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Abstract

I compare the performance of several important linear asset pric-
ing models using a common set of test assets over the same time pe-
riod. I evaluate the relative performance of models using the Hansen-
Jagannathan distance criterion. I find that the Fama-French five-
factor statistically outperforms return-based models (CAPM (1964),
the Fama-French three- (1992) and five-factor (1993), the Chen, Roll
and Ross five-factor (1986) and the Chen, Novy-Marx and Zhang
three-factor (2010)) explaining equity assets; the Chen, Roll and Ross
five-factor statistically performs well than other return-based mod-
els to price equities and bonds; Chen, Roll and Ross macro-factor
(1986) statistically outperforms other consumption-based models, i.e.
Yogo non-durable-durable CCAPM (2006) and Piazzesi, Schneider
and Tuzel housing CCAPM (2007) to price equity assets, so does the
Santos and Veronesi CCAPM with labor income (2006) comparing
with scaled models i.e. Lettau and Ludvigson scaled CCAPM (2001),
Lustig and Van Nieuwerburgh housing-collateral CCAPM (2005) and
Piazzesi, Schneider and Tuzel housing-scaled CCAPM (2007).
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1 Introduction and Motivation

The purpose of this paper is to evaluate the comparative performance of
several linear asset pricing models. I use different data set of test assets and
various comparison measures to evaluate linear factor asset pricing models’
performances. Particularly, those linear factor asset pricing models will be
ranked according to the normalized size of their pricing errors. Since all asset
pricing models can be viewed as approximations of reality and are likely to be
misspecified, one has to take a stand on what measure of model misspecifica-
tion to use. While there are many possible choices, Hansen and Jagannathan
(1997) propose an interesting measure of model misspecification.

The first hypothesis of the paper concerns the distinction performances
between CAPM or APT and other well-known linear factor asset pricing
models or newer consumption-based models and the traditional consump-
tion CAPM in order to understand cross-section returns on assets. Both in
academic and industry there still exists debates on whether or not CAPM
or APT is out of time and on macroeconomic models or macro-variables can
catch the characteristics of assets better than pure finance models (return-
based models).

Evidences that, while the literature highly recommends Fama-French
three- and five-factor models, in industry, practitioners often use the CAPM
or APT may be inferred by review of the more popular MBA level corpo-
rate finance textbooks [e.g. Brealey and Myers(2000)] and texts written by
practitioners [e.g. Grinold and Kahn (1995)]. More directly, Graham and
Harvey (2000) report that 73.5 percent of respondents (392 CFOs), always or
almost always use the CAPM when estimating the cost of equity capital with
the majority of the remaining participants using either the historical average
stock return or multi-factor models. Da, Guo and Jagannathan (2009), in
their academic paper, argue that the CAPM may be a reasonable model for
estimating the cost of capital for projects in spite of increasing criticisms in
the empirical asset pricing literature.

Furthermore, Lewellen, Nagel and Shanken (2010) take a skeptical view
of the asset pricing tests of a number of macroeconomic factor models found
in several papers, finding that none of the many proposed macroeconomic
models of the SDF performs well in explaining a cross-section of average
stock returns. But economic theory implies that the true sources of system-
atic risk must be macroeconomic in nature. Therefore, if economic theory is
correct and systematic risk is macroeconomic in nature, we should expect a
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factor structure in macroeconomic data, and we should expect a variety of
macroeconomic indicators to be correlated with return-based factors.

To compete against CAPM, well-known return-based linear factor can-
didates include the Chen, Roll and Ross (1986) five-factor model, in which
factors are macroeconomic variables; the Fama-French (1992) three-factor
model, in which the size and the value factors are added into CAPM; the
Fama-French (1993) five-factor model which puts the maturity and the de-
fault factors into the Fama-French three-factor model; the Chen, Novy-Marx
and Zhang (2010) three-factor model, in which the investment and the return
on assets become the two other factors plus the market factor from CAPM.

To compare with the traditional consumption CAPM, Yogo (2006) non-
durable and durable consumptions model and Piazzesi, Schneider and Tuzel
(2007) non-housing and housing consumption model are chosen; the scaled
consumption-based models comparison include the conditional consumption
CAPM of Lettau and Ludvigson (2001), in which using the consumption-
wealth ratio as a conditional variable; the consumption-housing CAPM of
Piazzesi, Schneider and Tuzel (2007), in which the non-housing consumption
expenditure share is used as a conditioning variable; the collateral-CCAPM
of Lustig and Van Nieuwerburgh (2005), in which the housing collateral ra-
tio is used as a conditioning variable; and the conditional CCAPM with the
labor income of Santos and Veronesi (2006).

Another principal question needed this paper answer is as to whether the
superior cross-section performance of such one model is maintained once the
model explains various test portfolios via different measures, for the ”best”
model needs to explain the cross-section dispersion of risk across these test
assets. Therefore, the second hypothesis is focus on the robustness of the
best model among test portfolios and comparison criteria. In the paper,
I apply HJ distance, modified HJ distance, unconstrained and constrained
HJ distance measures against traditional adjusted R2s to compare candidate
models among Fama-French 25, 30 Industrial-sorted, 10 Deciles and Fama-
French 25 combined government bonds portfolios.

My first contribution is I firstly compare almost all the linear factor asset
pricing models through separating them as return-based, consumption-based
and scaled consumption-based asset pricing models, because of data quality
and model constructions. I find the Fama-French (1993) five-factor model
behaves better than others in Fama-French 25 and 30 Industrial-sorted port-
folios; the Chen, Roll and Ross (1986) five-factor can explain stocks and
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bonds combined portfolios well according to the HJ and the modified HJ
distance measures. Using the unconstrained and the constrained HJ dis-
tance measures, the Fama-French five-factor model is ranked as the best
model to explain Fama-French 25 size-value and 10 Deciles portfolios among
candidate factor models; the Chen, Roll and Ross five-factor explain stocks
and bonds combined portfolios well. Moreover, I result that when pricing
Fama-French size-value and 30 Industrial-sorted assets: Chen, Roll and Ross
macro-factor (1986) outperforms other consumption-based models, i.e. Yogo
(2006) and Piazzesi, Schneider and Tuzel (2007); the Santos and Veronesi
scaled CCAPM with labor income (2006) performs better than other scaled
consumption-based models, i.e. Lettau and Ludvigson (2001), Lustig and
Van Nieuwerburgh (2005) and Piazzesi, Schneider and Tuzel (2007). The
second contribution states as I show all these results are statistically signifi-
cantly robust among gross and excess returns via various distance measures.

The rest of the paper is organised as follows. Section 2 presents literature
review. Section 3 introduces methodology on Hansen-Jagannathan distance.
Section 4 describes candidate models. Section 5 describe the candidate mod-
els and data. Section 6 presents the empirical analysis. Section 7 extends
to compare consumption-based and scaled consumption-based models. The
final section summarises findings.

2 Literature Review

All asset pricing models are at best approximations of the reality, but none
can price portfolios perfectly in general. Therefore, it is important for us
to construct a measure to compare and evaluate the performance of dif-
ferent models. For this purpose, Hansen and Jagannathan (1997) develop
the Hansen-Jagannathan distance. This measure is the quadratic form of
the pricing errors weighted by the inverse of the second moment matrix of
returns. Intuitively, the HJ distance equals the minimum pricing errors gen-
erated by a model for portfolios with unit second moment.

Most previous papers usually apply R2 to tell their constructed models
are better to explain cross-section returns on assets, for R2 is a statistic that
will give some information about the goodness of fit of a model. But values
of R2 outside the range 0 to 1 can occur in the case that the constant term is
not regressed during the estimation. Moreover, adjusted R2 can be negative,
which implies that R2 is not a good measure to compare models.
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The Akaike information criterion (AIC) is another measure of the good-
ness of fit of a statistical model. Given a data set, several candidate models
may be ranked according to their AIC, with the model having the minimum
AIC being the best. In the general case, the AIC is 2k − 2ln(L), where k is
the number of parameters in the statistical model, and L is the maximized
value of the likelihood function for the estimated model. The drawback in
AIC lays on L the maximized value of the likelihood function, in which we
have to assume the distributions in advanced in order to find the specific val-
ues for those parameters that produces the distribution most likely to have
produced the observed results. For instance, the distribution of stocks’ prices
is almost following a random walk, the amount of information in the data
increases indefinitely as the sample size increases. In this case, there exists
the inconsistent estimator, which makes AIC weak.

Moreover, the Vuong closeness test (1989) is likelihood-ratio-based test
for model selection using the Kullback-Leibler information criterion. This
statistic makes probabilistic statements about two models. It tests the null
hypothesis, that two models (nested, non-nested or overlapping) are as close
to the actual model against the alternative that one model is closer. But it
is quite difficult to compute this statistic in the overlapping and nested cases.

Jagannathan and Wang (1996) apply an easily computed distance mea-
sure to show the performance of their conditional CAPM. In general, they
demonstrate that the empirical support for conditional CAPM specification
is rather strong. Hansen and Jagannathan (1997) theoretically and empir-
ically derive the HJ distance measure via GMM estimator, which does not
need any assumptions and distributions in advanced.

This type of comparison has been adopted in many recent papers. Ja-
gannathan and Wang (1998), Kan and Zhang (1999) and Campbell and
Cochrane (2000) use the HJ distance in order to explain why the CAPM
and its extensions are better at approximating asset pricing models than
the standard consumption-based asset pricing theory. Lettau and Ludvigson
(2001), Vassalou (2003), Jacobs and Wang (2004), Vassalou and Xing (2004)
and Huang and Wu (2004) run the HJ distance to catch the consumption ef-
fect, the firm effect and the specifications of option pricing models to explain
cross-section returns on stocks market. The closest papers to my study are
Hodrick and Zhang (2001) and Parker and Julliard (2005) which evaluate the
specification errors of several empirical asset pricing models that have been
developed as potential improvements on the CAPM, i.e. CAPM, CCAPM,
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Jagannathan and Wang(1998), Fama-French three-factor and Fama-French
five-factor. However, I study the rankings’ robustness using not only various
HJ distance measures, but also using different assets portfolios. This is the
main contribution of the paper.

Kan and Robotti (2008) conclude that the misspecification measure is no
longer affected by an affine transformation of the factors if we apply to the
case of gross returns, although many of results are the same for gross returns
and for excess returns. Thus, if the excess returns are used by test assets
(zero-cost portfolios), we have to restrict the candidate SDF to have unit
mean. Kan and Robotti (2010) propose a new methodology to test whether
or not two competing linear asset pricing models have the same HJ distance.
They show that there is little evidence that conditional and inter-temporal
capital asset pricing model (CAPM)-type specifications outperform the sim-
ple unconditional CAPM. In this paper, I apply the HJ distance, the modified
HJ distance, the unconstrained HJ distance and the constrained HJ distance
measures to rank candidate factor models.

3 Test Methodology

This paper assumes throughout that the risk-free rate Rf
t is observed. Let

Mt+1 be the stochastic discount factor. Any tradable asset with return Rt+1

must satisfy
1 = Et[Mt+1Rt+1] (1)

where Et denotes the expectation conditional on the information known at
time t. For the basic consumption-based model, the asset pricing equation
(Euler equation) above is derived from the first-order condition for the opti-
mal consumption choice of a representative agent, and Mt+1 is equal to the

intertemporal marginal rate of substitution γ u
′
(Ct+1)

u′ (Ct)
, where u(Ct) is the in-

stantaneous utility function and u
′
(Ct) is the marginal utility of consumption

Ct, and γ is the subjective discount factor.

It is assumed that the stochastic discount factor Mt+1 can be approxi-
mated as a linear function of factors:

Mt+1 = a+ λ
′
ft+1 (2)
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3.1 Hansen-Jagannathan Distance

How to examine the pricing error on the portfolios that are most mispriced by
a given model? Hansen and Jagannathan (1997) develop a measure of degree
of misspecification of an asset pricing models. This measure is defined as:

minM∗∈ℵ ‖M∗ −M‖

the least squares distance between the stochastic discount factor associated
with and an asset pricing model and the family of stochastic discount factors
that price all the assets correctly.

[Figure1]

From Figure 1 we can see that the HJ distance is the least squared distance
between any point along the admissible SDF line and the cross point between
these two orthogonal lines (the payoffs line).

Also this measure is equal to the maximum pricing errors generated by a
model on the portfolios whose second moments of returns are equal to one

max‖x=1‖ |π∗(x)− π(x)|

where π∗(x) and π(x) are the prices of x assigned by the true and the pro-
posed SDF, respectively.

I define Rt = [R1,t, R2,t, ..., RN,t]
′

being the gross returns on assets, and
let

αt(λ) = RtMt(λ)− IN = Rtλf
′

t − IN (3)

where αt(λ) is the vector of pricing errors. In unconditional models, the num-
ber of moment conditions is equal to N , the number of test assets. Hansen
and Jagannathan (1997) show that the maximum pricing error per unit norm
of any portfolio of these N assets (HJ distance) is given by

δ =
√
E[(αt(λ))′ ][E(RtR

′
t)]
−1E[αt(λ)] (4)

It is equivalent to a GMM estimator with the moment condition E[αt(λ)] = 0
and the weighting matrix [E(RtR

′
t)]
−1, which is different from the optimal

matrix. One reason is that we cannot use WT = S−1 to assess specification
error and compare models. Suppose we have two different SDFs and use
GMM with optimal weighting to estimate and test each model on the same
set of asset returns. Doing so, we find that the over-identification restric-
tions are not rejected for M1

t+1 but are for M2
t+1. May we conclude that the
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model with M1
t+1 is superior? No. The reason is that Hansen’s JT statistic

depends on the model-specific S matrix (the Hansen optimal matrix). As a
consequence, Model 1 can look better simply because the SDF and pricing
errors αT are more volatile than those of Model 2, not because its pricing
errors are lower and its Euler equations less violated. Or a failure to reject
in a specification test of a model could arise because the model is poorly
estimated and subject to a high degree of sampling error, not because it does
explains the return data well1.

3.2 Modified Hansen-Jagannathan Distance

When applying the HJ distance, we do not put any constraint on the mean
of the stochastic discount factor when pricing excess returns on assets, which
means it is possible to obtain different risk prices or risk loadings for risk-
free assets. At the worst case, the rankings of misspecification errors will be
changed a lot only by an affine transformation of the SDF. Because when
only excess returns are used to measure model misspecification, one cannot
specify proposed SDF in a way such that it can be zero for some values of
λ. Intuitively, the moment restriction when excess returns using does not
separately the parameters a and λ in equation (2). Because the GMM errors
for the parameter pair (a, λ) are proportional to the GMM errors for the
parameter pair (ka, kλ), for any scalar k.

Kan and Robotti (2008) suggest defining the SDF as a linear function of
the de-meaned factors to avoid this affine transformation problem. Therefore,
a modification of the traditional Hansen-Jagannathan distance (HJ distance)
is needed when we use the de-meaned factors. They define the modified HJ
distance as:

δm =
√
minλgT (λ)′V −122TgT (λ) (5)

where gT (λ) = 1
T

∑T
t=1 αt(λ) is the average on pricing errors, V −122T is the co-

variance matrix of the test portfolios.

3.3 Constrained Hansen-Jagannathan Distance

Although constricted the average of SDFs to be constant, it is possible for an
SDF to price all the test assets correctly and yet to take on negative values

1see Ludvigson, 2011, Advances in Consumption-Based Asset Pricing: Empirical Tests
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with positive probability. This case happens when these exist arbitrage op-
portunities among test portfolios (e.g. derivatives on test assets) and it could
be problematic to set this SDF to price payoffs. Therefore, it is necessary to
constrict the admissible SDFs being non-negative.

Following Gospodinov, Kan and Robotti (2010)’s mechanism, I denote
the vector of gross returns on N assets at the end of period t by Rt, the
corresponding costs of these N assets at the end of period t − 1 by qt−1,
which E[qt−1] 6= 0. Because when E[qt−1] = 0N , the mean of SDF cannot be
identified and we have to choose some normalization of the SDF2. Empirically,
I can solve the constrained HJ distance as:

δ̂2+ = minM∗t ,t=1,...,T
1

T

T∑
t=1

(Mt −M∗
t )2 (6)

s.t.
1

T

T∑
t=1

M∗
t Rt = q̄ (7)

M∗
t ≥ 0, t = 1, ..., T (8)

where Mt denotes the candidate SDF and M∗
t stands for admissible SDF in

the set ℵ+.

3.4 Testing for Multiple Comparisons

A limitation of the Hansen-Jagannathan (1997) approach is that it provides
no method for comparing HJ distances statistically: HJ1 may be less than
HJ2, but are they statistically different from one another once we account
for sampling error?

Suppose we seek to compare the estimated HJ distance measures of several
models. Let δ2j,T denote the squared HJ distance for model j. Taking a
benchmark model, e.g., the model with smallest squared HJ distance among
j = 1, ..., K competing models, and denoting:

δ21,T = min(d2j,T )Kj=1

The null hypothesis is:
H0 : d21,T − d22,T ≤ 0

2see Kan and Robotti, 2008, The exact distribution of the Hansen-Jagannathan bound
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where d22,T is the competing model with the next smallest squared distance.
To apply White’s reality check test, we define the test statistic as TW =
max2,...,5

√
T (d21,T − d2j,T ), based on White (2000). The distribution of TW is

computed via block bootstrap (Chen and Ludvigson, 2009). Need to men-
tion, the justification for the bootstrap rests on the existence of a multivari-
ate, joint, continues, limiting distribution for the set (d2j,T )Kj=1 under the null.

By repeated sampling, the bootstrap estimates of the p-value:

p̂W =
1

B

B∑
b=1

I(TW,b>TW )

where B is the number of bootstrap samples and ˆTW,b stands for White’s
original bootstrap test statistic. If null is true, the historical value of TW

should not be unusually large, given sampling error. Given the distribution
of TW , reject the null if its historical value, ˆTW , is greater than the 95th
percentile of the distributions for TW . At a 5 % level of significance, we
reject the null if p̂W is less than 0.05, but do not reject otherwise.

3.5 Chi-Squared Tests for Multiple Comparisons

Although Chen and Ludvigson (2009) develop an appropriate econometric
method for comparing asset pricing models based on HJ distance, a gen-
eral statistical procedure for model selection is still missing. Gospodinov,
Kan and Robotti (2011) suggest that we should separate models into three
categories: nested, strictly non-nested and overlapping. For non-nested and
overlapping models they introduce a multivariate inequality test based on
Wolak (1987,1989).

Let ρ = (ρ2, ..., ρp+1), where ρi = δ21 − δ2i . We set δ21 as the winner, and
test H0 : ρ ≤ 0p. We assume that

√
T (ρ̂− ρ)

A→ N(0p,Ωρ̂) (9)

Let ρ̃ be the optimal solution in the following quadratic programming prob-
lem:

minρ(ρ̂− ρ)
′
Ω̂−1ρ̂ (ρ̂− ρ) (10)

s.t.ρ ≤ 0r (11)
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where Ω̂−1ρ̂ is a consistent estimator of Ω−1ρ̂ . The likelihood ratio test of the
null hypothesis is

LR = T (ρ̂− ρ̃)
′
Ω̂−1ρ̂ (ρ̂− ρ̃) (12)

Since the null hypothesis is composite, to construct a test with the desired
size, they require the distribution of LR under the least favorable value of ρ,
which is ρ = 0P . Under this value, LR follows a ‘chi-bar-squared distribu-
tion’,

LR
A→

p∑
i=0

wi(Ω
−1
ρ̂ )Xi (13)

where the Xi are independent χ2 random variables with i degrees of freedom
and χ2

0 is simply defined as the constant zero. An explicit formula for the
weights wi(Ω

−1
ρ̂ ) is given in Kudo (1963).

For nested models, Gospodinov, Kan and Robotti (2011) suppose that
yAt (λ∗1) = yit(λ

∗
i ) can be written as a parametric restriction of the form

ϕi(λ
∗
i ) = 0ki−k1 , where ϕ(·) is a twice continuously differentiable function

in its argument. The null hypothesis for multiple model comparison can
therefore be formulated as H0 : ϕ2 = 0k2−k1 , ..., ϕp+1(λ

∗
p+1) = 0kp+1−k1 .

The comparison test statistic follows Wald test with the degree of freedom
(
∑p+1

i=2 ki − pk1).

4 Description of the Candidate Models

I try to avoid models that researchers would never consider in practice. Thus
I narrow down the focus on to a few high profile sets of factors that are most
likely to be considered in applications, i.e. CAPM, the Fama-French three-
factor, the Fama-French five-factor, the Chen, Roll and Ross five-factor and
the Chen, Novy-Marx and Zhang three-factor models. Of course, it is al-
ways the case that empirical results are conditional on the researchers’ prior.
However, how to select the set of candidate models seems to be beyond the
scope of any econometric methods.

Sharpe (1964) and Lintner (1965) develop the Capital Asset Pricing Model
(CAPM). In general, the expected excess return on an asset equals the mar-
ket risk λ of the asset times the expected excess return on market portfolio,
which can be expressed as

MCAPM
t+1 = a+ λReM

t+1 (14)
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where ReM
t+1 denotes excess returns on the market portfolios.

Fama and French (1992) (FF3) document the role of size and book/market
in the cross-section of expected stock returns, and show that CAPM are not
supported by the data.

MFF3
t+1 = a+ λ1R

eM
t+1 + λ2SMBt+1 + λ3HMLt+1 (15)

Fama and French (1993) (FF5) present a five-factor asset-pricing model
to explain the cross-section returns on stocks and bonds. They state that
this five-factor model can explain stocks and bonds better than three-factor
model.

MFF5
t+1 = a+ λ1R

eM
t+1 + λ2SMBt+1 + λ3HMLt+1 + λ4TERMt+1 + λ5DEFt+1

(16)
where TERM and DEF stand for the maturity risk and the default risk fac-
tors.

Chen, Novy-Marx and Zhang (2010) (CNZ3) offer a new three-factor
model from q-theory (e.g., Tobin (1969) and Cochrane (1991)) by outlining
a two-period structure model. This q-theory factor model captures many
patterns anomalous to the Fama-French model, and performs roughly as well
as their model in explaining the portfolio returns which Fama and French
(1996) show that their model is capable of explaining.

MCNZ3
t+1 = a+ λ1R

eM
t+1 + λ2IAt+1 + λ3ROAt+1 (17)

Stephen Ross (1976) introduces the Arbitrage Pricing Theory (APT).
APT holds that the expected return of a financial asset can be modeled as
a linear function of various macro-economic factors. Chen, Roll, and Ross
(1986) (CRR5) then develop a macroeconomic factor model in which the
factor innovations are observed directly and the factor betas are estimated
via time-series regression.

MCRR5
t+1 = a+λ1MPt+1+λ2UIt+1+λ3DEIt+1+λ4UTSt+1+λ5UPRt+1 (18)

where MP is the growth rate of industrial production, UI is the unexpected
inflation, DEI is defined as the change in expected inflation, the term pre-
mium UTS, and UPR the default premium.

5 Preliminary Analysis of Data

The data are value-weighted, from January in 1972 till June in 2007, as a
common time period for all the tests.
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5.1 Data Descriptions

This paper uses four test portfolios: Fama-French 25 portfolios sorted by
firm size and book-to-market ratio; Industrial-sorted portfolios created by
U.S. 30 industries; 10 Deciles portfolios formed on size (market capitaliza-
tion); Fama-French 25 plus 7 government bonds with different maturities.
Above portfolios include all NYSE, AMEX and NASDAQ stocks which are
available and can be downloaded from Professor Kenneth French’s webpage.
The 7 different maturities government bonds data come from ”The Monthly
CRSP US Treasury Database”. All macro-factor data come from FRED
database at Federal Reserve Bank of St. Louis.

5.2 Empirical Specification

I identify the market portfolios excess return ReM by the difference between
the market portfolios return RM to the risk-free rate Rf , which is the 30-Day
Treasury Bill return. In the Fama-French three-factor model, SMB stands
for the average return on the small portfolios minus the average return on the
three big portfolios; HML denotes the average return on the value portfolios
minus the average return on the growth portfolios. Fama-French five-factor
model adds two extra factors: the difference between Long-Term Government
Bond and one month T-bill rate, and the difference between Long-Term Cor-
porate Bond minus Long-Term Government Bonds (Welch and Goyal, 2008).

The Chen, Novy-Marx and Zhang three-factor includes the market port-
folios; the IA factor, the difference between the average of the returns on two
low-IA portfolios and the average of the returns on the two high-IA portfo-
lios; the ROA factor, the difference between the average of the returns on the
two high-ROA portfolios and the average of the returns on the two low-ROA
portfolios.

In the Chen, Roll and Ross five-factor model, I use the growth rate of in-
dustrial production which is defined as MPt = logIPt−logIPt−1, where IPt is
the index of industry production. Other factors include the unexpected infla-
tion defining as UIt = It−E[It|t−1], where It = logCPISAt−logCPISAt−1;
the change in expected inflation, DEIt = E[It+1|t] − E[It|t − 1] where
E[It|t− 1] is the expected inflation, and E[It|t− 1] = rft − E[RHOt|t− 1],
here rft is the one-month Treasury bill rate; the term premium is the yield
difference between 20-year and 1-year yield, and the default premium is com-
puted from BAA-AAA.
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5.3 Empirical Results

Because factors all seem to have some explanatory power for the cross-section
of asset returns, a natural first step is to examine the extent to which they
are correlated.

[Table1]

I find very little correlation among them, except for UTS and TERM (0.9368),
but they are applied to different factor models (the Chen, Roll and Ross five-
factor and the Fama-French five-factor models). It suggests that they do not
all proxy for the same aggregate shocks.

It is well documented in the literature3 that the CAPM fails to explain
small growth portfolios4. In this paper, I choose the standard CAPM as the
benchmark model.

There is one point worth mentioning regarding the models chosen for the
purpose of comparison. A direct comparison of the empirical performance of
macroeconomic factor models with models that have pure financial factors is
inappropriate, because there is measurement error in the macro factors that
is not present for the financial factors. The reason is that returns are far
better measured than consumption data, so pricing errors for return-based
models that use the mimicking portfolio for marginal utility will be smaller
than the underlying consumption-based model. For this reason, the macro-
factor model I consider here, the Chen, Roll and Ross five-factor model, is
also used only as a rough benchmark for performance.

Because most papers use R2 in order to prove the better performance of
their models over CAPM, therefore Table 2 reports adjusted R2s from the
cross-section regression-based test.

[Table2]

The Fama-French five-factor model is able to explain cross-section stock re-
turns on 25 size-value portfolios 90.12%. To price 30 Industrial-sorted and

3see R. Merton (1973), R.Roll (1977), Banz (1981), Basu (1983), Reinganum (1981),
Chan, Chen and Hsieh (1985), Bhandari (1988), Gibbons (1982), and Shanken (1985) and
Fama and French (1992, 1993, 1995, 1996)

4see Jagannathan and McGrattan, 1995, ”The CAPM Debate” Federal Reserve Bank
of Minneapolis Quarterly Review, Vol. 19, No. 4, Fall 1995, pp. 2-17.
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10 Deciles portfolios, the Fama-French five-factor almost outperforms oth-
ers, except for the Chen, Roll and Ross five-factor model using GLS with
the constant and the Fama-French three-factor using OLS with the constant
respectively, 13.34% and 86.52%. Adjusted R2s on the Fama-French five-
factor, and the Chen, Novy-Marx and Zhang three-factor are outstanding in
Fama-French 25 plus 7 government bonds portfolios with 97% and 37.87%.
The Chen, Roll and Ross five-factor model also wins against others with -
70.07% pricing 25 size-value portfolios plus government bonds.

It seems that adjusted R2 can pick the best model comparing with CAPM
and the macro-factor model. But there exists one drawback, adjusted R2 is
affected by the estimate with the constant term and without the constant
term. It is also worth to mentioning that rankings are not robust both on
estimation methods and on test portfolios.

In Table 3 and Table 4, I rank candidates via the HJ and the modified HJ
distance measures. For the gross returns on test portfolios, the Fama-French
five-factor model produces smaller HJ and modified HJ distance measures
than CAPM and other three factor models among the three sample test port-
folios; that is, its normalized pricing errors are overall smaller and robust
among different estimate methods than those of CAPM, the Fama-French
three-factor, the Chen, Roll and Ross five-factor and the Chen, Novy-Marx
and Zhang three-factor models. CAPM has the smaller normalized pricing
errors than the Chen, Roll and Ross five-factor model to explain gross returns
on 10 Deciles portfolios, that is, the macro-factor model is not able to catch
the size effect well than CAPM, though able to catch the industry effect.
The Chen, Roll and Ross five-factor has the smaller normalized pricing error
than others when it prices stocks and bonds portfolios.

While the Fama-French five-factor explain excess returns better than oth-
ers in Fama-French 25 and 30 Industrial-sorted portfolios again, the Chen,
Novy-Marx and Zhang three-factor model shows a smaller magnitude of nor-
malized pricing errors than the classic CAPM and others to price 10 Deciles
portfolios. The Chen, Roll and Ross five-factor model maintains its advan-
tage to explain excess returns on stocks and bonds portfolios. It illustrates
that the macro-factor model can price different assets simultaneously well
than other returns-factor models.5.

Overall, the Fama-French five-factor model performs best in terms of the

5Campbell 1996, Campbell and Cochrane 1999, Campbell 2001 and Cochrane 2006

15



normalized pricing errors when catching the size, the value and the industry
effects on stocks portfolios, that is, it shows a smaller magnitude of pric-
ing errors than the classic CAPM, the Fama-French three-factor, the Chen,
Novy-Marx and Zhang three-factor and the marco-factor models. On the
other hand, the macro-factor model, Chen, Roll and Ross five-factor, is able
to price stocks and bonds combined portfolios. All the distance measures are
statistically significantly different from zeros at the 5% significance level. It is
not surprised for the Fama-French factor models (the three- and five- factor)
to perform well in Fama-French size-value portfolios and 10 size portfolios,
because of their ”factor-structure”6.

Constraining that the stochastic discount factor is non-negative, in Table
5 and Table 6, it is clear to see that the Fama-French five-factor can ex-
plain gross returns on two test assets well: Fama-French 25 size-value and 10
Deciles, so can it explain excess returns on these test portfolios. The rankings
on candidate models stay the same in these two test portfolios. In particular,
the result of the unconstrained and the constrained normalized pricing errors
support the findings via the HJ and the modified HJ distance measures. For
testing, all these unconstrained and constrained HJ distance measures are
significantly different from zero no matter the model is correctly specified or
not, except for the unconstrained HJ distance of the Fama-French five-factor
model in 10 Deciles portfolios.

While pricing gross returns on 30 Industrial-sorted portfolios, the macro-
factor model catches the industry effect well than others. However, both
distance measures are not statistically different from zeros at 5% significance
level. Surprisingly, the Chen, Novy-Marx and Zhang three-factor obtains
the bigger normalized pricing errors than the standard CAPM, which con-
tradicts the result in their original paper. The rankings change a lot when
candidates price the excess returns on 30 Industrial-sorted portfolios, that is,
the Fama-French five-factor model outperforms others, and the macro-factor
model cannot catch the industry effect even comparing with CAPM.

For gross returns on stocks and bonds combined portfolios, I obtain the
Chen, Roll and Ross five-factor shows the smaller normalized pricing errors
then other candidates via the unconstrained HJ distance. Need to mention,
unconstrained distance measures for both the macro-factor and the Fama-
French five-factor models are not statistically different from zeros at the 5%
significance level, which makes it hard to tell which one is the best. Turning

6Lewellen, Nagel and Shanken (2009) advocate this factor structure problem
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to the constrained measure, the Fama-French five-factor performs well than
the macro-factor model, which is different from the result via the HJ and
the modified HJ distance measures. Pricing excess returns on stocks and
bonds combined portfolios, the macro-factor model is better than the Fama-
French five-factor because of the smaller normalized pricing errors via the
constrained distance measure. Furthermore, it is still difficult for me to tell
which one is the best among these two candidates, because of the statistically
non-significant pricing errors.

Overall, the Chen, Roll and Ross five-factor and the Fama-French five-
factor change their positions via unconstrained and constrained HJ distance
measures to explain gross and excess returns on Industrial-sorted and stocks
and bonds combined portfolios. There are two points which need to men-
tion. Firstly, the difference between the unconstrained and the constrained
HJ distance is that the constrained HJ experienced iterative computation to
satisfy the first order condition. Therefore, after an iteration computation,
the Fama-French five-factor model has the chance to outperform the Chen,
Roll and Ross five-fator model to price stocks and bonds combined portfolios,
although I find that the Chen, Roll and Ross five-factor behaves well via the
HJ, the modified HJ and the unconstrained distance measures. Secondly, I
use 30-Day Treasury Bill as the risk-free interest rate. Therefore in the case
that if it were not the truly risk-free rate, we had to consider about the mea-
surable error on the risk-free rate and this measurable error will go to the
HJ distance directly from the error terms, which will lead to different results.

For multiple comparisons, Table 7 shows that all bootstrapping p-values
for the rankings are greater than 0.05, which means that we cannot reject the
null hypothesis: the best models we picking outperforms others via their rela-
tively smaller normalized pricing errors. Especially, I test several rankings via
the unconstrained and the constrained HJ distance measures which are sta-
tistically non-significantly different from zeros. I find that the bootstrapping
p-values are 0.7130 and 0.6890 when the macro-factor model explains gross
returns on 30 Industrial-sorted well via the unconstrained and constrained
HJ distance measures. Moreover, the Fama-French five-factor obtains 0.6090
and 0.6230 p-values for its best positions via the unconstrained HJ distance
measures when pricing gross and excess returns on 10 Deciles. Furthermore,
the macro-factor model gets 0.6260 and 0.5390 p-values when pricing gross
and excess returns on stocks-bonds combined portfolios, respectively.

In table 8, I am continuous to showing that the Fama-French five-factor
can not statistically significantly be rejected by the null hypothesis at 10%
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level, which states it outperforms to CAPM and Fama-French three-factor
these two nested models. To compare non-nested and overlapping models at
the statistical significance 10% level, the Fama-French five-factor performs
well than others when pricing Fama-French 25, 30 Industrial-sorted and 10
Deciles portfolios; the Chen, Roll and Ross five-factor model outperforms
others to explain Fama-French 25 and government bonds combined portfo-
lios.

6 Extensions

6.1 Consumption-Based Linear Factor Asset Pricing
Models

Why care about consumption-based models? After all, all above models of
risk that are functions of asset prices themselves. This suggests that we
might bypass consumption data altogether, and instead look directly at as-
set returns. By this approach, asset prices are derived endogenously from
macroeconomic risk factors, which arise endogenously from the intertempo-
ral marginal rate of substitution over a complicated nonlinear function of
current, future and past consumption, and possibly of the cross-sectional
distribution of consumption, among other variables. From these specifica-
tions, we may derive an equilibrium relation between macroeconomic risk
factors and financial returns.

6.1.1 Description of the Candidate Models

In this part, I consider the classic CCAPM of Lucas (1978) and Breeden
(1979) as a benchmark, where consumption growth is the single factor. Re-
cently this model has been augmented to deal with non-separable preference
between non-durable consumption and durable consumption and between
non-housing consumption and housing consumption. Yogo (2006) find that
the growth rates on non-durable and durable consumptions are able to ex-
plain the cross-sectional variation in expected stock returns. Moreover, Pi-
azzesi, Schneider and Tuzel (2007) argue that the composition of the con-
sumption bundle is a new risk factor. They show that under the assumption
of constant elasticity of substitution (CES) utility, the composition risk factor
can be represented as the growth of the ratio of the non-housing consump-
tion expenditure share, which is the ratio of non-housing consumption to the
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overall consumption expenditure. Below I also treat Chen, Roll and Ross
five-factor model (macro-factor) as the benchmark, in order to compare its
performance with these consumption-based models.

CCAPM: the consumption CAPM

MCAPM
t+1 = a+ λ1c

ndur
t+1 (19)

where cndurt+1 is the growth rate of non-durable consumption.

Yogo: the durable consumption CAPM of Yogo (2006)

MY OGO
t+1 = a+ λ1R

eM
t+1 + λ2c

ndur
t+1 + λ3c

dur
t+1 (20)

where ReM
t+1 is the excess returns on market portfolios and cdurt+1 denotes the

consumption growth rate of durable goods.

PST: the consumption-housing CAPM of Piazzesi, Schneider and Tuzel
(2007)

MPST
t+1 = a+ λ1c

nh
t+1 + λ2st+1 (21)

where cnht+1 is the growth rate of non-housing consumption and st+1 denotes
the log non-housing consumption expenditure share.

6.1.2 Empirical Results

The data used for this study are quarterly and the full-sample period is
1959:Q1-2000:Q4. Quarterly consumption data are from the U.S. national
accounts. Non-durable consumption is measured as the sum of real personal
consumption expenditures on non-durable goods and services. Non-durable
consumption includes food, clothing and shoes, housing, utilities, transporta-
tion, and medical care. Durable consumption consists of items such as mo-
tor vehicles, furniture and appliances, and jewelry and watches. To measure
housing services, I rely on the National Income and Product Account (NIPA)
following Piazzesi, Schneider and Tuzel (2006). I use the NIPA expenditure
series on housing services each period. To measure non-housing consump-
tion, I use aggregate consumption of non-durables and services from NIPA
excluding shoes and clothing, which is different from Yogo (2006). However,
I exclude housing services. All stocks are divided by population.
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In Table 9, I find that the macro-factor model almost dominates others
offering the smallest normalised pricing errors when pricing returns on Fama-
French 25 size-value portfolios; the Yogo non-durable and durable model out-
performs others to explain the industrial-sorted portfolios; the Yogo again
performs well in obtaining the smaller misspecification errors in order to
explain 10 size portfolios. However, all these results are not statistically sig-
nificantly different from zeros, which imply that all winners have the smallest
pricing errors comparing to others when explaining excess and gross returns
on assets.

To further analyse my results, I separate candidates as nested models
including the traditional consumption CAPM and the Yogo nondurable-
durable consumption model; non-nested and overlapping models including
the winner of nested models, Piazzesi, Schneider and Tuzel nonhousing-
housing consumption and Chen, Roll and Ross five-factor models. To test
a joint inequity hypothesis, Table 10 shows that the Chen, Roll and Ross
five-factor model is the best model to price excess and groo returns on Fama-
French 25 and 30 Industrial-sorted portfolios comparing to other consumption-
based linear factor asset pricing models. When explaining returns on 10
Deciles assets, I can only tell that the macro-factor model is better than
nonhousing-housing consumption model, and so is the Yogo nondurable-
durable consumption model.

6.2 Scaled Consumption-Based Linear Factor Asset Pric-
ing Models

Many newer consumption-based theories imply that the pricing kernel is ap-
proximately a linear function depending on the state of the economy. In this
case we can explicitly model the dependence of parameters in the stochas-
tic discount factor on current period information. This dependence can be
specified by simply interacting, or scaling factors with instruments that sum-
marize the state of the economy. Precisely, the fundamental factors (e.g.
consumption, housing and so on) that price assets in traditional unscaled
consumption-based models are assumed to price assets in this approach.
These factors are expected only to conditionally price assets, leading to con-
ditional rather than fixed linear factor models.

As before, if I define the discount factor Mt+1 can be approximated as a

20



linear function of consumption growth, such as

Mt+1 = a+ λ∆ct+1 (22)

where ct+1 = log(Ct+1), and a and λ are parameters. The standard CCAPM
of Lucas (1978) and Breeden (1979) specifies these parameters as constant,
with consumption growth as the single factor. Then the conditional versions
of the CCAPM can be written to allow the coefficients to vary over time as

Mt+1 = at + λt∆ct+1 (23)

Following Cochrane (1996), these time-varying coefficients can be modeled
as linear functions of the conditioning variables zt in the time t information
set:

Mt+1 = (a0 + a1zt) + (λ0 + λ1zt)∆ct+1 = a0 + λ
′
ft+1 (24)

where λ = [a1, λ0, λ1]
′

and ft+1 = [zt,∆ct+1,∆ct+1 · zt].

6.2.1 Description of the Candidate Models

The candidate models include the conditional consumption CAPM of Let-
tau and Ludvigson (2001), in which using the consumption-wealth ratio as a
conditional variable; the consumption-housing CAPM of Piazzesi, Schneider
and Tuzel (2007), in which the non-housing consumption expenditure share
is used as a conditioning variable; the collateral-CCAPM of Lustig and Van
Nieuwerburgh (2005), in which the housing collateral ratio is used as a con-
ditioning variable; and the conditional CCAPM with the labor income of
Santos and Veronesi (2006).

LL: the conditional consumption CAPM of Lettau and Ludvigson (2001)

MLL
t+1 = a+ λ1c

ndur
t+1 + λ2cayt + λ3c

ndur
t+1 cayt (25)

where cndurt+1 is the growth rate of non-durable consumption and cayt−1 is the
consumption-wealth ratio.

SPST: the scaled consumption-housing CAPM of Piazzesi, Schneider
and Tuzel (2007)

MSPST
t = a+ λ1c

ndur
t+1 + λ2st + λ3c

ndur
t+1 st (26)

where st is the non-housing consumption expenditure share.
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LVN: the scaled collateral-consumption CAPM of Lustig and Van Nieuwer-
burgh (2005)

MLV N
t+1 = a+ λ1c

ndur
t+1 + λ2myt + λ3c

ndur
t+1 myt (27)

where myt is the housing collateral ratio.

SV: the scaled consumption CAPM with the labor income of Santos and
Veronesi (2006)

MSV
t+1 = a+ λ1R

m
t+1 + λ2(R

m
t+1 · swt ) + λ3R

W
t+1 + λ4(R

W
t+1 · swt ) (28)

where Rm
t+1 is the return on non-human, or financial wealth which is proxied

by a market portfolio returns, RW
t+1, is proxied by labor income growth, swt

denotes the ratio of labor income to consumption as a conditioning variable.

6.2.2 Empirical Results

The data used for this study are quarterly and the full-sample period is
1959:Q1-2000:Q4. To measure the consumption-wealth ratio, cayt is defined
as a cointegrating residual between log consumption, log asset wealth, and
log labor income measured in 1992 dollars. The consumption data pertain to
nondurables and services excluding shoes and clothing in 1992 chain-weighted
dollars. The asset wealth data are the household net worth series provided
by the Board of Governors of the Federal Reserve System. Labor income
is defined as wages and salaries plus transfer payments plus other labor in-
come minus personal contributions for social insurance minus taxes. Taxes
are defined as [wages and salaries/(wages and salaries + proprietors income
with IVA and Ccadj + rental income + personal dividends + personal in-
terest income)]*(personal tax and nontax payments), where IVA is inventory
evaluation and Ccadj is capital consumption adjustments. Both the net
worth variable and the labor income variable are deflated by the personal
consumption expenditure chain-type price deflator. All variables are given
in per capita terms. To measure the housing collateral ratio myt, I follow
Lustig and Van Nieuwerburgh (2005) defining it as the ratio of collateralizable
housing wealth to non-collateralizable human wealth, where the nonstation-
ary component of human wealth is well approximated by the nonstationary
component of labor income. The measure of the housing collateral stock
is defined as the value of outstanding home mortgages from Bureau of the
Census. To get the real per household housing collateral, I construct them
using the item CPI from the BLS, and the total number of households from
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Bureau of the Census. Aggregate income is labor income plus net transfer
income.

From Table 11, the Santos and Veronesi scaled CCAPM with labor income
donimates other in explain excess and gross returns both on Fama-French 25
and 30 Industrial-sorted assets. The winner in 10 Deciles portfolio include the
scaled CCAPM with labor income when explaining gross returns; the Lustig
and Van Nieuwerburgh collateral-CCAPM when pricing excess returns. The
Lettau and Ludvigson consumption-wealth-CCAPM is able to outperform
others via the constrained HJ distance pricing excess and gross returns on
assets. These results are not statistically significant, which means that every
winner is specified.

Because these models non-nested or overlapping, I result that Santos and
Veronesi scaled CCAPM with labor income is the best model when pricing
excess and gross returns on Fama-French 25 and 30 Industrial-sorted assets.

7 Conclusions

Multifactor linear asset pricing models play an important role in evaluating
portfolios performances and the cost-of-capital applications for practitioners.
I use various HJ distance measures to better understand which factor models
are robust to explain different cross-section data, and to seek an economic
interpretation of the specifications that appears most promising.

I find that, pricing gross returns on all test assets, the Fama-French five-
factor model is ranked top by the HJ and the modified HJ distance measures
to explain Fama-French 25 size-value, 30 Industrial-sorted and 10 Deciles
portfolios. The Chen, Roll and Ross five-factor model performs better than
others to price Fama-French 25 plus 7 government bonds portfolios via these
two distance measures. Explaining excess returns on all test portfolios, the
Fama-French five-factor model is able to explain Fama-French 25 size-value,
10 Deciles portfolios and 30 Industrial-sorted via the unconstrained and the
constrained HJ distance measures except that it prices stocks and bonds
combined portfolios according to the constrained HJ distance. The Chen,
Roll and Ross five-factor model outperforms others in Fama-French 25 plus
7 government bonds and gross returns on that according to the constrained
HJ distance.
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Moreover, I result that when pricing Fama-French size-value and 30 Industrial-
sorted assets: Chen, Roll and Ross macro-factor (1986) outperforms other
consumption-based models, i.e. Yogo (2006) and Piazzesi, Schneider and
Tuzel (2007); the Santos and Veronesi scaled CCAPM with labor income
(2006) performs better than other scaled consumption-based models, i.e.
Lettau and Ludvigson (2001), Lustig and Van Nieuwerburgh (2005) and Pi-
azzesi, Schneider and Tuzel (2007). The second contribution states as I show
all these results are statistically significantly robust among gross and excess
returns via various distance measures.
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Table 2: Cross Sectional Adjusted R2

OLS OLS with con GLS GLS with con
FF25

CAPM -1.7322 0.3073 -0.9629 0.0696
FF3 0.5037 0.7387 -0.558 0.1355
FF5 0.8066 0.9012 0.1403 0.4142

CRR5 0.073 0.747 -0.4346 0.3188
CNZ3 0.6671 0.7031 -0.2873 0.1114

IND30

CAPM -2.6253 0.0099 -0.6499 0.0106
FF3 -0.6059 0.0759 -0.2282 0.0547
FF5 0.0622 0.3284 0.0349 0.0901

CRR5 -8.088 0.2292 -1.9232 0.1334
CNZ3 -1.4594 0.0534 -0.6035 0.0971

DECILES10

CAPM 0.6234 0.6219 0.0311 0.0647
FF3 0.67 0.8652 0.1993 0.3318
FF5 0.8188 0.8197 0.4277 0.4323

CRR5 0.0484 0.722 -1.6685 0.3594
CNZ3 0.8085 0.8127 0.05 0.4318

FF25+7G

CAPM 0.5592 0.5913 -4.3873 0.0899
FF3 0.9215 0.922 -4.5293 0.2686
FF5 0.9701 0.9702 -2.6556 0.3652

CRR5 0.8211 0.8331 -0.7007 0.0929
CNZ3 0.9474 0.9473 -4.1913 0.3787
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Figure 1: HJ Distance

40


