \end{aligned}$	$\begin{array}{l\|l\|} \hline 0.129 \\ (0.163) \end{array}$	$\begin{aligned} & \hline 0.227^{* *} \\ & (0.101) \end{aligned}$	$\begin{aligned} & \hline 0.048 \\ & (0.130) \end{aligned}$	$\begin{aligned} & \hline-0.342^{\star \star *} \\ & (0.130) \end{aligned}$	$\begin{aligned} & 1.950^{* * *} \\ & (0.516) \end{aligned}$	$\begin{aligned} & \hline-0.424^{\star \star \star} \\ & (0.108) \end{aligned}$	$\begin{aligned} & \hline 0.141 \\ & (0.087) \end{aligned}$	$\begin{aligned} & \hline 0.673^{* * *} \\ & (0.123) \end{aligned}$
private school	-0.062	0.072	-0.016	-0.062	0.217	0.153	-0.053	-0.236	-0.167	-0.014	0.016	-0.022
Highest occupation among parents	(0.260)	(0.116)	(0.122)	(0.198)	(0.266)	(0.119)	(0.132)	(0.154)	(0.529)	(0.130)	(0.100)	(0.175)
High white-collar occupation	$\begin{aligned} & -0.230 \\ & (0.153) \end{aligned}$	$\begin{aligned} & -0.285^{\star \star} \\ & (0.111) \end{aligned}$	$\begin{aligned} & 0.242^{\star *} \\ & (0.107) \end{aligned}$	$\begin{aligned} & 0.570^{* * *} \\ & (0.151) \end{aligned}$	$\begin{aligned} & -0.162 \\ & (0.152) \end{aligned}$	$\begin{aligned} & -0.155 \\ & (0.098) \end{aligned}$	$\begin{aligned} & -0.053 \\ & (0.098) \end{aligned}$	$\begin{aligned} & 0.357^{* * *} \\ & (0.112) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.463) \end{aligned}$	$\begin{aligned} & -0.331^{\text {*** }} \\ & (0.096) \end{aligned}$	$\begin{aligned} & 0.053 \\ & (0.132) \end{aligned}$	$\begin{aligned} & 0.450^{* * *} \\ & (0.136) \end{aligned}$
High blue-collar occupation	$\begin{aligned} & 0.118 \\ & (0.184) \end{aligned}$	$\begin{aligned} & -0.061 \\ & (0.139) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.162) \end{aligned}$	$\begin{aligned} & -0.022 \\ & (0.350) \end{aligned}$	$\begin{aligned} & 0.074 \\ & (0.238) \end{aligned}$	$\begin{aligned} & 0.070 \\ & (0.167) \end{aligned}$	$\begin{aligned} & -0.027 \\ & (0.171) \end{aligned}$	$\begin{aligned} & -0.137 \\ & (0.173) \end{aligned}$	$\begin{aligned} & 0.010 \\ & (0.656) \end{aligned}$	$\begin{aligned} & -0.128 \\ & (0.204) \end{aligned}$	$\begin{aligned} & 0.139 \\ & (0.162) \end{aligned}$	$\begin{aligned} & -0.091 \\ & (0.219) \end{aligned}$
Low blue-collar occupation	$\begin{aligned} & 0.235 \\ & (0.212) \end{aligned}$	$\begin{aligned} & -0.171 \\ & (0.165) \end{aligned}$	$\begin{aligned} & 0.020 \\ & (0.194) \end{aligned}$	$\begin{aligned} & 0.170 \\ & (0.289) \end{aligned}$	$\begin{aligned} & 0.433^{*} \\ & (0.222) \end{aligned}$	$\begin{aligned} & -0.062 \\ & (0.183) \end{aligned}$	$\begin{aligned} & -0.087 \\ & (0.200) \end{aligned}$	$\begin{aligned} & -0.046 \\ & (0.220) \end{aligned}$	$\begin{aligned} & 0.076 \\ & (1.012) \end{aligned}$	$\begin{aligned} & -0.172 \\ & (0.167) \end{aligned}$	$\begin{aligned} & 0.029 \\ & (0.205) \end{aligned}$	$\begin{aligned} & 0.107 \\ & (0.245) \end{aligned}$
homeworktime_subject	$\begin{aligned} & -0.308^{\star \star \star} \\ & (0.090) \end{aligned}$	$\begin{aligned} & -0.163^{\star \star \star} \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.123^{\star \star *} \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.239^{* * *} \\ & (0.039) \end{aligned}$	$\left(\begin{array}{l} -0.37 \text { *** } \\ (0.064) 8 \end{array}\right.$	$\begin{aligned} & -0.242^{\star * *} \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.020 \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.300^{* * *} \\ & (0.026) \end{aligned}$	$\begin{array}{\|l} 0.173 \\ (0.202) \end{array}$	$\begin{aligned} & -0.171^{\text {*** }} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.035 \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.195^{\star \star *} \\ & (0.028) \end{aligned}$
classtime_subject	$\left\lvert\, \begin{aligned} & -0.312^{* * *} \\ & (0.064) \end{aligned}\right.$	$\begin{aligned} & -0.048 \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.156^{* * *} \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.125^{*} \\ & (0.066) \end{aligned}$	$\left\{\begin{array}{l} -0.452^{* * *} \\ (0.043) \end{array}\right.$	$\begin{aligned} & -0.076^{* * *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.162^{\star * *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.183^{* * *} \\ & (0.038) \end{aligned}$	$\begin{aligned} & 0.558^{* * *} \\ & (0.142) \end{aligned}$	$\begin{aligned} & -0.172^{* * *} \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.154^{\star \star *} \\ & (0.037) \end{aligned}$	$\begin{aligned} & 0.209^{* * *} \\ & (0.038) \end{aligned}$
Constant	$\begin{aligned} & -0.600^{*} \\ & (0.325) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.619^{* * *} \\ & (0.206) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.965^{\star \star *} \\ & (0.162) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.266^{\star \star *} \\ & (0.343) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.064 \\ & (0.238) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.345^{\star *} \\ & (0.157) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.847^{* * *} \\ & (0.166) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.594^{\star \star \star} \\ & (0.197) \end{aligned}$	$\begin{aligned} & 1.772^{\star * *} \\ & (0.530) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.023^{* * *} \\ & (0.178) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.567^{* * *} \\ & (0.201) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.195^{* * *} \\ & (0.230) \\ & \hline \end{aligned}$
Observations	4.950	4.950	4.950	4.950	4.948	4.948	4.948	4.948	4.956	4.956	4.956	4.956

Figure A-2: Table A3: Logit: Resultados

Subject:	Science				Mathematics				Reading			
Achievers:	low	moderate	strong	top	Iow	moderate	strong	top	Iow	moderate	strong	top
Canada												
girl	$\begin{aligned} & 0.032 \\ & (0.109) \end{aligned}$	$\begin{aligned} & 0.248^{* * *} \\ & (0.056) \end{aligned}$	$\begin{aligned} & \hline-0.111^{*} \\ & (0.064) \end{aligned}$	$\begin{aligned} & -0.320^{* * *} \\ & (0.081) \end{aligned}$	$\begin{aligned} & 0.306^{\star \star *} \\ & (0.111) \end{aligned}$	$\begin{aligned} & \hline 0.292^{* * *} \\ & (0.053) \end{aligned}$	$\begin{aligned} & -0.121 \\ & (0.080) \end{aligned}$	$\begin{aligned} & -0.488^{* * *} \\ & (0.086) \end{aligned}$	$\begin{aligned} & 1.031^{* * *} \\ & (0.157) \end{aligned}$	$\begin{aligned} & -0.196^{* * *} \\ & (0.050) \end{aligned}$	$\begin{aligned} & 0.217^{* * *} \\ & (0.062) \end{aligned}$	$\begin{aligned} & \hline 0.484^{* * *} \\ & (0.095) \end{aligned}$
private school	$\begin{array}{\|l} -0.994^{\star \star *} \\ (0.247) \end{array}$	$\begin{aligned} & -0.432^{* * *} \\ & (0.120) \end{aligned}$	$\begin{aligned} & 0.238^{\star *} \\ & (0.111) \end{aligned}$	$\begin{aligned} & 0.671^{* * *} \\ & (0.127) \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.970^{* * *} \\ & (0.300) \end{aligned}\right.$	$\begin{aligned} & -0.645^{\star \star *} \\ & (0.131) \end{aligned}$	$\begin{aligned} & 0.124 \\ & (0.121) \end{aligned}$	$\begin{aligned} & 0.929^{\star \star \star} \\ & (0.129) \end{aligned}$	$\begin{aligned} & 0.917^{* *} \\ & (0.443) \end{aligned}$	$\begin{aligned} & -0.563^{* * *} \\ & (0.173) \end{aligned}$	$\begin{aligned} & 0.253^{\star} \\ & (0.139) \end{aligned}$	$\begin{aligned} & 0.793^{\star \star *} \\ & (0.153) \end{aligned}$
1st or 2nd generation immigrant	0.659***	-0.018	-0.145*	-0.138	0.290**	-0.073	-0.073	0.057	-0.473*	-0.121	0.064	-0.024
Highest occupation among parents	(0.122)	(0.068)	(0.086)	(0.132)	(0.139)	(0.082)	(0.114)	(0.135)	(0.264)	(0.088)	(0.104)	(0.112)
High white-collar occupation	$\begin{aligned} & -0.559^{* * *} \\ & (0.114) \end{aligned}$	$\begin{aligned} & -0.433^{* * *} \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.344^{* * *} \\ & (0.077) \end{aligned}$	$\begin{aligned} & 0.702^{\star \star *} \\ & (0.116) \end{aligned}$	$\begin{aligned} & -0.670^{* * *} \\ & (0.092) \end{aligned}$	$\begin{aligned} & -0.391^{* * *} \\ & (0.062) \end{aligned}$	$\begin{aligned} & 0.267^{* * *} \\ & (0.093) \end{aligned}$	$\begin{aligned} & 0.762^{\star * *} \\ & (0.099) \end{aligned}$	$\begin{aligned} & 0.537^{* * *} \\ & (0.202) \end{aligned}$	$\begin{aligned} & -0.385^{* * *} \\ & (0.070) \end{aligned}$	$\begin{aligned} & 0.320^{* * *} \\ & (0.091) \end{aligned}$	$\begin{aligned} & 0.714^{* * *} \\ & (0.098) \end{aligned}$
High blue-collar occupation	$\left\lvert\, \begin{aligned} & 0.279^{*} \\ & (0.165) \end{aligned}\right.$	$\begin{aligned} & -0.063 \\ & (0.121) \end{aligned}$	$\begin{aligned} & -0.054 \\ & (0.181) \end{aligned}$	$\begin{aligned} & -0.162 \\ & (0.265) \end{aligned}$	$\begin{aligned} & 0.293^{\star} \\ & (0.176) \end{aligned}$	$\begin{aligned} & -0.050 \\ & (0.125) \end{aligned}$	$\begin{aligned} & -0.051 \\ & (0.176) \end{aligned}$	$\begin{aligned} & -0.192 \\ & (0.284) \end{aligned}$	$\begin{array}{\|l} -0.498^{*} \\ (0.282) \end{array}$	$\begin{aligned} & 0.055 \\ & (0.167) \end{aligned}$	$\begin{aligned} & -0.107 \\ & (0.199) \end{aligned}$	$\begin{aligned} & -0.434 \\ & (0.307) \end{aligned}$
Low blue-collar occupation	$\begin{aligned} & 0.366^{\star *} \\ & (0.165) \end{aligned}$	$\begin{aligned} & 0.146 \\ & (0.127) \end{aligned}$	$\begin{aligned} & -0.369^{\star *} \\ & (0.153) \end{aligned}$	$\begin{aligned} & -0.365 \\ & (0.248) \end{aligned}$	$\begin{aligned} & 0.354^{* *} \\ & (0.173) \end{aligned}$	$\begin{aligned} & 0.056 \\ & (0.143) \end{aligned}$	$\begin{aligned} & -0.281 \\ & (0.201) \end{aligned}$	$\begin{aligned} & -0.204 \\ & (0.234) \end{aligned}$	$\begin{array}{\|l} -0.478 \\ (0.293) \end{array}$	$\begin{aligned} & 0.104 \\ & (0.137) \end{aligned}$	$\begin{aligned} & -0.412^{\star *} \\ & (0.169) \end{aligned}$	$\begin{aligned} & -0.336 \\ & (0.267) \end{aligned}$
homeworktime_subject	$\begin{aligned} & -0.051 \\ & (0.044) \end{aligned}$	$\begin{aligned} & -0.029 \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.034 \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.024 \\ & (0.028) \end{aligned}$	$\begin{array}{\|l} 0.032 \\ (0.027) \end{array}$	$\begin{aligned} & 0.019 \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.050^{*} \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.082 \\ & (0.061) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.025 \\ & (0.027) \end{aligned}$	$\begin{aligned} & 0.008 \\ & (0.024) \end{aligned}$
classtime_subject	$\left\lvert\, \begin{aligned} & -0.246^{\star \star *} \\ & (0.026) \end{aligned}\right.$	$\begin{aligned} & -0.100^{\star \star *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.097^{* * *} \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.213^{\star \star \star} \\ & (0.018) \end{aligned}$	$\left\{\begin{array}{l} -0.249^{* * *} \\ (0.024) \end{array}\right.$	$\begin{aligned} & -0.061^{* * *} \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.073^{\star * *} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.168^{\star \star *} \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.219^{\star * *} \\ & (0.043) \end{aligned}$	$\begin{aligned} & -0.077^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.093^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.155^{* * *} \\ & (0.027) \end{aligned}$
Constant	$\begin{aligned} & -1.375^{* * *} \\ & (0.116) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.555^{* * *} \\ & (0.076) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.524^{* * *} \\ & (0.095) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.048^{* * *} \\ & (0.143) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.238^{* * *} \\ & (0.139) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.263^{\star *} \\ & (0.104) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.500^{\star \star \star} \\ & (0.118) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.552^{\star \star \star} \\ & (0.126) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.479^{* * *} \\ & (0.208) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.630^{* * *} \\ & (0.096) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.640^{* * *} \\ & (0.122) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.265^{* * *} \\ & (0.150) \\ & \hline \end{aligned}$
Observations	19.522	19.522	19.522	19.522	19.571	19.571	19.571	19.571	19.633	19.633	19.633	19.633
Mexico												
girl	$\begin{aligned} & 0.138^{\star *} \\ & (0.069) \end{aligned}$	$\begin{aligned} & \hline-0.067 \\ & (0.065) \end{aligned}$	$\begin{aligned} & \hline-0.434^{* * *} \\ & (0.122) \end{aligned}$		$\begin{aligned} & 0.254^{\star \star *} \\ & (0.070) \end{aligned}$	$\begin{aligned} & \hline-0.138^{\star \star} \\ & (0.064) \end{aligned}$	$\begin{aligned} & -0.409^{* * *} \\ & (0.141) \end{aligned}$		$\begin{aligned} & 0.744^{* * *} \\ & (0.099) \end{aligned}$	$\begin{aligned} & 0.454^{* * *} \\ & (0.055) \end{aligned}$	$\begin{aligned} & 0.555^{* * *} \\ & (0.124) \end{aligned}$	
private school	$\begin{aligned} & -0.552^{\star * *} \\ & (0.172) \end{aligned}$	$\begin{aligned} & 0.359^{* * *} \\ & (0.112) \end{aligned}$	$\begin{aligned} & 0.507^{* *} \\ & (0.225) \end{aligned}$		$\left[\begin{array}{l} -0.536^{* * *} \\ (0.195) \end{array}\right.$	$\begin{aligned} & 0.302^{* *} \\ & (0.141) \end{aligned}$	$\begin{aligned} & 0.616^{* * *} \\ & (0.235) \end{aligned}$		$\begin{aligned} & 0.898^{* * *} \\ & (0.222) \end{aligned}$	$\begin{aligned} & 0.346^{\star * *} \\ & (0.127) \end{aligned}$	$\begin{aligned} & 0.421^{* *} \\ & (0.213) \end{aligned}$	
1st or 2nd generation immigrant	2.108***	-2.103***	-0.841		1.673***	-1.681***	-1.462		-1.709***	-2.019***	-1.699*	
Highest occupation among parents	(0.321)	(0.355)	(0.877)		(0.306)	(0.371)	(1.553)		(0.348)	(0.372)	(1.008)	
High white-collar occupation	$\left[\begin{array}{l} -0.538^{\star \star \star} \\ (0.094) \end{array}\right.$	$\begin{aligned} & 0.326^{* * *} \\ & (0.088) \end{aligned}$	$\begin{aligned} & 0.957^{\star * *} \\ & (0.164) \end{aligned}$		$\begin{aligned} & -0.513^{* * *} \\ & (0.091) \end{aligned}$	$\begin{aligned} & 0.330^{* * *} \\ & (0.094) \end{aligned}$	$\begin{aligned} & 0.532^{* * *} \\ & (0.195) \end{aligned}$		$\begin{aligned} & 0.456^{\star \star \star} \\ & (0.160) \end{aligned}$	$\begin{aligned} & 0.178^{\star *} \\ & (0.079) \end{aligned}$	$\begin{aligned} & 0.603^{* * *} \\ & (0.136) \end{aligned}$	
High blue-collar occupation	$\left\lvert\, \begin{aligned} & 0.575^{\star \star *} \\ & (0.105) \end{aligned}\right.$	$\begin{aligned} & -0.528^{\star * *} \\ & (0.104) \end{aligned}$	$\begin{aligned} & -0.784^{* * *} \\ & (0.294) \end{aligned}$		$\begin{aligned} & 0.499^{* * *} \\ & (0.114) \end{aligned}$	$\begin{aligned} & -0.389^{* * *} \\ & (0.105) \end{aligned}$	$\begin{aligned} & -0.946^{\star \star \star} \\ & (0.328) \end{aligned}$		$\left(\begin{array}{l} -0.559^{* * *} \\ (0.201) \end{array}\right.$	$\begin{aligned} & -0.522^{* * *} \\ & (0.091) \end{aligned}$	$\begin{aligned} & -0.713^{\star \star *} \\ & (0.262) \end{aligned}$	
Low blue-collar occupation	$\left\lvert\, \begin{aligned} & 0.410^{* * *} \\ & (0.128) \end{aligned}\right.$	$\begin{aligned} & -0.356^{* * *} \\ & (0.124) \end{aligned}$	$\begin{aligned} & -0.706^{* *} \\ & (0.281) \end{aligned}$		$\left\lvert\, \begin{aligned} & 0.475^{* * *} \\ & (0.104) \end{aligned}\right.$	$\begin{aligned} & -0.372^{\star * *} \\ & (0.104) \end{aligned}$	$\begin{aligned} & -0.771^{* * *} \\ & (0.292) \end{aligned}$		$\left[\begin{array}{l} -0.399^{* * *} \\ (0.138) \end{array}\right.$	$\begin{aligned} & -0.358^{* * *} \\ & (0.101) \end{aligned}$	$\begin{aligned} & -0.658^{* * *} \\ & (0.216) \end{aligned}$	
homeworktime_subject	$\begin{aligned} & 0.014 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.024 \\ & (0.045) \end{aligned}$		$\begin{aligned} & 0.005 \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.033) \end{aligned}$		$\begin{aligned} & -0.069^{\star *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.037^{\star \star} \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.039 \\ & (0.043) \end{aligned}$	
classtime_subject	$\left\lvert\, \begin{aligned} & -0.045^{\star \star \star} \\ & (0.012) \end{aligned}\right.$	$\begin{aligned} & 0.025^{\star \star} \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.109^{\star \star \star} \\ & (0.029) \end{aligned}$		$\begin{aligned} & -0.207^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.159^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.208^{* \star \star} \\ & (0.036) \end{aligned}$		$\begin{aligned} & 0.171^{* * *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.093^{\star \star \star} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.136^{* \star \star} \\ & (0.024) \end{aligned}$	
Constant	$\begin{aligned} & -0.084 \\ & (0.100) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.008 \\ & (0.100) \end{aligned}$	$\begin{aligned} & -3.809^{* * *} \\ & (0.221) \end{aligned}$		$\begin{aligned} & 0.842^{* * *} \\ & (0.113) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.901^{* * *} \\ & (0.114) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.880^{\star * *} \\ & (0.292) \\ & \hline \end{aligned}$		$\begin{aligned} & \begin{array}{l} 0.789^{* * *} \\ (0.137) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & -0.396^{* * *} \\ & (0.083) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.715^{\star * *} \\ & (0.166) \\ & \hline \end{aligned}$	
Observations	27.088	27.088	27.088		27.469	27.469	27.469		27.445	27.445	27.445	
Greece												
girl	$\begin{aligned} & \hline-0.165 \\ & (0.111) \end{aligned}$	$\begin{aligned} & 0.324^{* * *} \\ & (0.083) \end{aligned}$	$\begin{aligned} & \hline-0.160 \\ & (0.109) \end{aligned}$	$\begin{aligned} & \hline-0.515^{\star *} \\ & (0.226) \end{aligned}$	$\begin{aligned} & \hline 0.089 \\ & (0.108) \end{aligned}$	$\begin{aligned} & \hline 0.167^{*} \\ & (0.093) \end{aligned}$	$\begin{aligned} & \hline-0.204 \\ & (0.164) \end{aligned}$	$\begin{aligned} & \hline-0.685^{\star * *} \\ & (0.180) \end{aligned}$		$\begin{aligned} & \hline 0.309^{* * *} \\ & (0.093) \end{aligned}$	$\begin{aligned} & \hline 0.573^{* * *} \\ & (0.127) \end{aligned}$	$\begin{aligned} & 0.666^{* * *} \\ & (0.229) \end{aligned}$
private school	$\left\lvert\, \begin{aligned} & -1.290^{* *} \\ & (0.533) \end{aligned}\right.$	$\begin{aligned} & -0.408^{* *} \\ & (0.178) \end{aligned}$	$\begin{aligned} & 0.378^{\star} \\ & (0.222) \end{aligned}$	$\begin{aligned} & 0.726^{\star *} \\ & (0.314) \end{aligned}$	$\left[\begin{array}{l} -1.016^{* * *} \\ (0.385) \end{array}\right.$	$\begin{aligned} & -0.323^{*} \\ & (0.184) \end{aligned}$	$\begin{aligned} & 0.636^{* * *} \\ & (0.236) \end{aligned}$	$\begin{aligned} & 0.836^{* * *} \\ & (0.288) \end{aligned}$		$\begin{aligned} & -0.408^{\star} \\ & (0.224) \end{aligned}$	$\begin{aligned} & 0.875^{* * *} \\ & (0.231) \end{aligned}$	$\begin{aligned} & 1.068^{* * *} \\ & (0.339) \end{aligned}$
1st or 2nd generation immigrant	0.478**	-0.234	-0.461	-0.259	0.309*	-0.069	-0.510	-0.503		-0.213	-0.194	-0.583
Highest occupation among parents	(0.236)	(0.207)	(0.405)	(0.824)	(0.171)	(0.148)	(0.369)	(0.486)		(0.189)	(0.344)	(0.887)
High white-collar occupation	-0.440***	-0.036	0.429***	0.904**	-0.562***	0.060	0.592***	0.693**		0.018	0.424***	0.746**
	(0.143)	(0.105) $-0.276{ }^{*}$	(0.159) -0.117	(0.421) -0.476	(0.113) $0.416^{* * *}$	(0.102) $-0.310^{* *}$ (0.15)	(0.207) -0.226	(0.278) -0.380		(0.091) -0.208	(0.130) $-0.456^{* *}$	$\begin{aligned} & (0.358) \\ & -0.645 \end{aligned}$
High blue-collar occupation	(0.162)	(0.147)	(0.238)	(0.539)	(0.142)	(0.146)	(0.259)	(0.476)		(0.132)	(0.216)	(0.707)
Low blue-collar occupation	$\left\lvert\, \begin{aligned} & 0.509^{\star *} \\ & (0.208) \end{aligned}\right.$	$\begin{aligned} & -0.339^{\star \star} \\ & (0.164) \end{aligned}$	$\begin{aligned} & -0.478^{\star} \\ & (0.245) \end{aligned}$	$\begin{aligned} & 0.135 \\ & (0.504) \end{aligned}$	$\begin{aligned} & 0.549^{\star \star \star} \\ & (0.152) \end{aligned}$	$\begin{aligned} & -0.396^{\star \star \star} \\ & (0.153) \end{aligned}$	$\begin{aligned} & -0.481 \\ & (0.358) \end{aligned}$	$\begin{aligned} & -0.378 \\ & (0.487) \end{aligned}$		$\begin{aligned} & -0.251 \\ & (0.167) \end{aligned}$	$\begin{aligned} & -0.568^{\star \star} \\ & (0.243) \end{aligned}$	$\begin{aligned} & -0.510 \\ & (0.633) \end{aligned}$
homeworktime_subject	$\begin{aligned} & 0.069^{\star *} \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.085^{\star \star *} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.025 \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.085^{*} \\ & (0.050) \end{aligned}$	$\begin{aligned} & -0.030 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.037^{\star} \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.053^{\star} \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.125^{* * *} \\ & (0.035) \end{aligned}$		$\begin{aligned} & -0.038 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.041) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.060) \end{aligned}$
classtime_subject	$\left\lvert\, \begin{aligned} & -0.447^{* * *} \\ & (0.038) \end{aligned}\right.$	$\begin{aligned} & 0.080^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.286^{\star \star *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.376^{\star \star \star} \\ & (0.063) \end{aligned}$	$\left(\begin{array}{l} -0.273^{* * *} \\ (0.034) \end{array}\right.$	$\begin{aligned} & 0.093^{\star \star *} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.180^{* * *} \\ & (0.041) \end{aligned}$	$\begin{aligned} & 0.250^{\star \star *} \\ & (0.065) \end{aligned}$		$\begin{aligned} & 0.130^{\star \star \star} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.118^{\star * *} \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.059 \\ & (0.049) \end{aligned}$
Constant	$\begin{aligned} & -0.031 \\ & (0.147) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.285^{* *} \\ & (0.137) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.993^{* * *} \\ & (0.181) \end{aligned}$	$\begin{aligned} & -5.409^{* * *} \\ & (0.489) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.235 \\ & (0.146) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.189 \\ & (0.133) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.932^{\star \star *} \\ & (0.287) \\ & \hline \end{aligned}$	$\begin{aligned} & -4.313^{\star \star *} \\ & (0.324) \\ & \hline \end{aligned}$		$\begin{aligned} & -0.147 \\ & (0.124) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.650^{\star \star \star} \\ & (0.181) \end{aligned}$	$\begin{aligned} & -4.410^{\star \star *} \\ & (0.373) \end{aligned}$
Observations	4.455	4.455	4.455	4.455	4.454	4.454	4.454	4.454		4.455	4.455	4.455
Turkey												
girl	$\begin{array}{\|l\|} \hline-0.343^{\star \star} \\ (0.137) \end{array}$	$\begin{aligned} & 0.355^{\star \star \star} \\ & (0.123) \end{aligned}$	$\begin{aligned} & \hline-0.310^{*} \\ & (0.182) \end{aligned}$		$\begin{array}{\|l\|} \hline 0.256^{* *} \\ (0.119) \end{array}$	$\begin{aligned} & \hline-0.051 \\ & (0.100) \end{aligned}$	$\begin{aligned} & \hline-0.239 \\ & (0.149) \end{aligned}$	$\begin{aligned} & \hline-0.693^{\star \star *} \\ & (0.182) \end{aligned}$	$\begin{aligned} & 1.084^{\star \star *} \\ & (0.216) \end{aligned}$	$\begin{aligned} & \hline 0.446^{\star * *} \\ & (0.101) \end{aligned}$	$\begin{aligned} & 0.521^{* * \star} \\ & (0.153) \end{aligned}$	
private school	$\begin{aligned} & -0.314 \\ & (0.681) \end{aligned}$	$\begin{aligned} & 0.353 \\ & (0.452) \end{aligned}$	$\begin{aligned} & -0.445 \\ & (0.669) \end{aligned}$		$\begin{aligned} & 0.040 \\ & (0.642) \end{aligned}$	$\begin{aligned} & 0.274 \\ & (0.432) \end{aligned}$	$\begin{aligned} & -0.731 \\ & (0.769) \end{aligned}$	$\begin{aligned} & -0.854 \\ & (0.726) \end{aligned}$	$\begin{aligned} & 0.042 \\ & (1.153) \end{aligned}$	$\begin{aligned} & 0.271 \\ & (0.446) \end{aligned}$	$\begin{aligned} & -0.885^{*} \\ & (0.453) \end{aligned}$	
1st or 2nd generation immigrant	0.085	-0.465	0.870		-1.011*	0.557	0.142	1.125	-0.660	-0.140	0.198	
Highest occupation among parents	(0.460)	(0.463)	(0.745)		(0.591)	(0.614)	(0.717)	(0.712)	(0.817)	(0.455)	(0.608)	
High white-collar occupation	$\begin{array}{\|l} -0.142 \\ (0.129) \end{array}$	$\begin{aligned} & -0.156 \\ & (0.126) \end{aligned}$	$\begin{aligned} & 0.661^{* * *} \\ & (0.223) \end{aligned}$		$\left[\begin{array}{l} -0.400^{* * *} \\ (0.132) \end{array}\right.$	$\begin{aligned} & 0.020 \\ & (0.138) \end{aligned}$	$\begin{aligned} & 0.497^{\star *} \\ & (0.246) \end{aligned}$	$\begin{aligned} & 0.829^{\star \star *} \\ & (0.308) \end{aligned}$	$\begin{aligned} & 0.385 \\ & (0.281) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.136) \end{aligned}$	$\begin{aligned} & 0.344^{\star} \\ & (0.203) \end{aligned}$	
High blue-collar occupation	$\left\lvert\, \begin{aligned} & 0.463^{* * *} \\ & (0.135) \end{aligned}\right.$	$\begin{aligned} & -0.304^{\star *} \\ & (0.124) \end{aligned}$	$\begin{aligned} & -0.652^{\star *} \\ & (0.306) \end{aligned}$		$\begin{aligned} & 0.296^{*} \\ & (0.155) \end{aligned}$	$\begin{aligned} & -0.130 \\ & (0.155) \end{aligned}$	$\begin{aligned} & -0.467^{*} \\ & (0.280) \end{aligned}$	$\begin{aligned} & -0.580 \\ & (0.556) \end{aligned}$	$\begin{aligned} & -0.265 \\ & (0.292) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.131) \end{aligned}$	$\begin{aligned} & -0.739^{* * *} \\ & (0.223) \end{aligned}$	
Low blue-collar occupation	$\left\lvert\, \begin{aligned} & 0.496^{\star * *} \\ & (0.192) \end{aligned}\right.$	$\begin{aligned} & -0.328^{\star} \\ & (0.185) \end{aligned}$	$\begin{aligned} & -1.065^{\star *} \\ & (0.539) \end{aligned}$		$\begin{aligned} & 0.493^{\star * *} \\ & (0.160) \end{aligned}$	$\begin{aligned} & -0.247 \\ & (0.162) \end{aligned}$	$\begin{aligned} & -0.646 \\ & (0.509) \end{aligned}$	$\begin{aligned} & -1.357^{\star \star} \\ & (0.653) \end{aligned}$	$\begin{aligned} & -0.104 \\ & (0.365) \end{aligned}$	$\begin{aligned} & 0.139 \\ & (0.144) \end{aligned}$	$\begin{aligned} & -0.850^{* * *} \\ & (0.270) \end{aligned}$	
homeworktime_subject	$\begin{aligned} & -0.015 \\ & (0.033) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.138^{* * *} \\ & (0.053) \end{aligned}$		$\left(\begin{array}{l} -0.099^{9} 9 \\ (0.028) \end{array}\right.$	$\begin{aligned} & 0.038 \\ & (0.027) \end{aligned}$	$\begin{aligned} & 0.102^{*} \\ & (0.055) \end{aligned}$	$\begin{aligned} & 0.092 \\ & (0.060) \end{aligned}$	$\begin{aligned} & -0.069 \\ & (0.048) \end{aligned}$	$\begin{aligned} & 0.031 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.156^{\star \star *} \\ & (0.044) \end{aligned}$	
classtime_subject	$\left[\begin{array}{l} -0.281^{* * *} \\ (0.026) \end{array}\right.$	$\begin{aligned} & 0.144^{\star \star \star} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.390^{\star \star \star} \\ & (0.043) \end{aligned}$		$\begin{aligned} & -0.294^{\star \star \star} \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.169^{\star * *} \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.307^{* * *} \\ & (0.042) \end{aligned}$	$\begin{aligned} & 0.401^{* * *} \\ & (0.060) \end{aligned}$	$\begin{aligned} & 0.292^{\star * *} \\ & (0.049) \end{aligned}$	$\begin{aligned} & 0.136^{\star \star \star} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.203^{\star * *} \\ & (0.041) \end{aligned}$	
Constant	$\begin{aligned} & 0.536^{\star * *} \\ & (0.149) \end{aligned}$	$\begin{aligned} & -0.410^{\star \star *} \\ & (0.143) \\ & \hline \end{aligned}$	$\begin{aligned} & -4.532^{\star \star \star} \\ & (0.353) \\ & \hline \end{aligned}$		$\begin{aligned} & 1.234^{\star * *} \\ & (0.144) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.154^{* * *} \\ & (0.150) \\ & \hline \end{aligned}$	$\begin{aligned} & -4.130^{* * *} \\ & (0.344) \\ & \hline \end{aligned}$	$\begin{aligned} & -5.015^{* * *} \\ & (0.522) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.033^{* * *} \\ & (0.353) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.558^{* * *} \\ & (0.187) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.783^{* * *} \\ & (0.287) \\ & \hline \end{aligned}$	
Observations	4.174	4.174	4.174		4.216	4.216	4.216	4.216	4.231	14.231	14.231	

Figure A-3: Table A3: Non linear estimation Results for Reading

*** $p<0.01$, ** $p<0.05$, * $p<0.1$
MARGINAL RATES OF SUBSTITUTION

READING	homewor time	$\begin{aligned} & \text { class } \\ & \text { time } \end{aligned}$	$\begin{aligned} & \text { index_ESO } \\ & \text { adjusted } \end{aligned}$	computers 100 studer	teachers per 10 students		homewo time	class time	$\begin{aligned} & \hline \text { index_ES } \\ & \text { adjusted } \end{aligned}$	compute 100 stud	teachers pe 10 students
SPAIN						MEXICO					
homeworktime	1.00	0.30	0.13	8.73	-0.10	homeworkt	1.00	-0.08	-0.02	-0.29	0.02
classtime	3.37	1.00	0.43	29.40	-0.32	classtime	-13.14	1.00	0.32	3.85	-0.23
index_ESCS (adj.	7.76	2.30	1.00	67.76	-0.74	index_ESC	-41.68	3.17	1.00	12.22	-0.73
computers per 101	0.11	0.03	0.01	1.00	-0.01	computers	-3.41	0.26	0.08	1.00	-0.06
teachers per 10	-10.44	-3.10	-1.35	-91.16	1.00	teachers pt	57.23	-4.36	-1.37	-16.78	1.00
FINLAND						GREECE					
homeworktime	1.00	1.08	0.22	24.88	-2.20	homeworkt	1.00	-0.04	-0.01	-0.29	0.01
classtime	0.93	1.00	0.21	23.10	-2.04	classtime	-24.91	1.00	0.34	7.22	-0.26
index_ESCS (adj.	4.52	4.87	1.00	112.42	-9.94	index_ESC	-73.03	2.93	1.00	21.16	-0.76
computers per 101	0.04	0.04	0.01	1.00	-0.09	computers	-3.45	0.14	0.05	1.00	-0.04
teachers per 10	-0.45	-0.49	-0.10	-11.31	1.00	teachers pt	95.51	-3.83	-1.31	-27.67	1.00
KOREA						TURKEY					
homeworktime	1.00	0.63	0.39	-6.24	0.18	homeworkt	1.00	-0.23	-0.09	2.28	-0.59
classtime	1.60	1.00	0.62	-9.99	0.28	classtime	-4.36	1.00	0.39	-9.95	2.59
index_ESCS (adj.	2.59	1.62	1.00	-16.18	0.46	index_ESC	-11.25	2.58	1.00	-25.66	6.69
computers per 101	-0.16	-0.10	-0.06	1.00	-0.03	computers	0.44	-0.10	-0.04	1.00	-0.26
teachers per 10	5.69	3.56	2.20	-35.53	1.00	teachers pt	-1.68	0.39	0.15	-3.84	1.00
CANADA						OECD					
homeworktime	1.00	-0.15	-0.03	-31.16	0.03	homeworkt	$0^{1.00}$	-1.46	1.12	1.68	-0.07
classtime	-6.89	1.00	0.23	214.59	-0.24	classtime	-0.68	1.00	-0.77	-1.15	0.05
index_ESCS (adj.	-29.91	4.34	1.00	932.01	-1.03	index_ESC	0.89	-1.30	1.00	1.49	-0.06
computers per 101	-0.03	0.00	0.00	1.00	0.00	computers	0.60	-0.87	0.67	1.00	-0.04
teachers per 10	28.91	-4.20	-0.97	-900.88	1.00	teachers pt	-14.43	21.12	-16.23	-24.25	1.00

[^0]: *This paper is part of a research project funded by the Fundación Ramón Areces within their 10th Social Science National Competition 2011.
 ${ }^{\dagger}$ zoe.kuehn@ccee.ucm.es • Universidad Complutense • Departamento de Economía Cuantitativa • Campus de Somosaguas • 28223 Madrid • Spain.
 ${ }^{\ddagger}$ Fundación de Estudios de Economía Aplicada (FEDEA). C./ Jorge Juan, 46. 28001 Madrid, Spain.

[^1]: ${ }^{1}$ For 2007 , numbers are 19.4% and 24% of GDP per capita per primary and secondary student respectively, Worldbank [2011].
 ${ }^{2}$ While the three authors' main focus is on college education and the opportunity costs of studying in terms of forgone earnings, the notion of study time as a key input to the production of education is easily extended to any type of education, by interpreting forgone leisure as opportunity cost (see Costrell [1994] for a model of education standards where the production function for education is a negative function of the student's utility).

[^2]: ${ }^{3}$ In the sociology and education science literature these types of studies are more abundant. Examples here are Fan and Chen [2001] who analyze the role of parents' effort on scholarly achievement or Trautwein [2007] who finds a positive relationship between homework and scholarly achievement. The author points out that frequency and difficulty of homework are more important than mere time spent on homework.

[^3]: ${ }^{4}$ This number corresponds to the number of participating students less those excluded for noneligibility, physical, mental, or linguistic reasons. For the countries considered here exclusion percentages are less than 1% in Turkey, Mexico, Korea, around 1.3% in Greece, 2.8% in Spain and Finland and 7.4% in Canada.

[^4]: ${ }^{5}$ We also consider statistics for the average OECD. These are derived using national student weights and considering the OECD one big country; alternatively one could simply use an un-weighted mean across all countries, giving the same weight to each country independent of its size.

[^5]: ${ }^{6}$ Among all remaining OECD countries correlations between hours of private lessons and achievement are negative with the only two exceptions being the Slovak Republic (positive for all subjects) and Japan (zero correlation for mathematics).
 ${ }^{7}$ We adopt the classification of students into these four groups from the PISA study, see OECD (2009) for the details.
 ${ }^{8}$ Table A-1.1 of Appendix A-1 shows fractions of weekly hours dedicated to class/homework time for the four groups of achievers.

[^6]: ${ }^{9}$ Tables A1 and A2 of the Appendix A-1 show the results of the logit regressions.

[^7]: ${ }^{10}$ Note that PISA reports 5 plausible values (PVs) for each student and each subject which requires estimating the same equation five times and calculating weighted means (see OECD [2009a] for the exact description on the technical procedure involved).
 ${ }^{11}$ For two studies on teacher-student ratio and class size see Bressoux et al [2004] who find a clearly negative effect of class size on students' achievement and Woessmann and Fuchs [2008] who do not find any effects.
 ${ }^{12}$ Note that our estimation is clearly biased by the omission of the student's ability, something we would ideally like to control for. However, none of the variables reported by PISA are suitable.

[^8]: ${ }^{13}$ Table A3 of the Appendix A-1 show the results for reading.

