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Abstract 

We adopt a spatial econometric approach to estimate intra- and inter-industry 
spillovers in total factor productivity transmitted through input-output relations in 
a sample of 13 OECD countries and 15 manufacturing industries. Both R&D 
spillovers as well as remainder, input-output-related linkage effects are accounted 
for, the latter of which we model by a spatial regressive error process. We find 
that R&D spillovers occur both horizontally and vertically, whereas remainder 
spillovers (i.e., ones through unobservable variables) are primarily of intra-
industry type. Notably, these intra-industry remainder spillovers turn out 
economically more significant than R&D spillovers. 
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“the transmission of technological change may also take the form of a circular 

process. Under such a configuration technological improvements have a 

magnified impact. … All these repercussions – vertical or triangular – form 

part of a response mechanism that contributes to technological advancement” 

(Balassa, 1961, p. 150) 
 

I. Introduction 

The process of economic integration after World War II has markedly intensified the 
interdependence of economic systems at all levels of aggregation – among firms, industries, 
regions, and even countries. The removal of barriers to transport and trade, improvements of 
infrastructure facilities, better availability of high-quality information and communication 
technologies, and access to new modes of specialization have induced sizeable growth in 
trade in final goods, foreign direct investment, and trade in components and intermediate 
goods (also referred to as outsourcing). This increase in economic interdependence is widely 
believed to have indirectly triggered productivity effects. Moreover, the mentioned modes of 
interaction have not only likely caused such productivity effects but also rendered their 
impact more global in nature. We suspect that – in a strongly integrated economic 
environment – productivity shocks, negative or positive, propagate more intensively both 
nationally as well as internationally. 
 

The international economics literature on productivity spillovers roots in the seminal 
paper by Coe and Helpman (1995), which started off a growing number of studies assessing 
the magnitude and transmission channels of such spillovers (see Keller, 2004). While 
spillovers take place at various levels – among firms, industries, regions, and countries – the 
vast majority of previous work focuses on spillovers in a narrow, geographical sense, i.e., 
cross-border spillovers among regional or national entities. A much smaller number of studies 
considers spillovers between firms or industries. For instance, Smarzynska Javorcik (2004) 
and Görg, Hijzen, and Murakozy (2006) investigate the role of spillovers among firms 
associated with linkage effects that take place in a certain geographical neighborhood. There 
are hardly any studies on productivity spillovers across countries and industries. Notable 
exceptions are Bernstein and Mohnen (1997), who estimate bilateral R&D spillovers between 
selected US and Japanese manufacturing industries over the period 1962-1986, and Keller 
(2002) who considers knowledge spillovers between manufacturing industries of 8 major 

OECD countries over the period 1970-1991.
1
  

 
The present paper investigates the role of intra- and inter-industry productivity 

spillovers within and among 13 OECD countries and 15 manufacturing industries. It goes 
beyond previous studies by considering not only knowledge spillovers (associated with 
research and development, henceforth referred to as R&D) but also other types of productivity 
spillovers. The latter are modeled by using a spatial econometric approach. We specify 
spillover effects as a decreasing function of economic (rather than merely geographical) 
distance, which we measure by using information on the domestic and international use and 

                                                 

1 A comprehensive survey of more than one hundred empirical studies on economic growth 
with an emphasis on spillover effects, using conventional or spatial econometric techniques, is 
given by Abreu, De Groot, and Florax (2005). Strikingly, none of the studies included in the 
survey has used industry data. Early studies focusing on a single country or industry are 
Morrison Paul and Siegel (1999), who incorporate measures of intra-industry spillovers in a 
cost function framework for U.S. manufacturing, and Cohen and Morrison Paul (2005), who 
consider intra-and cross-industry spillovers for the U.S. food manufacturing sector. 
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delivery of intermediate goods between industries. Hence, our approach is inspired by 
Balassa’s (1961) view on horizontal and vertical linkages between industries as a key source 
of productivity spillovers and findings of Smarzynska Javorcik (2004) at the firm level that 
linkage effects related to input-output relations entail an important channel of spillovers. The 
novelty of the paper is to allow for, distinguish, and estimate the relative importance of two 
different channels of total factor productivity spillovers, namely intra- versus inter-industry 
spillovers. As a workhorse model, we use a translog primary production function which 
accounts for domestic as well as imported R&D, following Coe and Helpman (1995) in the 
latter regard. 

 
As for estimation, we consider a framework suitable for the analysis of cross-sectional 

interdependence of the units of observation. We adopt a generalized moments (GM) approach 
for ‘spatially dependent’ data by Kelejian and Prucha (2009), which is robust to 
heteroskedasticity. Since we aim at distinguishing between intra- and inter-industry spillovers, 
we draw on the generalization of Kelejian and Prucha (2009) by Badinger and Egger (2008) 
to the higher order case in order to cope with two spillover channels and parameters of 
interdependence rather than a single one.  

 
Our empirical results suggest the following conclusions. First, there are sizeable 

knowledge spillover effects on productivity, with a dominant role of inter-industry spillovers. 
Second, stochastic productivity shocks unrelated to R&D are significantly transmitted through 
input-output relationships, but mainly between similar industries. As a result, productivity 
shocks are magnified through intra-industry spillovers and the associated repercussions.  

 
The remainder of the paper is organized as follows. Section II lays out the basic 

empirical model. Section III outlines the spatial econometric approach to modeling and 
estimating productivity spillovers with two rather than a single transmission channel. (The 
detailed extension of the GM estimator by Kelejian and Prucha (2009) relegated to an 
Appendix.) Section IV presents the estimation results for our cross-section of 13 OECD 
countries and 15 manufacturing industries. Section V summarizes the main findings and 
concludes. 

 
 

II. The Empirical Model 

Our point of departure is a standard translog production function with two primary factors of 
production, labor and capital, and a parameter determining the level of total factor 

productivity (TFP).
2
 An advantage of the translog form is its greater flexibility as compared to 

Cobb-Douglas or, more generally, a constant elasticity of substitution (CES) technology. It 
may also account for the variation in production functions across industries, since the first 
derivatives vary by observation. Thereby, it also mitigates endogeneity problems involved in 

                                                 
2
 We also experimented with other forms such as a generalized Leontief function as used by 

Thursten and Libby (2002). Ultimately, we opted for the translog form in our application, 
since the estimate of variance-covariance matrix under the generalized Leontief specification 
turned out as close to singular, and a model comparison in terms of the adjusted R2 supported 
the translog form as compared to the generalized Leontief form with the data at hand. 
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estimating production functions (see Yasar and Morrison Paul, 2007).
3
 In matrix notation, the 

assumed production technology reads as follows: 
 

y = Zγγγγ + u, (1) 
 
where lower-case letters in bold face indicate vectors and Z refers to a matrix of explanatory 
variables. The cross-section available to us comprises i = 1,…,13 OECD countries and k = 
1,…,15 ISIC-2-digit manufacturing industries, yielding 195=N  observations, and refers 

mainly to the year 1995.
4
 A detailed list of the available countries and industries is given in 

Appendix A1. y ≡ [lnyik] is an 1×N  vector of log real value added in country i and industry k, 

measured in 1995 prices. Z is an ZN ×  matrix of explanatory variables where the column 

rank of Z, Z , may vary across the estimated specifications. γγγγ is a 1×Z  vector of unknown 

parameters, and u ≡ [uik] is an 1×N  vector of disturbances. 
 

Our empirical specifications will differ with respect to the definition of Z and the one of 

u, respectively. In any model estimated below, Z will include l ≡ [lnLik], k ≡ [lnKik], and the 

higher order terms l
2 ≡ [

ikL2ln
2
1 ], k

2 ≡ [
ikK2ln

2
1 ], lk ≡ [lnLik lnKik], where lnLik and lnKik 

denote inputs of primary production factors labor and physical capital, respectively, in 

country i and industry k expressed in natural logarithms.
5
 The variable lnLik measures the 

logarithm of hours worked. For reasons of data availability, we approximate lnKik by a 
country and industry’s logarithm of investment intensity, defined as the logarithm of gross 

fixed capital formation relative to value added.
6
 This corresponds to the standard translog 

function in the two factors labor and capital.
7
 Moreover, all models will include Zαααα , an 

                                                 
3 Given the absence of strong and convincing instruments for conditional factor demands, this 
is particularly important in our cross-section analysis, which precludes the use time lags as 
instruments unlike as with panel data (see Cohen and Morrison Paul, 2004). 
4
 For our fairly comprehensive sample of OECD countries and the level of aggregation used, a 

panel approach is not feasible for reasons of data availability. On the one hand, the available 
series on some factor inputs such as expenditures on research and development (which are 
part of Z) are very short; the resulting panel would be highly unbalanced with data points 
unequally spaced in time, which is a serious problem with spatial models and may lead to 
inconsistent estimates. Second, the use of panel data would probably demand for a dynamic 
model and relatively long time series. Our estimates are to be interpreted as long-run 
relationships. (Pirotte, 1999, and Egger and Pfaffermayr, 2004, show that between estimates 
of dynamic models reflect long-run estimates.)   
5
 It was not possible to estimate the technology parameters from a cost function, since the 

required data are not available for the sample of countries and industries we consider. 

6 Physical capital stock data are not available. One could approximate capital stocks by using 
the perpetual inventory method. But apart from introducing measurement error this would 
drastically reduce our sample size, since sufficiently long time series on real investment are 
not available for many of the cross-sectional units.  
7
 In principle, one would wish to distinguish between inputs of skilled and unskilled labor. 

However, the available data do not permit such a distinction for the countries and industries 
covered here. It should be borne in mind that parameter estimates of variables which involve l 
refer to the joint input of skilled and unskilled labor. 
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13×N  selector (or dummy variable) matrix to allow for country-specific total factor 
productivity differences.  

 
The models of particular interest to us will include R&D-related parts of total factor 

productivity such as rd ≡ [lnRDik], where lnRDik reflects the logarithm of R&D intensity, 
defined as private and business enterprise R&D expenditures as share of value added, in 

country i and industry k.
8
 Apart from ‘own’ R&D these models will include weighted 

averages of other industries’ (logarithm of) R&D intensities to capture spillover effects: 

rdWrd 0

intraintra ≡  and rdWrd 0

interinter ≡ , where the NN ×  weights matrices 

][ ,,intra

00

intraW jlikw≡  and ][ ,,inter

00

interW jlikw≡  have elements 0

jlikw ,,intra0 ≤  and 0

jlikw ,,inter0 ≤ , which 

determine the decay of interdependence within a (identical) 2-digit industries (intra-industry) 
and across industries (inter-industry), respectively, and will be defined in more detail in 
subsection 2 of section III below. Such a specification assumes that the production function is 

separable in rd, intrard , and interrd , similar to the notion in Griffith, Redding and Van Reenen 

(2004). In that case one may think of the part of the model that is loglinear-additive in Zαααα, rd, 

intrard , and interrd  to reflect total factor productivity. Appendix A1 provides a description of 
the sample of countries and industries as well as data sources and associated descriptive 
statistics of the variables in use. 
 

We will also test for and estimate more flexible forms of the production function, using 
a translog-specification where the effects of an industry’s own R&D (rd) and R&D 

transmitted through intra- and inter-industry relationships ( intrard  and interrd ) are not 
separable from labor, capital, or each other. The economic interpretation of such a 
specification is that the marginal product of the production factors is a function of R&D and, 
in turn, the marginal effect of R&D on value added depends also on the input of labor and 
capital. In that case the regressor matrix Z includes the following additional higher order 

terms:  the squares rd
2 ≡ [

ikRD2ln
2
1 ]; 

2

intrard ≡ [ 2
intra, )(

2
1

ikRD ], and 
2

interrd ≡ [ 2
inter, )(

2
1

ikRD ], and 

interactive terms ]ln[ln ikik LRD≡lrd , ]ln[ln ikik KRD≡krd , as well as lrdintra , krdintra , 

intrardrd , lrdinter , krdinter , and interrdrd , which are defined analogously.  

 
Our main goal is to model and estimate productivity spillovers as determinants of total 

factor productivity and to consider whether such spillovers take place only within 2-digit 
industries (intra-industry spillovers) or also between different types of industries (inter-
industry spillovers). 

 

We do not expect the variables intrard  and interrd  to capture all possible spillover 
effects; on the one hand they reflect only private and business enterprise R&D and do not 
account for knowledge spillovers related to public research. In addition, there are other types 

                                                 
8
 Similar to capital stocks, it is not feasible to include the stock of knowledge here. The reason 

is that the available time series of R&D expenditures are of unequal length, unequally spaced 
in time, and short for most cross-sectional units so that stocks of knowledge can not be 
constructed by using the perpetual inventory method. Moreover, industry-level depreciation 
rates and price indices are not available. While the use of intensities rather than stocks allows 
us to estimate productivity effects of knowledge and associated spillovers, the corresponding 
parameters need to be interpreted differently from a specification which employs (capital or 
R&D) stocks. This issue will be discussed below.  
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of intra- and inter industry effects which are not or only indirectly related to knowledge 
transmitted through the use of intermediate goods. An early discussion of such external 
economies across industries, including historical examples, is given by Balassa (1961, chapter 
7). One example is that output price-reducing innovations in one industry will also increase 
demand for goods from input-producing industries, allowing firms in those industries to 
exploit economies of scale. More generally, Balassa (1961, p. 150) points out that “the 

transmission of technological change may also take the form of a circular process [between 

industries]. Under such a configuration technological improvements have a magnified 

impact. … All these repercussions – vertical or triangular – form part of a response 

mechanism that contributes to technological advancement as the economy grows.”  
 

As a result, part of the spillovers in our model will be reflected in the 1×N  error term 
vector u. In econometric terms, u is expected to exhibit ‘spatial’ correlation (i.e., 
interdependence across units of observations), which we will talk about in more detail in the 
subsequent section.  
 
 
III. Modeling Intra- and Inter-Industry Productivity Spillovers: A Spatial Econometric 

Perspective 

 

1. General Remarks 

With cross-sectional data, it is infeasible to estimate the individual elements of NN ×  
matrices of interdependence. But rather, it is necessary to adopt an assumption about the 
channel(s) and the structure of interdependence, captured by the elements of so-called spatial 
weights (or linkage or interdependence) matrices (see Anselin, 1988, Kelejian and Prucha, 
1999, Anselin, 2003). 
 
2. Specification of the Weights Matrices for Intra- and Inter-industry Spillovers 

In most applications, the elements of weights matrices are specified as some decreasing 
function of geographical distance or as function of adjacency. With two-dimensional data 
such as ours (exhibiting country and industry variation), using a geographical spillover 
channel would unnecessarily restrict spillovers to occur in the country dimension but not 
across industries. In our application, the inclusion of fixed country effects even washes out all 
cross-country spillovers which are identical across industries (such as ones related to 
geographical adjacency).  
 

Since productivity spillovers, which are the subject of this study, take place between 
firms, we use trade in intermediate goods – the bulk of trade between firms – as a measure of 
the extent and intensity of interactions both within and across industries. This approach is 
inspired by Balassa’s (1961) view on horizontal and vertical linkages between industries as a 
key source of productivity spillovers and findings of Smarzynska Javorcik (2004) that input-
output related linkages entail an important channel of spillovers at the firm level. Our input-
output-based measure of interdependence naturally spans both dimensions of our data, namely 

countries and industries.
9
 

 

                                                 
9
 An exception is Cohen and Morrison Paul (2004), who use measures of (total) trade between 

US states for the construction of the weighting matrix in their study on spillovers effects of 
public infrastructure investments. 
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However, we are not the first to use input-output-based data to model interdependence 
of industries. Moretti (2004) investigates the effects of human capital spillovers on 
productivity and wages using US plant level data over the period 1982 to 1992, using rank 
indices based on the value of input output flows. He allows for industry-specific parameter 
estimates, to test whether human capital spillovers decrease with an industry’s economic 
‘distance’ (captured by smaller levels of input-output flows) from manufacturing. An 
important difference to our study is that Moretti rules out cross-country spillovers and focuses 
on a single channel (inter-industry) rather than two channels (intra- versus inter-industry) of 
interdependence. Keller (2002) also uses input-output data to construct knowledge spillover 
variables in his investigation of R&D spillovers between manufacturing industries of 8 major 
OECD countries. Our study goes beyond that of Keller (2002) by considering not only 
knowledge spillovers but also other types of spillovers captured in the disturbance term u, 
which we account for by using a spatial econometric approach as will be outlined in more 
detail below.  

 
To construct the matrices of interdependence (the ‘spatial weights’ matrices), we 

employ the production share of trade in intermediate goods. Specifically, define the elements  
 

ik

jlik

jlik
PROD

IO
w

,0

, = . (2) 

 
The numerator IOik,jl denotes exchange of intermediate goods between country i’s industry k 
and country j’s industry l. We consider two alternative measures of input-output flows: use of 
intermediate goods and use-plus-delivery of intermediate goods. 
  

IOik,jl in (2) is constructed as follows. Domestic input-output flows between industries 
are available from the OECD’s input-output database. International input-output flows are 
only available at a gross basis (total imported intermediates by industry for each importer-
country and industry-pair). Accordingly, we have to adopt an assumption about the pattern of 
international trade in intermediate goods. We follow various examples in the literature by 
assuming that the foreign trade pattern of intermediate goods in a particular industry is similar 

to that of total trade.
10

 (See Appendix A1 for details.)  
 
The denominator in equation (5), PRODik, equals production (gross output) of country 

i’s industry k. Hence, the corresponding weights matrix models the magnitude of the 
interactions between two industries by the intensity of the use (or use-plus-delivery) of 
intermediate goods scaled by the respective industry’s size.   

 
One contribution of this paper is to assess whether there are differences between intra- 

and inter-industry spillovers. This will be achieved by splitting up the NN ×  matrix 

][ 0

, jlikw=0W   into two NN ×  matrices 0

intraW  and 0

interW , where 00

inter

0

intra WWW =+ . The 

elements of 0

intraW  correspond to 00

jlikjlik ww ,,,intra =  for lk =  and 0 otherwise, capturing the 

                                                 
10

 A similar approach is used by Feenstra and Hanson (1999), who combine data on imports 
of final goods with data on total input purchases, to obtain a breakdown of imported 
intermediate inputs by industry for US data. Bergstrand and Egger (2007) provide evidence 
that at least aggregate trade among the OECD countries in intermediate goods behaves 
remarkably similar to final goods trade. 
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decay of intra-industry interdependence in input-output space. 0

interW  contains elements 
00

jlikjlik ww ,,,inter = for k ≠ l and 0 otherwise, reflecting the decay of inter-industry 

interdependence in input-output space. Notice that the diagonal elements of 0

intraW  do not 

need to be zero and those of 0

interW  are zero by definition. To ensure that the parameter 

estimates associated with the weighting matrices used in the estimation are directly 

comparable, we divide the elements of the original weighting matrices 0

intraW  and 0

interW  by 

the respective average row-sum. Of course, such a division by a scalar is merely a 
reparameterization, which leaves the magnitude of the implied effects and inference 
unaffected. Hence, for simplicity of notation, we continue to refer to these matrices, which are 

normalized by the average row-sum, as 0

intraW  and 0

interW  in the following.  

 
As will become clear below, in the estimation of the spatial regressive error process it is 

necessary to use a normalization of the interdependence matrices together with corresponding 
restrictions on the admissible parameter space in order to ensure well-behaved asymptotic 
behavior of the parameter estimates. We follow the standard approach in the literature on 
spatial regressive processes and use row-normalized weights matrices, where each element of 

the unnormalized matrices 0W , 0

intraW  and 0

interW  is divided by the respective row sum, such 

that the elements of each row sum up to unity. (See, e.g., Lee and Liu (2009) for a similar 

approach with a higher order spatial autoregressive model.) We refer to these NN ×  matrices 

as W , intraW  and interW , respectively, and maintain throughout that their diagonal elements 

are zero so that kiwww ikikikikikik ,0,,inter,,intra, ∀=== .  

 
We emphasize that the distinction drawn between intra- and inter-industry spillovers 

depends on the level of disaggregation. In the present paper, the choice of 15 fairly highly 
aggregated 2-digit manufacturing industries (see Appendix A1) is dictated by the high level of 
industry aggregation in internationally comparable input-output matrices. These 15 industries 
are clearly heterogeneous enough to regard any cross-industrial relationship to be of the 
‘inter-industry’ type. However, one could argue that each of these 2-digit industries is made 
up of sub-sectors that are distinct enough from each other to regard their relationships as 
‘inter-industrial’ among similar industries. Hence, the figures about intra-industry spillovers 
should be interpreted as an upper bound, capturing true intra-industry spillovers as well as 
inter-industry spillovers among fairly similar industries. 
 

 
3. R&D Spillovers 

Our approach to modeling R&D spillovers builds on Coe and Helpman (1995). They use 
(aggregate) data from 21 OECD countries and Israel over the period 1971 to 1990 to estimate 
the contributions of the domestic knowledge capital stock and (bilateral import share 
weighted) foreign knowledge stocks to total factor productivity. A large number of studies has 
extended and econometrically refined this seminal procedure by Coe and Helpman (1995). 
(See Keller, 2004, for a survey of the literature.)  

 
While our estimation framework is closely related to that of Coe and Helpman (1995), 

there are also some differences. First, we use industry rather than aggregate data and 
distinguish between intra- and inter-industry spillovers. Second, while Coe and Helpman 
(1995) use a TFP index as the dependent variable, which is calculated from a Cobb-Douglas 
production function by imposing the income shares of labor and capital in a first step, our 
estimation builds on a more flexible translog production function approach. Finally, we use 
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(the log of) R&D intensity, defined as share of R&D expenditures of value added, rather than 
R&D capital stocks as an explanatory variable for reasons of data availability (see section II).  

 
As indicated before, our empirical model includes not only an industry’s ‘own’ R&D 

intensity rd, but also the spatial lags rdWrd
0

intraintra ≡
__

 and rdWrd
0

interinter ≡
__

, which can be 

interpreted as R&D spillovers transmitted through intra- and inter-industry relationships. In 

line with previous studies on R&D spillovers the elements of 0

intraW  and 0

interW  are based on 

the use of intermediates between industries. Note that the average row-sum of both matrices 
0

intraW  and 0

interW  is equal to 1. As a consequence, in the specification where R&D is assumed 

to be separable from labor and capital, the (average) intra- and inter-industry transmitted 
productivity spillover effect of a simultaneous, uniform increase in all industries’ R&D 

intensity by one percent can be read off directly from the parameters of intrard
__

 and interrd
__

. In 
the more general case, where R&D is not separable, the spillover effects are equal to the 

derivatives of y with respect to intrard
__

 and interrd
__

, which will then also depend on the values 
of the other inputs and parameters of the interaction terms. 
 

intrard
__

 and interrd
__

 reflect intra-industry and inter-industry spillovers, respectively, at the 
national and international level. Notice that we implicitly restrict the parameters of domestic 
and international spillovers to be equal (both for intra- and inter-industry R&D spillovers). 
This assumption appears to be justified for spillovers among the developed and highly 
integrated OECD countries. Differences in the magnitude of domestic and cross-border 
spillovers are mainly due to distance, trade costs, and border effects, which are already 
reflected in the magnitude of domestic versus international input-output flows (use of 
intermediate goods), which the spillover weights matrices are based upon. By contrast, 
differences between intra-industry and inter-industry spillovers are treated as qualitatively 
different in nature and are assumed to be associated with possibly different interdependence 
parameters. 
 
 
4. Remainder Productivity Spillovers in the Residuals 

In our application, there are (significant) productivity spillovers that work through channels 
other than the import of knowledge. These spillovers are reflected in the residuals. While 
previous studies on productivity have focused on knowledge spillovers, this paper allows for 
linkage effects channeled through input-output relationships which are not related to 
knowledge or R&D. Such spillovers could be related to market structure, factor market 
characteristics and other economic fundamentals with a potential impact on total factor 
productivity (Balassa, 1961; Smarzynska Javorcik, 2004). The productivity effects of such 
‘remainder’ spillovers may be captured by a ‘spatial’ regressive error process, where we 
distinguish again between two channels of interdependence: remainder intra-industry 

spillovers through the matrix intraW  and remainder inter-industry spillovers through the 

matrix interW  (see section 2). Since we do not rule out that remainder spillovers (i.e., ones 

associated with unobservable variables related to total factor productivity) are also transmitted 

through delivery of intermediates, the elements of the matrices intraW  and interW  are based on 

use-plus-delivery of intermediates between industries. The spatial regressive process of u is 
determined as  
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u = εεεε++ interintra WW interinter ρρ . (3) 

 

With row-normalized matrices intraW  and interW , what matters is another industry and 

country’s relative (rather than the absolute) weight for a given country-industry dyad. 
Moreover, the two channels of interdependence obtain the same ex-ante ‘weight’ in terms of 
their row sums in the error process, such that their relative importance is reflected in the 

parameter estimates of intraρ  and interρ , respectively. 

 

Regarding the model specification, the interdependence parameters (ρintra,  ρinter) have to 

be restricted to lie in the interval 1|||| 0 interintra <+≤ ρρ  under row-normalization and the main 

diagonal elements of both intraW  and interW  have to be zero as mentioned before. The latter 

implies that we cannot incorporate domestic intra-industry spillovers in the spatial regressive 
specification of the residual u for econometric reasons. Accordingly, the weights matrix 

intraW  captures only international intra-industry spillovers, whereas interW  reflects both 

domestic and international inter-industry spillovers.  
 

To check the sensitivity of the results with respect to the choice of the weights matrix, 
we will consider two alternative specifications below: first, we use a weights matrix which is 
based on use (rather than use-plus-delivery) of intermediate goods; second, to address 
endogeneity concerns, we consider the case of a weights matrix whose elements are based 
upon the predicted values from a gravity-type model for input-output flows. (See subsection 3 
in section IV and Appendix A3 for details.)  
 

Regarding estimation, two approaches dominate the literature: maximum likelihood 
estimation (see Anselin, 1988; Lee, 2004) and generalized method of moments estimation 
(Lee and Liu, 2006; Kelejian and Prucha, 2008). A drawback of the maximum likelihood 
approach is that it is computationally cumbersome (particularly for large weights matrices), 
and it relies on relatively strong distributional assumptions of which one is that the error term 

εεεε is homoskedastic. Since heteroskedasticity indeed turns out to be important in our data as 
we will show below, we choose the GM estimator by Kelejian and Prucha (2009) to obtain 
consistent estimates of the interdependence parameters. The estimation approach is briefly 
sketched in formal accounts in Appendix A2.1. 
 

Kelejian and Prucha (2009) consider only one channel and parameter of 
interdependence. Building on Badinger and Egger (2008), who generalize the estimator by 
Kelejian Prucha (2009) for models with higher order spatial regressive processes, Appendix 
A2.2 outlines the econometric issues involved in the estimation of the second order process as 

specified in equation (3).
11

 We refer the interested reader to the working paper version of this 
paper and Badinger and Egger (2008) for a Monte Carlo simulation study showing that the 
estimator based on the extended moment conditions performs reasonably well, even in small 
samples.  
                                                 
11

 This approach is related to the ones of Bell and Bockstael (2000) and Cohen and Morrison 
Paul (2007), who also consider GM estimation of higher order spatial regressive error 
processes but assuming homoskedastic residuals. However, apart from technicalities, there is 
a conceptual difference between our approach and the ones of Bell and Bockstael (2000) and 
Cohen and Morrison Paul (2007). In our case, the different weights matrices refer to 
qualitatively different relationships – intra- versus inter-industry – among units in the sample 
rather than different geographical ‘bands’ (or gradual differences in neighborhood) there. 
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IV. Estimation Results 

Our estimates of the empirical models derived in section II are based on the aforementioned 
cross-section, consisting of 13 OECD countries and 15 manufacturing industries (making a 
total of 195 observations) and refer (mainly) to the year 1995.  
 
1. R&D Spillovers  

Table 1 summarizes estimates of the parameters for alternative empirical models. We first 

consider the results for the main equation only, i.e., the estimates of γγγγ     in equation (1), and 

then turn to remainder spillovers in the error process, i.e., ρintra and ρinter, in equation (3). 

Inference for the estimates of γγγγ is based on robust standard errors, which account for the 

spatial regressive structure of the error term and the heteroskedasticity in εεεε. (See Appendix A2 
for details.) 

 

We start with the most parsimonious translog specification based on capital and labor 
variables only (except for country dummies, which are included in all models) in column 

(1).
12

 Notice that the non-linear terms l
2, k

2, and lk are jointly significant at 10 percent in 
column (1), indicating that the production function would be misspecified by a Cobb-Douglas 
model. Evaluated at the sample mean, the implied average derivatives are 0.507 with respect 
to the log of the investment intensity and 0.872 with respect to the log of labor. Recovering 
the output elasticity with respect to the capital stock and labor from our estimates would 
require additional assumptions about the particular form of the production function. While the 

parameter estimates are in a plausible range,
13

 we do not pursue this issue further here and 
turn to our main goal, i.e., the estimation of productivity spillovers.  

 

< Table 1 > 
 

We proceed by stepwise including the R&D variables, assuming additive separability of 
the R&D terms in a first step. Column (2) shows the results when only the (log of) ‘own’ 
R&D intensity – captured by vector rd – is included as additional regressor (‘own’ here refers 
to the same country and industry). The corresponding coefficient turns out to be significant at 
five percent, reflecting an elasticity of 0.032, which is below the effect obtained in previous 

(country) studies.
14

 For instance, Coe and Helpman (1995) estimate an elasticity of total factor 

                                                 
12

 Including industry dummies is not feasible with the data at hand, since they are highly 
collinear with the covariates in the model. However, the goodness of fit increases only 
moderately in a model with industry dummies as compared to our more parsimonious 
specifications. We thus opt for the latter model and pool the constants across industries. 
13

 For example, if we interpret the parameters using the steady-state of a standard neoclassical 
growth model and imposing a parameter for the log of labor equal to unity (which is close to 

our average estimate), the output elasticity with respect to the capital stock (α) can be 

recovered from the relation 
α

αε
−

=
1

s , where εs is the elasticity of output with respect to the 

investment-ratio. For the estimate of sε  in column (1), this would imply an average output 

elasticity with respect to the capital stock of 0.336.  
14

 Recall that the estimated elasticity with respect to the R&D intensity does not directly 
measure the elasticity with respect to the knowledge stock. 
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productivity with respect to the domestic R&D stock, ranging from 0.08 to 0.23. In the most 
recent study in the tradition of Coe and Helpman (1995), Madsen (2007) finds an elasticity of 
0.07 for 16 OECD countries and the post-1950 period. That we obtain a smaller estimate is 
not too surprising, since we use disaggregated data; we will return to this point below. 
 

In a next step we include the R&D spillover terms rdWrd
0

intraintra =
__

 and 

rdWrd
0

interinter =
__

, allowing their parameters to differ. As can be seen from column (3), both 

intrard
__

 and interrd
__

 enter significantly at the one percent level. Moreover, an F-test clearly 

rejects the restriction that 
intrard

__γ  = 
interrd

__γ   at one percent. In light of the fact that the average 

row sums of the weights matrices 0

intraW  and 0

interW  are equal to 1, the coefficients suggest 

that inter-industry R&D spillovers are roughly twice as important as intra-industry R&D 
spillovers.   

 
In terms of magnitude the estimates imply that a simultaneous increase in all industries’ 

R&D (i.e., including own R&D) by one percent induces spillover effects (both across 
industries as well as within the same industry) on total factor productivity by 0.15 percent 
(0.043 of which is due to own R&D, 0.072 of which is due to inter-industry spillovers, and 
0.036 of which is due to intra-industry spillovers).  

 
Turning to the effect of country i’s and industry k’s “own” R&D we have to bear in 

mind that 0

intraW  contains nonzero diagonal elements. Hence, in terms of our notation, the 

average direct effect of own R&D on productivity is given by rdγ  (the direct effect of 0.043) 

plus 
intrard

__γ , multiplied with the average of the main diagonal elements of 0

intraW , the latter 

reflecting the effect of domestic intra-industry spillovers taking place within the respective 
industry (0.027). The effect on an industry’s productivity of an increase in R&D by one 
percent in all other industries – that is the productivity effect due to spillovers except those 
induced by the same industry and country – amounts to 0.080. This is consistent with the 
results by Keller (2002), who finds that an industry’s own R&D and spillovers from other 
industries account for some half of the total effect.  

 
Based on our assumption that the parameters are equal for domestic and international 

relationships (see the discussion in subsection 2 of section III), the sums of the weights 
expressing domestic and international (intra- and inter-industry) relations can be used to infer 
the relative magnitudes of domestic versus international spillovers. With an average domestic 
share of some 0.75 and 0.79 percent in total intra-industry and inter-industry use of 
intermediate goods, this implies that some three quarters of the R&D spillovers take place 
domestically.

 
If we exclude spillover effects within the same industry (domestic intra-industry 

spillovers), domestic spillovers still account for some two thirds of all spillover effects. Again 
this is fairly close the estimates by Keller (2002), who finds that some 60 percent of all 
spillover effects stem from domestic industries.  

 
We next turn to the results for the specification assuming that effects of R&D are non-

separable from the other factors of production. Column (4) includes only own R&D (rd) and 
the corresponding interaction terms, which turn out jointly significant at one percent. The 
implied average elasticity is somewhat larger than that obtained in column (2). Column (5a) 
reports the estimates where the R&D spillover terms (and the corresponding interactions) are 



 13 

included as well. The qualitative conclusions are very similar to those obtained from column 
(3), though a larger effect is assigned to own R&D with an implied average elasticity of 0.067 
and inter-industry spillovers with an implied average elasticity of 0.042, whereas intra-
industry spillovers are smaller in magnitude (0.003) and statistically insignificant. 

 

The specification of the main equation given in column (5a) is our preferred model. The 
fit is satisfactory with an adjusted R

2 of 0.972 and a standard error of 0.234. Note that 
throughout all models, the Ramsey-test statistic is insignificant. We may interpret this as an 
indication of the absence of strong endogeneity problems with our specification. We now turn 
to a discussion of the results regarding the spatial regressive error process of u.  

 
2. Remainder Productivity Spillovers 

The lower panel of Table 1 reports the Moran’s I test for spatial correlation in u and a series 
of LM tests suggested by Anselin, Bera, Florax, and Yoon (1996) for specification search 
with spatial econometric models. For the data at hand, the results point to the importance of 
spatial autocorrelation in the error term but not the dependent variable in all models. It should 

be noted, however, that the LM tests assume that the error term εεεε is homoskedastic and that 
there is only a single mode of interdependence (i.e., first-order spatial correlation through W). 
Since some of our models include a second-order spatial regressive error process (through 

intraW  and interW ) and heteroskedasticity in εεεε is pronounced in all specifications according to 

standard Breusch-Pagan tests (see Table 1) the test statistics should only be regarded as 
indicative of spatial correlation in the error term. Estimation and inference regarding the GM 

estimates of ρ  are based on Kelejian and Prucha (2009); for the second order models, 

estimation and inference for the GM estimates of intraρ  and interρ  are based on the 

generalization by Badinger and Egger (2008). (See Appendix A2 for details.)   
 
In columns (1)-(5a), we report the interdependence coefficient when assuming a first-

order spatial regressive error process, i.e., u = εεεε+Wuρ , along with the estimates of intraρ  and 

interρ , assuming a second-order process as reflected in equation (3).
 15

  

 

In our preferred specification in column (5a), the estimate of ρ is approximately 0.430. 
This is supportive of the arguments by Balassa (1961) that technological improvements have 
a magnified impact on productivity. The coefficient suggests that a unitary productivity shock 
in all industries is amplified by a factor of 1.754 in the long run, accounting for spillovers to 
other industries and their repercussions. A comparison of the spatial correlation tests and the 

estimates of ρ in columns (4) and (5a) (or columns (1) and (3) for separable R&D) in Table 1 
indicates that remainder spillovers become less important – but do not become insignificant – 
in response to the inclusion of the R&D spillover terms in the main equation. Hence, part – 
yet not all – of the interdependence across countries and industries identified in columns (1)-
(5a) is due to R&D spillovers channeled through national and international input-output 
relationships.  

 

                                                 
15

 In Table 1, estimates of ρ  are reported in the row denoted by Wu  while ones of intraρ  and 

interρ  are summarized in the rows labeled uWintra  and uWinter , respectively. Since the GM 

procedures applied here are based on first-step (least squares) estimates of u from the main 

equation, we may report the GM estimates of ρ  along with ones of intraρ  and interρ  in 

columns (1) to (5a) of Table 1. 
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Using the specification in column (5a), we now take a closer look at remainder 
productivity spillovers as captured in the residuals. The corresponding analysis is based on the 
least squares residuals of the model in column (5a) and summarized in columns (5a)-(5c) in 
Table 1. We first allow the spatial autoregressive parameter to vary between intra- and inter-
industry relations as in equation (3). (Results for the systematic part of the model, i.e., the 
main equation, are the same across columns (5a)-(5c) except for the estimates of the robust 

standard errors.) Compared with the estimate of ρ, the estimate of intraρ  (measuring 

productivity effects transmitted through international intra-industry use of intermediate 

goods) is positive and statistically significant, while that of interρ  (measuring productivity 

effects transmitted through both domestic and international inter-industry use of 
intermediates) is close to zero and actually insignificant – it actually is slightly negative, 
according to the center panel of column (5a). We regard this result as strong evidence of a 
dominance of intra- over inter-industry spillovers unrelated to R&D.  

 
Our interpretation of the role of intra- versus inter-industry interdependence is also 

supported by the results from two alternative specifications of the error process, which 

assume 0intra =ρ  and, alternatively, 0inter =ρ  in columns (5b) and (5c), respectively. If only 

inter-industry spillovers are allowed as in column (5b), the estimate of interρ  is positive but 

very small and not significantly different from zero. In contrast, if only intra-industry 

spillovers are allowed as in column (5c), the estimate of intraρ  is about the same as in column 

(5a) and highly significant. Hence, our analysis of nested spillover effects suggests that there 
are no (or only negligible) inter-industry spillovers associated with the stochastic part of total 
factor productivity, after accounting for intra- and inter-industry spillovers in R&D. 

 
3. Feasible GLS Estimates and Sensitivity Analysis 

Having obtained an estimate of the error process, efficiency of the estimates of the model 
parameters can be improved by a generalized least squares (GLS) approach. Kelejian and 
Prucha (2009, p. 22) suggest applying a standard Cochrane-Orcutt transformation to (1):  

 
*** uγZy += . (4) 

 

In the second-order case, we have yWWIy )( interinterintraintra

* ρρ −−= , 

ZWWIZ )( interinterintraintra

* ρρ −−= , and εεεε=−−= uWWIu )( interinterintraintra

* ρρ . The 

corresponding transformation for the case of a first-order spatial regressive error process is 

obtained by replacing the transformation matrix )( interinterintraintra WWI ρρ −−  with )( WI ρ− . 

As is evident from these definitions, the transformed model depends on intraρ  and interρ . The 

feasible generalized least squares (FGLS) estimator of γ  is obtained by replacing intraρ  and 

interρ  with their estimates (based on the least squares residuals). To account for the 

(remaining) heteroskedasticity in εεεε , robust standard errors are used for inference regarding 

γ . In Table 2,  GM estimates and inference regarding intraρ  and interρ  are based on the FGLS 

residuals of the main (untransformed) equation. For more details on the econometric issues, 
see Appendix A2. 
 

< Table 2 > 
 

The FGLS results for our preferred specification of the main equation (Table 1, column 
5a) with a second order spatial regressive process are given in column (1a) of Table 2. Since 
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the GM estimates again suggest that remainder inter-industry spillovers are insignificant, we 

proceed with a discussion of column (1b), where  interρ  is restricted to zero. Compared with 

the least squares estimates, the estimate of the implied elasticity with respect to own R&D 
becomes smaller and amounts to 0.028, whereas that of inter-industry R&D spillovers 
increases to 0.037. Regarding the relative role of intra- versus inter-industry R&D spillovers, 
the qualitative results do not change: inter-industry R&D spillovers are highly significant and 
dominate intra-industry spillovers, which turn out insignificant at conventional levels. 

Regarding remainder productivity spillovers, the GM estimate of intraρ , which is now based 

on the FGLS residuals (referring to the untransformed model), amounts to 0.649, is highly 
significant and points to a multiplier effect of a uniform, incipient one-percent productivity 
shocks of around 2.850 percent.   

 

Next, we infer the sensitivity of the results
16

 with respect to alternative weights matrices 
for interdependence in the spatial regressive error process. In both cases we report the 
estimates using a second order spatial regressive process, and proceed with a restricted 
specification of the error process where appropriate.  

 

Column (2) provides FGLS estimates using weights matrices intraW  and interW , which 

are based on use rather than use-plus-delivery shares. Again, remainder inter-industry 
spillovers turn our insignificant, such that we proceed with a model entertaining a first-order 

spatial regressive error process in intraW . As can be seen from column (2b), the results are 

virtually identical to those in column (1b), where the weights matrices are based on use-plus-
delivery shares.  

 
As a second robustness check, we consider the results when the use-plus-delivery based 

weights matrix in the main equation and the error process is generated from the predicted 
values of a gravity model, including country-pair dummies, industry-pair dummies, and 
distance between countries (or internal distance for domestic use-plus-delivery intensities) as 
determinants of use-plus-delivery intensities across industry-country-pairs. This approach 
aims at avoiding the potential endogeneity of intermediate goods flows, similar to an 

instrumental variable model.
17

 Appendix A3 gives a more detailed description of the 

construction of the predicted weights matrix, referred to as 0

intraŴ  and 0

interŴ as well as intraŴ  

and interŴ . Columns (3a) and (3b) in Table 2 report the results, using 0

intraŴ  and 0

interŴ  to 

construct the R&D spillover terms in the main equation and intraŴ  and interŴ  as weights 

matrices in the error process. Again, our findings are qualitatively and quantitatively similar 
to the results using the original weights matrices, which are based on actual values.  

 

                                                 
16

 Table 2 reports the results for the specification where R&D is assumed to be non-separable. 
The corresponding results and differences for the specification where R&D is assumed to be 
separable are qualitatively very similar as for the least squares estimates. (See the discussion 
in subsection 1 of section IV). 
17

 Our approach is inspired by that of Frankel and Romer (1999), who use (the country-
specific sum) of predicted bilateral trade flows from a ‘geographical’ gravity model as an 
instrument in a cross-country regression of per capita income on (endogenous) trade and 
country size.  
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We admit that endogeneity of conditional factor demand is a concern in empirical 

productivity studies.
18

 However, instrumental variable procedures using outside instruments 
typically use much more parsimonious models than we do (typically, they rely on Cobb 
Douglas technologies and specify value added primarily as a (log-)linearly separable function 
of primary production factors capital and labor only; see Olley and Pakes, 1996). 
Accordingly, functional misspecification may be a concern in some of these studies. This is 
avoided with a more flexible technology such as a translog or a generalized Leontief 
production function at hand. Yet, then the number of potentially endogenous variables is too 
large to proceed as in some of the studies proposing instrumentation. Moreover, our reading 
of the results is that endogeneity does not appear to be pronounced. First, the Ramsey-test is 
insignificant in all models and, hence, does not point to misspecification. Second, the LS and 
FGLS estimates are fairly close, which is unlikely to be the case under pronounced 
endogeneity (see Wooldridge, 2006, p. 286). Third, judged against the results of previous 
studies on R&D spillovers using other econometric techniques, our parameters estimates are 
in a plausible range (see subsection 1 of section IV,). Finally, while the point estimates of the 
parameters should not be overstressed, there is no reason to assume that endogeneity 
systematically biases the estimates of the relative role of intra- and inter-industry spillovers, 
which is the focus of our paper. 
 
 
V. Conclusions 

This paper considers the productivity effects of knowledge and other type of spillovers, using 
a cross-section of 13 OECD countries and 15 manufacturing industries. It allows for 
spillovers to cross both national and industrial boundaries and pays specific attention to the 
relative magnitude of intra- versus inter-industry spillovers that are transmitted through input-
output relations. We allow such spillovers to be either related to R&D intensities or other, not 
further specified sources (such as product or factor market characteristics). To account for the 
latter, we adopt a spatial econometric approach.    

 
Focusing on input-output relations and linkage-driven spillovers, we hypothesize that 

spillovers between countries and industries decline with economic (rather than merely 
geographical) distance, which we measure using information on the domestic and 
international use and delivery of intermediate goods between industries.  

 
In our estimation of knowledge spillovers, we extend the empirical analysis by Coe and 

Helpman (1995) along three lines. First, we use industry rather than country data. Second, we 
test for differences in intra- and inter-industry spillovers related to R&D. Third, we allow for 
remainder spillovers beyond those embodied in R&D, which are not further specified but 
hypothesized to be related to input-output linkages as well. For the latter, allowing intra-
industry spillovers to differ from inter-industry spillovers requires a spatially autoregressive 
model for residuals with two rather than a single channel of interdependence. Suitable for our 
dataset with cross-sectional interdependence and pronounced heteroskedasticity, we use an 
extension of the heteroskedasticity-robust GM estimator by Kelejian and Prucha (2009), 
which allows for two spillover channels and parameters of interdependence (intra- and inter-
industry spillovers).  

 
The results suggest that own R&D enhances productivity and also point to sizeable 

knowledge spillover effects on productivity, transmitted through both inter-industry and intra-
industry use of intermediate goods. Inter-industry R&D spillovers dominate intra-industry 

                                                 
18

 See Thursten and Libby (2002). 
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spillovers, which turn out much smaller and even insignificant in some specifications. There 
is also evidence for sizable remainder spillovers which are not related to R&D but also 
transmitted through input-output linkages. However, statistically significant remainder 
spillovers are only found within or among very similar industries; there is no evidence of 
inter-industry spillovers unrelated to R&D. Shocks to total factor productivity unrelated to 
knowledge are amplified by roughly a factor of two through intra-industry spillovers and the 
associated repercussions. The results may be interpreted as evidence of an even stronger intra-
industry spillover mechanism for shocks to total factor productivity which are unrelated to 
knowledge than for ones that are embedded in knowledge. 
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Appendix A1. Data and Sample 

 

A1.1 Data Sources 

Our final sample is determined by data availability and comprises 13 countries (CAN, CZE, 
DEU, DNK, ESP, FIN, FRA, GBR, ITA, NLD, NOR, POL, USA) and 15 industries (see 
below). Of the 195 observations, data on investment and R&D expenditures is missing for 
some countries and industries such that 170 observations remain. 20 of the 25 missing 
observations were imputed from higher levels of aggregation; the other missing values were 
approximated, using the ratio of a variable’s value in the particular industry to the average 
value across all available industries. Data on value added (in 1995 prices) and employment 
(hours worked) are taken from the Groningen Growth and Development Center (GGDC). 
Investment data are from the OECD Structural Analysis (STAN) database. Data on R&D 
expenditures are from the OECD’s Analytical Business Enterprise Research and Development 
(ANBERD) database. The cross-section data refer to 1995, a choice dictated by the 
availability of input-output tables, which refer to the period around 1995. Investment- and 
R&D intensities are averages over the longest available time span over the period 1990-2000. 
Data on distances between countries and internal distance within countries are from the CEPII 
database (http://www.cepii.fr/). 

 

Input-output data to construct the weights matrix are from the OECD input-output 
database. International input-output flows by industry are assumed to exhibit the same 
bilateral trade pattern as total trade. Information on the level of imported intermediate goods 
(i.e., international use of intermediates) of industry k from industry l is combined with 
bilateral import shares in total imports of industry k. Exports of intermediate goods (i.e., 
international delivery of intermediates) of industry k to foreign industries l are assumed to be 
symmetric to imports of industry l from foreign industries k and combined with bilateral 

export shares in total exports in industry k.
19

 The shares of bilateral import and exports in total 
trade at the industry level are calculated from the OECD’s STAN bilateral trade database.  
 

A1.2 List of Industries and Summary Statistics 

 

< Table A1 > 

 

 

 

                                                 
19

 The relevance of this approximation is reduced by the fact that all weights matrices based 
on delivery of intermediate goods are row-normalized; as a consequence, the more relevant 
assumption is that bilateral export shares in total exports are equal to bilateral shares in 
intermediate goods exports. In addition, we consider weights matrices which are based on the 
use of intermediate goods only in the sensitivity analysis. 
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Appendix A2. Econometric Issues  

Estimation of the main equation (1), i.e, uZγy += , is standard. The least squares (LS) 

estimator is yZZ)Zγ ′′= −1(ˆ  and the generalized least squares (GLS) estimator is given by 

**1*** (ˆ yZ)ZZγ ′′= − , where the asterix indicates the use of transformed matrices
20

, which 

depend on the spatial regressive parameter ρ  (or intraρ  and interρ  in the second order case). 

The feasible generalized least squares (FGLS) is defined as **1*** ~~~~
(~̂ yZ)ZZγ ′′= − , where the ~ 

indicates that the GM estimate ρ~  (or the estimates intra
~ρ  and inter

~ρ ) are used to calculate the 

transformed matrices. In the following we outline the GM procedure to obtain estimates of the 
spatial regressive parameters of the error process.  
 
A2.1 Estimation of First Order Spatial Regressive Error Process  

Consider the model with a first order spatial autoregressive error process (SAR1): 

 εεεε+= Wuu ρ , (A.1) 

where X is a matrix of explanatory variables and ε  is a stochastic error term. Having obtained 
consistent estimates of u from the main model, the generalized moments (GM) estimator by 

Kelejian and Prucha (2009) can be used to estimate the spatial regressive parameter ρ in 
equation (A.1). It is based on the following moment conditions, which rely on independently 

though not necessarily identically distributed disturbances εi and some restrictions on the 
properties of the weights matrix: 

 0}])][({[ 2

1

1 =′−′ =
−

WW i

N

i EdiagTrEN εεεεεεεεε , and  (A.2a) 

 01 =′− εεεεεεεεEN , (A.2b) 

where εεεεεεεε W= ; N is the total number of observations and Tr is the trace operator. Alternatively, 
the moment conditions can be written as  

 0)( 1

1 =′− εAεEN , or (A.3a) 

 0)( 2

1 =′− εAεEN , (A.3b) 

where )( ..11 ii

N

idiag wwWWA ′−′= =  with i.w  denoting the i-th column of W , and WA  2 = .  

 

Substituting for εεεε = (I–ρW)u yields a two equation system in ρ and ρ2. Its empirical 
counterpart is given by: 

 υηΠπ =− ~~ , (A.4) 

where ],[ 2 ′= ρρη and the elements of the 2×1 vector π~  and the 2×2 Matrix Π
~

 can be 

calculated from the estimates of u and the elements of the weights matrix W; υ  can be 

regarded as a vector of regression residuals. The GM estimator of ρ is now defined as 
weighted nonlinear least squares estimator based on (A.4). It is obtained by solving 

 )]
~~(

~
)

~~[(~ 1
ηΠπΨηΠπ −′−= −

ρ
ρ  argmin , (A.5) 

where 1~ −Ψ  is (a consistent estimate of) the optimal weighting matrix (defined below), 
ensuring asymptotic efficiency of ρ~ .  

 

A2.2 Estimation of Second Order Spatial Regressive Error Process 

Kelejian and Prucha (2009) consider only one homogenous parameter ρ in the spatial 
regressive process. Badinger and Egger (2008) consider a more general specification, which 
allows for M heterogeneous parameters in the spatial autoregressive process:  

                                                 
20

 For the definition of the transformed series see equation (4) and the surrounding discussion. 
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 εεεε+=∑
=

M

m

mmρ
1

uWu , (A.6) 

where the matrices Wm have the same dimension as W in (A.1).
21

 In the present paper, we 
have a second order process with  

 εεεεεεεε ++=+=∑
=

uWuWuWu 2211

2

1

ρρρ
m

mm , (A.7) 

where we have set intra1 ρρ ≡ , intra1 WW ≡ , inter2 ρρ ≡ , and intra2 WW ≡ . 

 
The generalized GM estimator can be obtained by recognizing that – using the same 
assumptions as in Kelejian and Prucha (2009) – the moment conditions given by (A.3a) and 

(A.3b) must hold for each matrix Wm,  2,1=m  

 0}])][({[ 2

1

1 =′−′ =
−

mi

N

immm EdiagTrEN WW εεεεεεεεε , and (A.8a) 

 01 =′− εεεεεεεε mEN , (A.8a) 

where εεεεεεεε mm W= . The moment conditions can be written alternatively as  

 0)( 1

1 =′−
εAε mEN ,  (A9a) 

 0)( 2

1 =′−
εAε mEN , (A.9b) 

for m = 1, 2, where )( ,.,.11 mimi

N

immm diag wwWWA ′−′= =  with mi,.w  denoting the i-th column of 

mW , and mm WA =2 . 

From the specification of the error term in (A.7) it follows that   

 22112211

2

1

 uuuuWuWuuWu ρρρρρ −−=−−=−= ∑
=m

mmεεεε , (A.10a) 

 22112211 mmmmmmmm uuuuWWuWWuWW ρρρρ −−=−−== εεεεεεεε , (A.10b) 

where we use the following definitions: 

 uWu mm = , uWWu mmm = , and uWWu 11 mm = , uWWu 22 mm = . 

  
Substituting (A.10a)-(A.10b) into the moment conditions (A.8a)-(A.8b) or (A.9a)-(A.9b) we 
obtain the following four equation system: 

 0Πηπ =− ,  

where  ],,,,[ 2

2

2

12121
′= ρρρρρρη  and the elements of ],,,[ 4321

′= πππππ  and 

5,...,1,4,...,1, ][ === jijiπΠ  are defined as follows:
22

 

 =1π  11

1 { uu′− EN − ]})([ 1

2

,11 WW ′= Ni

N

i udiagTr )( 11

1 uAu′= − EN .                                   (A.11)

 =2π )( 1

1 uu′− EN )( 21

1 uAu′= − EN . 

 =3π  22

1 { uu′− EN − ]})([ 2

2

12 WW ′= i

N

i udiagTr )( 12

1 uAu′= − EN . 

 =4π )( 2

1 uu′− EN )( 22

1 uAu′= − EN .  

                                                 
21 A similar extension of the moment conditions, although for the case of homoskedasticity as 
in Kelejian and Prucha (1999), is used by Bell and Bockstael (2000) as well as Cohen and 
Morrison Paul (2007). 
22

 In the scalar expressions imu , , the first subscript m refers to the matrix by which u  is 

premultiplied and the second subscript i refers to the unit of observation.  
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 =1,1π ]})([{2 ,1,11111

1 WWuu ′−′ =
−

ii

N

i uudiagTrEN )(2 111

1 uAWu ′′= − EN   

 =2,1π ]})([{2 ,1,211112

1 WWuu ′−′ =
−

ii

N

i uudiagTrEN )(2 112

1 uAWu ′′= − EN .   

 =3,1π ]})([{2 1,1,211121

1 WWuu ′−′− =
−

ii

N

i uudiagTrEN )(2 2111

1 uWAWu ′′−= − EN . 

 =4,1π ]})([[ 1

2

,11111

1 WWuu ′−′− =
−

i

N

i udiagTrEN )( 1111
1 uWAWu ′′−= − EN . 

 =5,1π ]})([[ 1

2

,2111212

1 WWuu ′−′− =
−

i

N

i udiagTrEN )( 2112
1 uWAWu ′′−= − EN . 

 =1,2π ][ 111
1 uuuu ′+′− EN ])([ 21211

1 uAAWu +′′′= − EN . 

 =2,2π ][ 1212
1 uuuu ′+′− EN ])([ 21212

1 uAAWu +′′′= − EN . 

 =3,2π )( 21112
1 uuuu ′+′− − EN ])([ 121212

1 uWAAWu +′′′−= − EN . 

 =4,2π ][][ 11
1

11
1 uuuu ′−=′− −− ENEN )( 1211

1 uWAWu ′′−= − EN . 

 =5,2π ][][ 122
1

212
1 uuuu ′−=′− −− ENEN )( 2212

1 uWAWu ′′−= − EN . 

 =1,3π ]})([{2 2,112221

1 WWuu ′−′ =
−

ii

N

i uudiagTrEN )(2 121
1 uAWu ′′= − EN .   

 =2,3π ]})([{2 2,21222

1 WWuu ′−′ =
−

ii

N

i uudiagTrEN )(2 122
1 uAWu ′′= − EN .   

 =3,3π ]})([{2 2,1,212221

1 WWuu ′−′− =
−

ii

N

i uudiagTrEN )(2 2121
1 uWAWu ′′−= − EN . 

 =4,3π ]})([[ 2

2

,1122121

1 WWuu ′−′− =
−

i

N

i udiagTrEN )( 1121
1 uWAWu ′′−= − EN . 

 =5,3π ]})([[ 2

2

,21222

1 WWuu ′−′− =
−

i

N

i udiagTrEN )( 2122
1 uWAWu ′′−= − EN . 

 =1,4π ][ 2121
1 uuuu ′+′− EN ])([ 22221

1 uAAWu +′′′= − EN . 

 =2,4π ][ 222
1 uuuu ′+′− EN ])([ 22222

1 uAAWu +′′′= − EN . 

 =3,4π )( 22112
1 uuuu ′+′− − EN ])([ 122222

1 uWAAWu +′′′−= − EN . 

 =4,4π ][ 211
1 uu ′− − EN )( 1221

1 uWAWu ′′−= − EN . 

 =5,4π ][ 22
1 uu ′− − EN )( 2222

1 uWAWu ′′−= − EN . 

The GM estimate of ] [~
21 ρρ=ρ  is obtained by solving the nonlinear optimization problem 

 )]
~~(

~
)

~~[(]~ ~[~ 1

,
21

21

ηΠπΨηΠπρ −′−=′= −

ρρ
ρρ  argmin , (A.12) 

where π~  and Π
~

 are the estimates of π  and Π , whose elements are obtained from (A.11) by 

suppressing the expectations operator and replacing the disturbances u by their estimates. 1−
Ψ  

is the optimal weighting matrix, which is equal to the the variance-covariance matrix of the 

moment vector.
23

 Since the optimal weighting matrix depends on the unknown parameters 1ρ  

                                                 
23

 In the general case with endogenous regressors, the optimal weighting matrix Ψ  is not 
identical to the variance-covariance matrix of the moment vector, which is due to the fact that 
the GM estimator is based on estimated rather than the true disturbances. (See Kelejian and 
Prucha, 2009, and Badinger and Egger, 2008.) 
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and 2ρ  as will become clear in its definition below, the identity matrix can be used as 

weighting matrix instead to obtain initial consistent estimates.  

 

A2.3 Asymptotic Properties of Parameter Estimates  

In the following we state the asymptotic variance-covariance matrix of the estimates of the 

parameters of the main model and the spatial regressive error process, which is robust to 

heteroskedasticity. The first order case is treated in Kelejian and Prucha (2009). Badinger and 

Egger (2008) have extended the results for the case of a higher order model of arbitrary 

(finite) order. The present paper is a special case with a second order process and no spatial 

lag (or other endogenous regressors). The reader is referred to Badinger and Egger (2008) for 

a detailed statement of the assumptions and the proofs of the subsequent results. 

 

A2.4 Asymptotic Normality of LS estimate γ̂  and FGLS estimate 
*~̂γ  

In light of Theorem 4 and Lemma 1 in Badinger and Egger (2008) the following result holds 

for the least squares estimator of model (1):  

 ),(N~ˆ ~
1

γΩγγ
−

N
a

 with PΨPΩ γ ∆∆′=~ , where    

 1−= ZZQP , with )(lim 1 ZZQZZ
′= −

∞→ NN ,  

 ΣFFΨ ′= −
∆∆

1

, NN  with ZWIF
1

2

1

)( −

=
∑ ′−=
m

mmρ , 

 and )( 2

,...,1 iNi Ediag ε==Σ . 

 

For the FGLS estimator it holds that (compare Theorem 4 and Lemma 2 in Badinger and 

Egger, 2008): 

),(N~~̂
*~̂

1*

γ
Ωγγ

−
N

a  with ***
~̂* PΨPΩ
γ ∆∆

′= , where  

 =*P  1
**

−
ZZQ  with )(lim **1

** ZZQ ZZ
′= −

∞→ NN , and  

 **1

, ΣFFΨ ′= −
∆∆ NN , and ** ZF = .

24
 

 

Estimates of γΩ~  and *~̂γ
Ω are obtained using 11 )(

~ −− ′= ZZP N , ZWIF
1

2

1

1)~(
~ −

=
∑ ′−=
m

mρ  or 

1**1* )
~~

(
~ −− ′= ZZP N  and ** ~~

ZF =  respectively. Finally, )~(
~ 2

,...,1 iNiN diag ε==Σ  where 

∑
=

−=
2

1

~)~(~

m

mm uWIε ρ  with u~  corresponding to the LS or FGLS residuals. 

                                                 
24

 Note that if there is no spatial regressive error process ( 021 == ρρ  such that εεεε=u ) and 

under homoskedasticity of εεεε  (i.e., IΣ
2

εσ= ), the expressions γΩ~
1−

N  and *~̂
1

γ
Ω

−
N  boil down 

to the standard LS and FGLS variance-covariance matrices ZZ′2

εσ  and **2 .ZZ ′
εσ  
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2. Asymptotic Normality of ρ~  

For the (optimally weighted) GM estimate ]~ ~[~
21 ρρ=ρ , it holds in light of Theorem 2 in 

Badinger and Egger (2008) that  

 ),(N~~
~

1

ρΩρρ
−

N
a

 with 11
~ )( −−′= JΨJΩρ . 

The matrix BΠΠη
ρ

J =
′∂

∂= ,  where B  is a  25×  matrix, defined as:  

 























=

2

1

12

20

02

10

01

ρ
ρ

ρρB  

The (inverse of the) optimal weighting matrix Ψ  is of dimension 44×  and defined as 

NΨ )( , Npqψ= , 2,1, =qp , i.e., it consists of four 22 ×  blocks  

 Npq ,ψ =











22

,

21

,

12

,

11

,

NpqNpq

NpqNpq

ψψ
ψψ

 

with elements  

 ])()[(
2

1
1111

111

, ΣAAΣAA qqppNpq TrN ′+′+= −ψ ,  

 ])()[(
2

1
2211

112

, ΣAAΣAA qqppNpq TrN ′+′+= −ψ , 

 ])()[(
2

1
1122

121

, ΣAAΣAA qqppNpq TrN ′+′+= −ψ , 

 ])()[(
2

1
2222

122

, ΣAAΣAA qqppNpq TrN ′+′+= −ψ . 

 

Appendix A3. Construction of Predicted Weights Matrices  

The construction of the predicted weights matrices proceeds as follows. In a first step, the 
following gravity type model is estimated:  

 

 jlikjilklkjijlik DISTw ,,,,,

0

, lnln ωγηκ +++= ,  (A.13) 

 

where 0

, jlikw  is the use or the use-plus-delivery intensity as defined in equation (5), ji ,κ  is a 

set of country-pair dummies (i,j = 1, …, 13) and lk ,η  is a set of industry-pair dummies (k,l = 1, 

…, 15). DISTi,j denotes average distance between countries i and j (or, for j = i, internal 

distance defined as DISTi,i = 0.67 π/iAREA ); its parameter is allowed to vary across 

industry-pairs.  The data source for distance kiDIST ,  is the CEPII database (see Mayer and 

Zignago, 2006).   
 

The model in (A.13) has potentially 619 parameters. For use-plus-delivery intensities, 

there are 37094 non-zero observations (of potentially 195×195 = 38025). One could avoid 
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losing observations by employing a Poisson quasi-maximum likelihood model as suggested 
by Santos Silva and Tenreyro (2006). However, the latter obtains very similar effects in our 
case. Results indicate that the model performs reasonably well in predicting input-output 
flows. With an R2 of 0.809 the model explains a substantial part of the variation in use-plus-
delivery intensity across countries and industries. Hence, model (A.13) serves our purpose 
well, given our goal to generate exogenous weights from predicted values. 

 
The parameter estimates of model (A.13) are then used to generate the elements of the 

predicted (unnormalized) weights matrix 0Ŵ as follows: 
 

 )lnˆˆˆexp(ˆ
,,,,

0

, jilklkjijlik DISTw γηκ ++= .
25

 (A.14) 

 

For observations with a zero entry, the predictions are set to zero as well. The matrix 0Ŵ  is 

then spilt up into two matrices 0

intraŴ  and 0

interŴ  in exactly the same way as for the matrices 

for 0

intraW  and 0

interW  based on actual values (see subsection 2 of section III). As before, 

0

intraŴ  and 0

interŴ , which are used as alternative weights matrices in the main equation to 

construct the R&D spillover terms, are rescaled such that their average row-sum is equal to 
one respectively. 
 

The predicted weights matrices intraW  and interW , which are used as alternative weights 

matrices in  the spatial regressive error process, are then obtained by setting the main diagonal 

elements of 0

intraŴ  and 0

interŴ  to zero and row-normalizing their elements. 

                                                 
25

 The conditional expectation of 0

, jlikw  is equal to )lnˆˆˆexp( ,,,, jilklkji DISTγηκ ++  times 

)][exp( , jlikE ω  (see Frankel and Romer, 1999, p. 384). Under normality 

)][exp( , jlikE ω = ])2/exp[( 2

, jlikσ , where 2

, jlikσ  is the variance of jlik ,ω . Since ω is modelled as 

homoskedastic, this correction factor is the same for all observations and can be dropped 
without consequences for the results regarding the final row-standardized weights matrix. 
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Table 1. Estimation Results, Least-squares Estimates of the Systematic Part of the Model and 
GM Estimates of the Remainder Spillover Process in the Residuals 

 (1) (2) (3) (4) (5a) (5b) (5c) 

l 1.628*** 1.667*** 1.688*** 1.738*** 1.704*** 1.704*** 1.704*** 
 (0.327) (0.338) (0.332) (0.243) (0.274) (0.267) (0.299) 

k 2.783*** 2.978*** 2.321*** 2.542*** 2.149*** 2.149*** 2.149*** 
 (0.928) (0.909) (0.730) (0.850) (0.635) (0.635) (0.643) 

l
2 -0.040* -0.040* -0.045* -0.028* -0.039** -0.039** -0.039** 

 (0.022) (0.023) (0.023) (0.017) (0.017) (0.017) (0.018) 

k
2 -0.387 -0.406 -0.317 -0.424** -0.335** -0.335** -0.335** 

 (0.262) (0.270) (0.213) (0.200) (0.140) (0.140) (0.150) 

l k -0.099** -0.112** -0.086** -0.121*** -0.057 -0.057 -0.057 
 (0.049) (0.047) (0.040) (0.041) (0.038) (0.037) (0.039) 

rd  0.032** 0.043** -0.112 -0.137 -0.137 -0.137 
 (0.016) (0.017) (0.222) (0.202) (0.199) (0.204) 

intrard    0.036***  0.057 0.057 0.057 

  (0.014)  (0.162) (0.159) (0.154) 

interrd    0.072***  -0.185 -0.185 -0.185 
   (0.016)  (0.136) (0.132) (0.134) 

rd
2    -0.020 0.012 0.012 0.012 

    (0.019) (0.026) (0.025) (0.023) 

rd l    0.038*** 0.026** 0.026** 0.026** 
    (0.014) (0.012) (0.012) (0.012) 

rd k    -0.139*** -0.060* -0.060* -0.060* 

   (0.038) (0.032) (0.032) (0.031) 
2

intrard      0.016* 0.016* 0.016* 

    (0.009) (0.008) (0.008) 

intrard l     -0.002 -0.002 -0.002 

    (0.009) (0.009) (0.009) 

intrard k     0.012 0.012 0.012 

    (0.026) (0.027) (0.025) 
2

interrd      0.012 0.012* 0.012* 

    (0.007) (0.007) (0.006) 

interrd l     0.006 0.006 0.006 

    (0.007) (0.007) (0.008) 

interrd k     0.089*** 0.089*** 0.089*** 

    (0.024) (0.024) (0.024) 

intrardrd      -0.019 -0.019 -0.019* 

    (0.012) (0.013) (0.012) 

interrdrd      -0.008 -0.008 -0.008 

    (0.010) (0.010) (0.009) 

  interintra rdrd      0.021*** 0.021*** 0.021*** 
     (0.008) (0.007) (0.007) 

Elasticities 1)        

l 0.872*** 0.869*** 0.905*** 0.906*** 0.951*** 0.951*** 0.951*** 
 (0.050) (0.051) (0.038) (0.044) (0.029) (0.030) (0.026) 

k 0.507*** 0.493*** 0.402*** 0.470*** 0.379*** 0.379*** 0.379*** 
 (0.075) (0.074) (0.075) (0.068) (0.066) (0.067) (0.061) 

rd  0.032** 0.043** 0.043*** 0.067*** 0.067*** 0.067*** 
 (0.016) (0.017) (0.016) (0.017) (0.018) (0.015) 

intrard    0.036***  0.003 0.003 0.003 
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  (0.014)  (0.015) (0.015) (0.014) 

interrd    0.072***  0.042*** 0.042*** 0.042*** 
   (0.016)  (0.015) (0.015) (0.013) 

  
      

Adj. R2 0.957 0.958 0.963 0.965 0.972 See (5a) See (5a) 

uσ̂  0.303 0.300 0.277 0.272 0.234 See (5a) See (5a) 

Ramsey 2) (0.776) (0.415) (0.698) (0.231) (0.256) See (5a) See (5a) 

Error Process        

 Wu
3) 0.482*** 0.468*** 0.351** 0.445*** 0.358**   

(0.215) (0.218) (0.188) (0.210) (0.225)   

    uW
intra

 
4) 0.543*** 0.533*** 0.557*** 0.487*** 0.470*** 0 (imposed) 0.472*** 

(0.096) (0.098) (0.098) (0.094) (0.081)  (0.067) 

    uW
inter

 
4) -0.070 -0.050 -0.150 -0.041 -0.079 0.048 0 (imposed) 

 (0.239) (0.253) (0.192) (0.240) (0.220) (0.190)  

        

εσ̂  0.292 0.290 0.273 0.265 0.230 0.234 0.210 

Breusch-Pagan 5) (0.028) (0.003) (0.014) (0.008) (0.020) (0.021) (0.017) 

        

Moran’s I  6.172*** 5.867*** 4.824*** 5.921*** 5.446*** 2.455** 7.281*** 

LM-Error 9.241*** 7.314*** 3.417* 7.128*** 4.641** 0.019 39.190*** 

LM-ErrorR 4.911** 4.523** 1.903 3.785* 1.804 1.032 18.076*** 

LM-Lag 6.345*** 3.430*** 2.123 5.117*** 6.185** 1.663 32.014*** 

LM-LagR 2.015 0.639 0.609 1.774 3.348* 2.676 10.899*** 

Notes: Dependent variable is lnY. All models based on a cross-section of 195 observations (13 
countries, 15 industries). ***, **, * indicate significance at 1, 5, and 10 percent. 
Heteroskedasticity-robust standard errors in parenthesis. All models include country-specific 

fixed effects. uσ̂  and εσ̂  are asymptotic standard errors of u and εεεε. 1) Implied elasticities of Y 

with respect to L and K and with respect to a uniform  increase in rd by 1 percent; standard 
errors calculated using the delta-method. 2) Ramsey-test reports p-value of squared predicted 

value Y2n̂l . 3) Optimally weighted GM estimate of ρ assuming a SAR1 process (i.e., ρintra 

=ρinter = ρ), based on least squares residuals. 4) Optimally weighted GM estimates of ρintra and 

ρinter assuming a SAR2 process as given in equation (3), based on least squares residuals. 5) 

Breusch-Pagan test for heteroskedasticity in epsilon. Spatial correlation tests, referring to 

model y = φWy + Zγγγγ + u, u = ρWu + εεεε , are as follows. Superscript R refers to “robust”. 

Small sample corrected Moran’s I: H0: φ = 0, ρ = 0; LM-Lag:  H0: φ = 0 under ρ = 0; LM-

LagR: H0: φ = 0, ρ unrestricted; LM-Error:  H0: ρ = 0 under φ = 0; LM-ErrorR: H0: ρ = 0, φ 
unrestricted (Anselin, Bera, Florax, and Yoon, 1996). 
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Table 2. Estimation Results, FGLS Estimates of the Systematic Part of the Model and GM 
Estimates of the Remainder Spillover Process in the Residuals and Sensitivity Analysis 

 (1a) (1b) (2a) (2b) (3a) (3b) 

l 1.992*** 2.004*** 2.028*** 1.999*** 1.804*** 1.825*** 
 (0.268) (0.251) (0.270) (0.242) (0.235) (0.216) 

k 2.282*** 2.307*** 2.278*** 2.263*** 2.091*** 2.111*** 
 (0.746) (0.593) (0.775) (0.582) (0.683) (0.567) 

l
2 -0.059*** -0.060*** -0.062*** -0.061*** -0.054*** -0.055*** 

 (0.017) (0.016) (0.018) (0.015) (0.014) (0.014) 

k
2 -0.406*** -0.409*** -0.411** -0.408*** -0.502*** -0.498*** 

 (0.154) (0.130) (0.164) (0.134) (0.149) (0.135) 

l k -0.079* -0.080** -0.079* -0.075** -0.050 -0.053 
 (0.044) (0.035) (0.046) (0.034) (0.039) (0.034) 

rd -0.205 -0.209 -0.206 -0.194 -0.116 -0.122 
(0.208) (0.183) (0.212) (0.180) (0.230) (0.195) 

intrard  0.036 0.036 0.033 0.036 0.056 0.058 
(0.167) (0.140) (0.175) (0.139) (0.129) (0.110) 

interrd  -0.067 -0.067 -0.063 -0.070 -0.109 -0.104 
(0.133) (0.116) (0.137) (0.115) (0.094) (0.086)  

rd
2 0.018 0.020 0.023 0.021 0.045 0.047* 

 (0.026) (0.021) (0.028) (0.021) (0.033) (0.028) 

rd l 0.030** 0.031*** 0.031*** 0.030*** 0.028** 0.028*** 
 (0.012) (0.011) (0.012) (0.010) (0.012) (0.010) 

rd k -0.066** -0.063** -0.063* -0.065** -0.086** -0.082** 
(0.033) (0.028) (0.035) (0.029) (0.037) (0.033) 

2

intrard  0.021** 0.021*** 0.021** 0.021*** 0.018*** 0.018*** 
(0.008) (0.007) (0.009) (0.007) (0.007) (0.006) 

intrard l -0.002 -0.002 -0.002 -0.003 -0.010 -0.010 
(0.011) (0.009) (0.012) (0.009) (0.009) (0.008) 

intrard k 0.035 0.034 0.035 0.034 0.015 0.013 
(0.027) (0.022) (0.028) (0.023) (0.021) (0.019) 

2

interrd  0.012* 0.012** 0.012* 0.013** 0.013*** 0.013*** 
(0.007) (0.006) (0.007) (0.006) (0.004) (0.004) 

interrd l 0.006 0.006 0.007 0.006 -0.001 -0.001 
(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) 

interrd k 0.042* 0.043** 0.039 0.044** 0.042*** 0.041*** 
(0.025) (0.020) (0.026) (0.020) (0.016) (0.015) 

intrardrd  -0.020* -0.020** -0.021* -0.021** -0.035*** -0.035*** 
(0.011) (0.010) (0.011) (0.010) (0.011) (0.010) 

interrdrd  -0.012 -0.011 -0.012 -0.012* -0.031*** -0.030*** 
(0.009) (0.007) (0.009) (0.007) (0.010) (0.009) 

  interintra rdrd  0.023*** 0.023*** 0.023*** 0.023*** 0.008 0.008* 
 (0.007) (0.006) (0.008) (0.006) (0.006) (0.005) 

Elasticities 1)       

l 0.915*** 0.914*** 0.913*** 0.913*** 0.935*** 0.934*** 
 (0.028) (0.022) (0.030) (0.023) (0.027) (0.025) 

k 0.164*** 0.163*** 0.150** 0.175*** 0.227*** 0.221*** 
 (0.060) (0.049) (0.063) (0.050) (0.055) (0.048) 

rd 0.028* 0.028** 0.025 0.029** 0.053*** 0.052*** 
(0.016) (0.013) (0.017) (0.013) (0.020) (0.017) 

intrard  0.012 0.011 0.013 0.013 0.014 0.015 
(0.016) (0.012) (0.016) (0.012) (0.015) (0.013) 

interrd  0.037** 0.036*** 0.036** 0.038*** 0.044*** 0.043*** 



 30 

 (0.015) (0.011) (0.015) (0.011) (0.015) (0.013) 

       

Adj. R2 0.967 0.967 0.967 0.968 0.968 0.968 

uσ̂  0.252 0.252 0.256 0.251 0.250 0.251 

Ramsey 2) (0.939) (0.954) (0.726) (0.793) (0.791) (0.826) 

Error Process       

uW
intra

3)
 0.657*** 0.649*** 0.685*** 0.627*** 0.574*** 0.585*** 

(0.103) (0.046) (0.103) (0.048) (0.091) (0.058)      

uW
inter

3) -0.170 0 (imposed) 0.050 0 (imposed) -0.062 0 (imposed) 
 (0.257)  (0.175)  (0.241)  

       

εσ̂  0.240 0.184 0.246 0.185 0.241 0.197 

Breusch-Pagan (0.025) (0.017) (0.026) (0.010) (0.006) (0.021) 

       

Moran’s I  5.446*** 7.281*** 4.716*** 7.445*** 4.456*** 6.524*** 

LM-Error 4.641** 39.190*** 2.730* 40.662*** 2.378 30.263*** 

LM-ErrorR 1.804 18.076*** 1.547 22.511*** 0.538 12.433*** 

LM-Lag 6.185** 32.014*** 1.918 26.455*** 3.762* 24.520*** 

LM-LagR 3.348* 10.899*** 0.735 8.304*** 1.922 6.691*** 

Notes: See Table 1. Column (1a)-(1b): FGLS estimates with heteroskedasticity-robust 
standard errors (compare columns (5a) and (5c) in Table 1). Columns (2a)-(2b): FGLS 
estimates, with W ( intrainter WW , ) based on use rather than use plus delivery shares. Columns 

(3a)-(3b): Weighing matrices based on predicted values from gravity model, i.e., 
0

inter

0

inter WW ˆ=   and 0

intra

0

intra WW ˆ=  for construction of R&D spillover terms, and WW ˆ=  

( interinter ŴW =  and intraintra ŴW = ) in error process (see Appendix A3). R2 refers to original 

model (generalized R
2). 3) Optimally weighted GM estimates of ρintra and ρinter, assuming a 

SAR2 process as given in equation (3), based on FGLS residuals. 
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Table A1. List of Industries and Summary Statistics 

 

 

 

 VA/ hour 
Investment 
intensity 

R&D 
intensity 

Total use of 
intermediate 

goods 

Inter-
industry use 

Domestic 
use 

domestic 
intra-

industry use 

ISIC Rev3 Industry $/hour 
percent of 

value added 
percent of 

value added 
percent of 
production 

percent of total use 

15-16 Food products, beverages and tobacco 30.18 17.89 1.05 24.24 31.35 90.35 63.13 

17-19 Textiles, textile products, leather and footwear 18.64 10.81 0.83 29.60 32.38 82.81 55.85 

20 Wood and products of wood and cork 21.45 16.31 1.13 26.28 36.75 86.46 56.14 

21-22 Pulp, paper, paper products, print.and publishing 33.09 19.04 0.55 32.94 24.43 82.21 63.05 

23 Coke, refined petr. products and nuclear fuel 73.66 32.38 1.33 10.93 41.63 85.45 50.82 

24 Chemicals and chemical products 54.01 21.12 10.47 30.64 37.49 70.98 39.41 

25 Rubber and plastics products 28.93 18.45 2.23 33.83 76.26 69.50 18.88 

26 Other non-metallic mineral products 30.47 19.20 1.21 22.56 57.47 83.96 37.40 

27 Basic metals 39.93 20.67 2.18 36.86 35.43 76.58 47.10 

28 Fabricated metal products 24.28 13.66 0.99 34.47 72.81 80.78 24.07 

29 Machinery and equipment, n.e.c. 27.84 11.23 4.51 36.67 67.15 75.03 21.73 

30-33 Electrical and optical equipment 30.71 15.43 13.50 37.09 42.42 66.62 32.73 

34 Motor vehicles, trailers and semi-trailers 31.16 25.77 8.73 50.22 53.10 63.72 25.87 

35 Other transport equipment 26.11 15.11 15.73 40.84 65.95 69.42 19.42 

36-37 Manufacturing n.e.c. 20.17 11.93 0.73 30.96 83.98 84.59 13.03 

 Column averages  32.71 17.93 4.34 31.88 50.57 77.90 37.91 

Notes: Statistics are simple country averages. VA is value added in 1995 prices, 1995 US$. Investment intensity is share of gross fixed capital 
formation in value added in percent. R&D intensity is private and business enterprise R&D expenditures as share of value added. Use of 

intermediate goods corresponds to (average) row sum of unnormalized weights matrix 0
W (including domestic intra-industry use). Inter-industry 

use corresponds to average row sum of 0

interW . Domestic use corresponds to intra- and inter-industry use from industries of the same country. 

Domestic intra-industry use corresponds to main diagonal elements of 0
W . 


