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Abstract

The problem of clustering time series is studied for a general class of nonparametric au-

toregressive models. The dissimilarity between two time series is based on comparing their full

forecast densities at a given horizon. In particular, two functional distances are considered:

L1 and L2. As the forecast densities are unknown, they are approximated using a bootstrap

procedure that mimics the underlying generating processes without assuming any parametric

model for the true autoregressive structure of the series. The estimated forecast densities are

then used to construct the dissimilarity matrix and hence to perform clustering. Asymptotic

properties of the proposed method are provided and an extensive simulation study is carried

out. The results show the good behavior of the procedure for a wide variety of nonlinear

autoregressive models and its robustness to non-Gaussian innovations. Finally, the proposed

methodology is applied to a real dataset involving economic time series.

JEL codes: C22 and C53
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1 Introduction

Time series clustering is aimed at classifying the series under study into homogeneous groups in such

a way that the within-group-series similarity is minimized and the between-group-series dissimilarity

is maximized. This is a central problem in many application fields and hence, time series clustering is

nowadays an active research area in different disciplines including signal processing, finance and eco-

nomics, medicine, seismology, meteorology and pattern recognition, among others. Some illustrative

examples of specific applications reported in the current literature are: clustering of ecological dy-

namics [Li et al.(2001)], comparison of daily hydrological time series [Grimaldi(2004)], clustering

of industrialized countries according to historical data of CO2 emissions [Alonso et al.(2006)], de-

tection of similar immune response behaviors of CD4+ cell number progression in patients affected

by immunodeficiency virus (HIV) [Chouakria-Douzal and Nagabhushan(2007)], and classification

of models of industrial production series [Corduas and Piccolo(2008)]. An extensive survey of many

other application areas is provided in [Liao(2005)].

According to other clustering problems, the metric chosen to assess the similarity/dissimilarity

between two data objects plays a crucial role in time series clustering. However, the concept of

dissimilarity between two time series is non-trivial. In fact, in addition to conventional metrics such

as the Euclidean distance or the Fréchet distance, other dissimilarity criteria specifically designed

to deal with time series have been proposed in the literature. For example, for the class of ARIMA

invertible models, [Piccolo(1990)] and [Maharaj(1996)] introduced metrics based on the disparity

between the corresponding fitted autoregressive expansions. In the frequency domain, dissimi-

larity measures based on spectral density estimators were considered in [Kakizawa et al.(1998)],

[Taniguchi and Kakizawa(2000)] and [Vilar and Pértega(2004)]. [Caiado et al.(2006)] used the Eu-

clidean distance between the logarithms of the normalized periodograms to discriminate between

stationary and non-stationary processes. [Chouakria-Douzal and Nagabhushan(2007)] introduced

a new dissimilarity index based on an automatic adaptive tuning function to modulate the tem-

poral correlation between the series and the proximity between their raw values. An interesting

overview of dissimilarity criteria between time series can be seen in the review by [Liao(2005)] and

in [Corduas and Piccolo(2008)] and references therein.

Conceptually most of the dissimilarity criteria proposed for time series clustering lead to the

notion of similarity relying on two possible criteria: (i) proximity between raw series data and (ii)
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proximity between underlying generating processes. In both cases, the classification task becomes

inherently static since similarity searching is governed only by the behavior of the series over their

periods of observation. [Alonso et al.(2006)] argue that, in many practical situations, the real

interest of clustering is the long term behavior, and in particular, on how the forecasts at a specific

horizon can be grouped. For instance, the Kyoto Protocol establishes a reduction of CO2 emissions

by countries in the fixed horizon of the year 2012 and, in this context, the classification of different

industrialized countries based on their predictions of CO2 emissions for 2012 is interesting and was

investigated by [Alonso et al.(2006)]. Similar problems where the interest is to reach target values at

a pre-specified future time frequently arise by studying economic or financial indicators, sustainable

development strategies, etc. For this kind of situation, they propose a dissimilarity measure based

on comparing the full forecast densities associated to each series in the sample. Note that comparing

the forecast densities instead of the point forecasts can help separate into different clusters times

series having similar or equal predictions but different underlying generating models (e.g. models

that differ only in the innovations distribution). Furthermore, using the forecast densities allows

us to take into account the variability of the predictions, that is completely ignored when the

comparison is based on the point forecasts. In practice, the forecast densities are unknown and must

be approximated from the data. In [Alonso et al.(2006)], this approximation is constructed using

a smoothed sieve bootstrap procedure combined with kernel density estimation techniques. Such a

procedure requires the assumption that the considered time series admit an AR(∞) representation

because the sieve bootstrap is based on residual resampling from autoregressive approximations of

the processes.

In this paper, the clustering procedure proposed by [Alonso et al.(2006)] is extended to cover

the case of nonparametric models of arbitrary autoregressions. Our approach does not assume any

parametric model for the true autoregressive structure of the series, which is estimated by using

kernel smoothing techniques. As a consequence, only nonparametric approximations to the true

autoregressive functions are available in this new setup, and hence, the sieve bootstrap is not a

valid resampling procedure. In our procedure, the mechanism used to obtain bootstrap predictions

is based on mimicking the generating process using a nonparametric estimator of the autoregressive

function and a bootstrap resample of the nonparametric residuals. So, we provide a useful device

for classifying nonlinear autoregressive time series, including extensively studied parametric models
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such as the threshold autoregressive (TAR), the exponential autoregressive (EXPAR), the smooth-

transition autoregressive (STAR) and the bilinear, among others (see e.g. [Tong(1990)] and the

references therein).

The rest of the paper is organized as follows. In Section 2, we describe the clustering procedure

and outline the resampling mechanism proposed to generate the bootstrap predictions. In Section 3,

we establish the consistency of two different dissimilarity measures under appropriate conditions,

and hence, our clustering procedure asymptotically leads to the cluster solution based on the true

generating processes. Section 4 reports the results from an extensive Monte Carlo simulation

designed to study the performance of the proposed clustering procedure and to compare it to two

other resampling methods, namely the AR-sieve bootstrap scheme and a conditional version of our

initial resampling scheme. In Section 5, we illustrate the performance of our method in a real data

example involving economic time series. More specifically the dataset is formed by a collection of

series representing the monthly industrial production indices for 21 countries. Technical proofs of

the results in Section 3 can be found in Vilar et al. (2009).

2 Description of the clustering procedure

Denote by Ξ the class of real valued stationary processes {Xt}t∈Z that admit a general autoregressive

representation of the form

Xt = m(XXX t−1) + εt, (2.1)

where {εt} is an i.i.d. sequence and XXX t−1 is a d-dimensional vector of known lagged variables. The

unknown autoregressive function m(·) is assumed to be a smooth function but it is not restricted

to any pre-specified parametric model. Hence, both linear and nonlinear autoregressive processes

are included in Ξ.

Our concern is to perform a cluster analysis on a set S of s partial realizations from time

series belonging to Ξ, i.e. S =
{
X(1),X(2), . . . ,X(s)

}
, where each element X(i) =

(
X

(i)
1 , . . . , X

(i)
T

)

is generated from a process satisfying model (2.1). Following the ideas by [Alonso et al.(2006)],

the final goal of our clustering is to capture similarities in the forecasts at a specific future time

T + b. Indeed, the horizon b is not subjectively chosen, but it is clearly determined by the nature

of the problem. In other words, the grouping itself is directly motivated by knowing the behavior
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of the predicted values at the specific horizon T + b. Hence, we adopt the criterion of measuring

the dissimilarity between two time series in terms of the disparity between their corresponding full

forecast densities at T +b. In particular, this disparity is evaluated by using two possible distances.

First, we consider the squared L2 functional distance, i.e. the distance between the time series X(i)

and X(j), i, j = 1, . . . , s, is defined by

D2,ij =

∫ (
f

X
(i)
T+b

(x)− f
X

(j)
T+b

(x)
)2

dx, (2.2)

where f
X

(i)
T+b

(·) denotes the density function of the forecast X
(i)
T+b, with T + b the prefixed prediction

horizon.

The distance D2,ij was also used by [Alonso et al.(2006)] due to its computational advantages

and its analytical tractability. Nevertheless, D2,ij presents a serious drawback when performing

cluster analysis. If the sets {x : f
X

(i)
T+b

(x) > ε} and {x : f
X

(j)
T+b

(x) > ε} are disjoint for a sufficiently

small ε > 0, then

D2,ij ≈
∫

f 2

X
(i)
T+b

(x)dx +

∫
f 2

X
(j)
T+b

(x)dx,

and hence, D2,ij has a poor performance in the clustering task because it removes the effect of the

distance between the point forecasts and it is only governed by the shape of the forecast densities.

Therefore, D2,ij distance provides good results when the forecasts at T+b are not very separated, but

it is not a useful distance measure to perform clustering in other cases. An interesting alternative

is to consider the L1 functional distance given by

D1,ij =

∫ ∣∣∣f
X

(i)
T+b

(x)− f
X

(j)
T+b

(x)
∣∣∣ dx. (2.3)

Note that if X
(i)
T+b and X

(j)
T+b are quite distant, or more precisely, their forecast densities have

disjoint supports, then,

D1,ij =

∫
f

X
(i)
T+b

(x) dx +

∫
f

X
(j)
T+b

(x) dx = 2,

regardless of the shapes of the densities. Therefore, D1,ij allows to correctly identify the most

distant series and leads to a reasonable cluster solution. The behavior of both distances to perform

time series clustering is examined and discussed in our experiments in Section 4 and in the analysis

of the real data example in Section 5.

Direct computation of distances Du,ij, u = 1, 2, is not feasible in practice because the forecast

densities are unknown. To overcome this difficulty, distances Du,ij are consistently approximated
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by replacing the unknown forecast densities in (2.2) and (2.3) by kernel-type density estimates

constructed on the basis of bootstrap predictions. In particular, we have considered a bootstrap

procedure based on generating a process

X∗
t = m̂g(XXX

∗
t−1) + ε∗t , (2.4)

where m̂g is a nonparametric estimator of m and {ε∗t} is a conditionally i.i.d. resample from

the nonparametric residuals. This bootstrap method, called autoregression bootstrap, completely

mimics the dependence structure of the underlying process. Actually autoregression bootstrap

uses an approach similar to that of the residual-based resampling of linear autoregressions, but

it takes advantage of being free of the linearity requirement, and hence, it can be applied to

our class Ξ of nonparametric models. Consistency of this bootstrap procedure is established by

[Franke et al.(2002)]. A detailed description of the steps involved in generating a set of bootstrap

predictions is provided below.

Let (X1, . . . , XT ) be a partial realization from a process X(t) ∈ Ξ, i.e. X(t) admits the repre-

sentation given in (2.1). The resampling scheme proceeds as follows.

1. Estimate the autoregressive function m(·) using a modified Nadaraya-Watson estimator with

bandwidth g1.

In particular, the following truncated Nadaraya-Watson estimator can be considered.

m̂g1(xxx) =





m̌g1(xxx) if |m̌g1(xxx)| ≤ Cm

∣∣X
∣∣

CmX if m̌g1(xxx) > Cm

∣∣X∣∣
−CmX if m̌g1(xxx) < −Cm

∣∣X
∣∣

(2.5)

where X is the sample mean, Cm is a constant and m̌g1(xxx) is given by

m̌g1(xxx) =
ϕ̌g1(xxx)

f̌g1(xxx)

=

(
1

n

T∑

t=d+1

KKKg1(xxx−XXX t−1)Xt

)(
1

n

T∑

t=d+1

KKKg1(xxx−XXX t−1)

)−1

,

with n = T − d and f̌g1 and ϕ̌g1 kernel estimators of f , the density of XXX t−1, and of the

function ϕ = m · f , respectively. Here KKKg1(uuu) =
d∏

r=1

g−1
1 K(ur/g1), with K(·) a univariate

kernel function, in general, a symmetric probability density function.
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The choice of m̂g1(xxx) as an initial estimator of m(xxx) ensures the consistency of the autoregres-

sion bootstrap when a sufficiently large Cm is taken and K and g1 satisfy certain regularity

conditions [Franke et al.(2002)].

2. Compute the nonparametric residuals, ε̂t = Xt − m̂g1(XXX t−1), t = d + 1, . . . , T .

3. Construct a kernel estimate of the density function, fε̃, associated to the centered residuals

ε̃t = ε̂t − ε̂• with ε̂• the mean of the ε̂t.

Using the Rosenblatt-Parzen kernel estimator, we obtain

f̂ε̃,h(u) =

∫
Hh (u− v) d F̂n(v) =

1

n

T∑

t=d+1

Hh (u− ε̃t) ,

where F̂n(v) = n−1
∑T

t=d+1 I(ε̃t ≤ v) is the empirical distribution function associated to the

sample {ε̃t : t = d + 1, . . . , T} , H(u) is a kernel function, h is the bandwidth and Hh(u) =

h−1H(u/h) is the rescaled kernel according to the bandwidth h.

4. Draw a bootstrap-resample ε∗k of i.i.d. observations from f̂ε̃,h as follows:

ε∗k = F̂−1
n (U) + hZ, k = 1, 2, 3, . . .

where U is a random value from uniform distribution U(0, 1) and Z is a random value from

a variable with density H(u).

5. Define the bootstrap series X∗
t , t = 1, . . . , T , by the recursion

X∗
t = m̂g1(XXX

∗
t−1) + ε∗t ,

where m̂g1 is defined in Step (2).

6. Estimate the bootstrap autoregressive function, m∗, on the basis of the bootstrap sample

(X∗
1 , . . . , X

∗
T ) obtained in the previous step. Estimation is carried out using again the modified

Nadaraya-Watson estimator with bandwidth g2. The resulting estimator is denoted by m̂∗
g2

.
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7. Compute bootstrap prediction-paths by the recursion

X∗
t = m̂∗

g2
(XXX∗

t−1) + ε∗t ,

for t = T + 1, T + 2, . . . , T + b, b > 0, where T + b is the horizon pre-selected by the user to

carry out the clustering, and X∗
t = Xt, for t ≤ T .

8. Repeat Steps (1)-(7) a large number (B) of times to obtain replications of the b-step-ahead

bootstrap future observations.

It is useful to emphasize some remarks on the practical implementation of the resampling method

described.

Remark 1. The autoregressive order d must be previously determined to draw out the resam-

pling procedure, or more precisely, a vector (Xt−i1 , . . . , Xt−id) with the lagged variables that contain

relevant information on Xt must be previously selected. This is a very important point due to the so-

called curse of dimensionality. As it is well-known in nonparametric regression estimation, for a large

number of regressors, the estimator becomes inefficient unless the sample size is very large. For this

reason, the number of regressor variables should not be too large. There exist several proposals to

solve the problem of lag selection: [Vieu(1994)] and [Yao and Tong(1994)] suggested different meth-

ods based on cross-validation, [Tjostheim and Auestad(1994)] and [Tscherning and Yang(2000)]

proposed a nonparametric version of the final prediction error (FPE) criterion.

Remark 2. If Steps (5) and (6) are omitted and the prediction-paths in Step (7) are computed

using m̂g1 instead of m̂g2 , then, our resampling plan is a conditional bootstrap procedure (see,

v.g., [Cao et al.(1997)]). Both approaches are discussed and compared in the Monte Carlo study

of Section 4.

Remark 3. The proposed resampling scheme requires determining up to three bandwidths. An

initial bandwidth g1 is necessary to estimate the regression function m(·) and then to compute

the residuals. The cross-validation selector introduced by [Hart(1994)] is specifically designed to

deal with dependent data, and hence, this automatic bandwidth selector is a reasonable choice

for obtaining g1. A standard plug-in selector can be used to compute the bandwidth h, which is

required to estimate the density fε̃. Lastly, a bandwidth g2 is necessary to estimate the regression

m∗. [Franke et al.(2002)] suggest using a bandwidth larger than g1, such as g2 = 1.5g1 or g2 = 2g1.

Our numerical study in Section 4 demonstrates that both choices for g2 work well.
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Now, we come back to the clustering procedure. Applying the resampling method to the ith

time series under study, X(i), provides a bootstrap sample (X
(i)∗1
T+b , X

(i)∗2
T+b , . . . , X

(i)∗B
T+b ) that allows

us to estimate the unknown density of X
(i)
t+b using kernel estimation techniques. In particular,

we consider the Rosenblatt-Parzen kernel smoother to obtain f̂
X

(i)∗
T+b

(x), the b-step-ahead density

estimator at point x for the ith time series, i = 1, . . . , s. Then, distances Du,ij, u = 1, 2, given in

(2.2) and (2.3), can be approximated by the “plug-in” versions

D̂∗
u,ij =

∫ ∣∣∣f̂
X

(i)∗
T+b

(x)− f̂
X

(j)∗
T+b

(x)
∣∣∣
u

dx, i, j = 1, . . . , s, u = 1, 2. (2.6)

Note that, unlike other dissimilarity measures for time series, distances D̂∗
1,ij and D̂∗

2,ij can

be computed for time series of unequal length. It is also observed that we once again face the

problem of choosing a smoothing parameter to compute D̂∗
u,ij, u = 1.2. Here the objective is to

minimize the error in the estimation of Du,ij. For this reason, in the particular case of u = 2, we

use the bandwidth proposed by [Sheather et al.(1994)], which is especially designed to estimate the

functionals
∫

f 2(x) dx. The same approach was considered by [Alonso et al.(2006)]. In Section 3,

we state appropriate conditions under which the consistency of the bootstrap distance D̂∗
ij as an

estimator of Dij holds.

Once the pairwise dissimilarity matrix D̂∗
u =

(
D̂∗

u,ij

)
is obtained, a standard clustering algo-

rithm based on D∗
u is carried out. We consider an agglomerative hierarchical clustering method.

Application of an agglomerative hierarchical clustering requires us to establish a measurement of

proximity between two clusters to determine which groups are to be joined at each step. In par-

ticular, our experiments were carried out by using different grouping criteria, including the single

linkage, the complete linkage and the average linkage.

3 Asymptotic results

In this section we establish the conditions under which the bootstrap distances D∗
1,ij and D∗

2,ij, given

in (2.6), are consistent estimators of D1,ij and D2,ij, respectively. First, we consider the precise

assumptions a process {Xt}t∈Z should meet to prove the required consistency. Specifically, consis-

tency is obtained in two different situations: first, in the more restrictive case where the processes

are assumed to be bounded (Assumption A1(a)), and then, in a more general case (Assumption

A1(b)).
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Assumption A1. {Xt}t∈Z is a d-order Markovian process, geometrically strong mixing, strictly

stationary and satisfies one of the below conditions.

A1(a). {Xt}t∈Z is bounded and the associated process, Zt = (XXX t, Xt+1), admits func-

tional parameters f and ϕ continuously differentiable on C = {f > 0}, where A denotes

the closure of A.

A1(b). The associated process, Zt = (XXX t, Xt+1), admits functional parameters f and

ϕ satisfying f and ϕ ∈ C2,d(q), for some q, and E[exp(a|Xt|τ )] < ∞, for some a > 0 and

some τ > 0. Here, C2,d(q) denotes the space of twice continuously differentiable real

valued functions g defined on Rd such that ‖g‖∞ < q and
∥∥g(2)

∥∥
∞ < q, g(2) being any

partial derivative of order two for g.

Assumption A2. {εt}t∈Z are i.i.d. variables, with E (εt) = 0, E (|εt|s) < ∞ for some s ≥ 1, and

have a twice continuously differentiable density fε(·).
Assumption A3. There is a constant k1 such that

∫∞
−∞ |fε(x)− fε(x + c)| dx ≤ k1 c, ∀c ∈ R.

Additional conditions are also required for the kernel function H and the bandwidth h used to

construct the nonparametric estimator of fε, and for the kernel function K and the bandwidth g1

used to estimate m = ϕ/f . Specifically, the following conditions are assumed to hold.

Assumption B1. The kernel H is a density function such that
∫∞
−∞ xH(x) dx = 0 and

∫∞
−∞ x2H(x) dx 6=

0.

Assumption B2. There is a constant k2 such that
∫∞
−∞ |H(x)−H(x + c)| dx ≤ k2 c, ∀c ∈ R, and

∫∞
−∞ |x|sH(x) dx < ∞ for the same s as in Assumption A2.

Assumption B3. The bandwidth h satisfies h = o(1) and h−1 = o(n), as n = T − d →∞.

Assumption C1. The kernel K is a density function with
∫∞
−∞ xK(x) dx = 0 and satisfies a

Lipshitz condition, i.e. |K(u)−K(v)| < L‖u− v‖ for some L > 0.

Assumption C2. The bandwidth g1 satisfies one of the below conditions:

C2(a). g1 '
(

log(n)2−ε

n

)1/(d+2)

, where 0 < ε < 2.

C2(b). g1 '
(

log(n)2−1/τ

n

)1/(d+4)

, where τ is the same as in Assumption A1(b).

The following condition is necessary to obtain the consistency of D∗
1,ij and D∗

2,ij in the general

case.
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Assumption D. There is a sequence, Sn, of regular compact sets and a sequence, {δn}, of real

number satisfying the following conditions:

δn log(n)(1+1/(2τ))−(1−1/(2τ))2/(d+4)

βnn2/(d+4)
→ 0, (3.7)

where βn is such that infx∈Sn f(x) > βn > 0, and

δn log(n)1/τ Pr(‖X0‖ > δ(Sn))1/4 → 0, (3.8)

where δ(Sn) denotes the diameter of Sn.

The consistency of D̂∗
1,ij as an estimator of D1,ij is established in the following theorem.

Theorem 1 Let
{

X
(i)
t

}
t∈Z

, i = 1, . . . , s, be partial realizations of stochastic processes and suppose

that one of the following conditions, (i) or (ii), are fulfilled.

(i) Assumptions A1(a), A2, A3, B1, B2, B3, C1 and C2(a) hold and the bandwidth h satisfies
(
h n1/(d+1)

)−1
log(n)ε+(1−ε)/(d+2) ≤ O(1).

(ii) Assumptions A1(b), A2, A3, B1, B2, B3, C1, C2(b) and D hold and the bandwidth h satisfies

(hδn)−1 ≤ O(1).

Then,

D∗
1,ij → D1,ij, in probability, for i, j = 1, . . . , s. (3.9)

To establish the consistency of D∗
2,ij as estimator of D2,ij, Assumptions A3 and B2 must be replaced

by the following assumptions.

Assumption A3′. There is a constant k3 such that
∫∞
−∞(fε(x) − fε(x + c))2 dx ≤ k3c

2 + o(c2),

∀c ∈ R.

Assumption B2′. There is a constant k4 such that
∫∞
−∞(H(x) − H(x + c))2 dx ≤ k4c

2 + o(c2),

∀c ∈ R, and
∫∞
−∞ |x|sH(x) dx < ∞ for the same s as in Assumption A2.

Theorem 2 Let
{

X
(i)
t

}
t∈Z

, i = 1, . . . , s, be partial realizations of stochastic processes and suppose

that one of the following conditions, (i) or (ii), are fulfilled.

(i) Assumptions A1(a), A2, A3 ′, B1, B2 ′, B3, C1 and C2(a) hold and the bandwidth h satisfies

h−3 log(n)2ε+2(1−ε)/(d+2)n−2/(d+2) ≤ O(1).
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(ii) Assumptions A1(b), A2, A3 ′, B1, B2 ′, B3, C1, C2(b) and D hold and the bandwidth h satisfies

h−3δ−2
n ≤ O(1).

Then,

D∗
2,ij → D2,ij, in probability, for i, j = 1, . . . , s. (3.10)

The proofs of Theorem 1 and Theorem 2 are derived from the validity of the bootstrap procedure

and some standard results from nonparametric density estimation theory. In particular, the proof

of Theorem 1 is given in the Appendix and similar arguments lead to the proof of Theorem 2.

4 Simulation study

Our clustering procedure is aimed at grouping time series with similar forecast densities at a specific

future time T +b. Under this similarity principle, the main question about the efficacy of the cluster

solution is: how close is the clustering using the bootstrap forecast densities, f̂
X

(i)∗
T+b

, i = 1, . . . , s, to

the clustering using the true forecast densities, f
X

(i)
T+b

, i = 1, . . . , s.

To answer this question it is interesting to analyze the performance with finite samples of the

values du,X, u = 1, 2, defined by

du,X =

∫ ∣∣∣f̂X∗
T+b

(x)− fXT+b
(x)

∣∣∣
u

dx, u=1,2, (4.11)

where X = (X1, . . . , XT ) is a partial realization of length T from Xt, with Xt an arbitrary process

satisfying (2.1), and f̂X∗
T+b

(·) is the bootstrap forecast density based on X.

The importance of du,X relies on that, for a set of series S =
{
X(1), . . . ,X(s)

}
subjected to

cluster analysis, the efficacy of our clustering procedure is basically determined by the closeness to

zero of the values du,X(i) , for i = 1, . . . , s. In fact, if du,X(i) is close to zero for all i, then, D∗
u,ij is

close to Du,ij for all i, j, and hence, the cluster solutions obtained from both dissimilarity matrices

should be close as well.

Taking into account the previous arguments, a Monte Carlo study was designed to evaluate the

performance with finite samples of the values du,X in (4.11), for stationary processes Xt following

different autoregressive functions m(·). The details of the Monte Carlo study are given next.

(a) Autoregressive models
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For the sake of simplicity, our attention was restricted to first order autoregressive models. Here,

we present the results attained for the following representative models.

M1 AR Xt = 0.6Xt−1 + εt

M2 Bilinear Xt = (0.3− 0.2εt−1) Xt−1 + 1.0 + εt

M3 EXPAR Xt =
(
0.9 exp

(−X2
t−1

)− 0.6
)
Xt−1 + 0.3 + εt

M4 EXPAR Xt =
(
0.9 exp

(−X2
t−1

)− 0.6
)
Xt−1 + 1.0εt

M5 SETAR Xt = (0.3Xt−1 − 1.0) I (Xt−1 ≥ 0.2)−
(0.3Xt−1 + 0.5) I (Xt−1 < 0.2) + εt

M6 SETAR Xt = (0.3Xt−1 + 1.0) I (Xt−1 ≥ 0.2)−
(0.3Xt−1 − 1.0) I (Xt−1 < 0.2) + εt

M7 NLAR Xt = 0.7 |Xt−1| (2 + |Xt−1|)−1 + εt

M8 STAR Xt = 0.8Xt−1 − 0.8Xt−1 (1 + exp (−10Xt−1))
−1 + εt

In all cases, the εt are i.i.d. zero-mean random variables with variance σ2.

Except for model M1, an AR(1) process with moderate autocorrelation, the selected models

form a wide class of parametric nonlinear models frequently used to characterize the conditional

mean m(·). Model M2 is a bilinear process with approximately quadratic conditional mean, and

thus, strongly nonlinear. Models M3 and M4 are exponential autoregressive models with a more

complex nonlinear structure although in both cases very close to linearity. Models M5 and M6

are self-exciting threshold autoregressive models with a relatively strong nonlinearity, particularly

M6. Finally, Models M7, a general nonlinear autoregressive model, and M8, a smooth transition

autoregressive model, present a weak nonlinear structure.

These models have already been used in previous Monte Carlo studies in the literature. For in-

stance, models M2-M6 were considered by [Luukkonen et al.(1988)] and the rest by [Giordano et al.(2007)].

(b) Distributions for innovations

Three different distributions were considered for the error processes: Gaussian innovations with

unit variance, Student-t innovations with 3 degrees of freedom, and centered exponential Exp(1)−1

innovations. The reason for using these different distributions is to analyze the performance of our

clustering procedure when both kurtosis or skewness are present.

(c) Forecast horizons

13



The forecast densities are estimated at a specific forecast horizon T + b, with b denoting the

number of steps-ahead. Here, we present the results for b = 1 (short term), b = 3 (intermediate

term) and b = 10 (long term).

(d) Resampling methods to generate bootstrap predictions

The experiment was carried out with three different resampling methods. First, we used the au-

toregression bootstrap (AB) outlined in Steps (1)-(8) of Section 2. The kernel estimators were always

constructed by using a Gaussian kernel. Bandwidths g1, g2 and h were determined as suggested

in Remark 3, namely, g1 in Step (1) by the cross-validation method adapted for dependent data

[Hart(1994)], h in Step (3) by using the plug-in selector introduced by [Sheather and Jones(1991)]

and g2 was taken to be larger than g1, g2 = 1.5g1 or g2 = 2g1.

Another resampling mechanism was the conditional bootstrap (CB) mentioned in Remark 2 of

Section 2. The conditional bootstrap works as the autoregression bootstrap, but Steps (5) and (6)

are omitted and the bootstrap prediction-paths in Step (7) are obtained by the recursion

X∗
t = m̂g1(XXX

∗
t−1) + ε∗t , (4.12)

with X∗
t = Xt, for t ≤ T . Thus, this procedure does not draw bootstrap replicates of the orig-

inal sample but only constructs future bootstrap realizations. In contrast to the autoregression

bootstrap, this method focuses on replicating the conditional distribution of XT+b given the ob-

served sample (X1, X2, . . . , XT ). In fact, this is the reason why this procedure is called conditional

bootstrap [Cao et al.(1997)].

The third approach was the smoothed sieve bootstrap (SB) considered by [Alonso et al.(2006)].

In this case, an AR(∞) representation is assumed for the underlying process, and hence, the

strategy is to generate residuals from estimated linear autoregressive models of order p = p(T ).

These residuals together with the estimated models allow us to obtain the bootstrap replicates.

Indeed, it is expected that this procedure will fail with nonlinear underlying models.

(e) The simulation mechanism

For each of the considered models, we simulated one thousand time series of length T = 200.

With every simulated series X, the b-step-ahead forecast density fXT+b
(·) was approximated us-

ing the autoregression bootstrap f̂AB
X∗

T+b
(·), the conditional bootstrap f̂CB

X∗
T+b

(·), the sieve bootstrap
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f̂SB
X∗

T+b
(·), and lastly Monte Carlo forecasts instead of bootstrap predictions, f̂MC

X∗
T+b

(·). For each sim-

ulated series, B = 1000 replicates were drawn to estimate each bootstrap density. Note that the

Monte Carlo replicates are obtained using the true underlying model (autoregression model and

innovations distribution), and therefore f̂MC
X∗

T+b
(·) can be considered as a benchmark in our experi-

ment. So, the behavior with finite samples of the values du,X, u = 1, 2 in (4.11) can be studied by

analyzing the feasible values of

d•u,X =

∫ ∣∣∣f̂ •X∗
T+b

(x)− f̂MC
X∗

T+b
(x)

∣∣∣
u

dx, u = 1, 2, (4.13)

with • being some of the considered bootstrap procedures, namely AB, CB or SB. All the

computations are implemented in the R language [R Development Core Team(2004)] and the code

is available upon request from the authors.

Figure 1 shows the results with Gaussian innovations by using the L1 distance d•1,X. Each panel

corresponds to a different horizon, b = 1, 3, 10, and contains the boxplots constructed with the

1000 values of dSB
1 , dAB

1 and dCB
1 for each model. The results obtained by using the L2 distance

d•2,X are shown in Figure 2.

Several conclusions are drawn from Figures 1 and 2. First, as expected, similar results were

achieved with both distances, d•1,X and d•2,X. Note that all models in our simulation have the same

mean so the point forecasts are always very close. Thus, d•2,X is not affected by the drawback

pointed out in Section 2.

Concerning the bootstrap procedures, it is observed that the sieve bootstrap is clearly the best

procedure when the data are generated from the linear model M1. Indeed, this is not surprising

because the sieve bootstrap relies on the linear approximation. The other two bootstrap approaches

also work reasonably well by presenting small error rates. We also simulated AR(1) processes with

higher autocorrelations, 0.75 and 0.9, and similar results were obtained.

On the contrary, when the data generating process presents a moderate or strong nonlinearity,

the autoregression bootstrap and the conditional bootstrap outperform the sieve bootstrap. This

fact is shown for models M2-M6, and in particular a huge improvement is observed for models

with a strongly nonlinear conditional mean, namely M2, M4 and M6. The behavior of the three

bootstrap approaches is somewhat similar for models M7 and M8 (in this latter case only in the

short time b = 1), but this is justified because in both cases the nonlinear structure is weak and

the data generating process can be well approximated by a linear process.
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As for the comparison between the autoregression bootstrap and the conditional bootstrap, the

performance of both procedures is rather similar although, for some models, a slight improvement

seems to be observed when the conditional bootstrap is used. Let us recall that the conditional

bootstrap does not draw bootstrap replicates of the original series (Steps (5) and (6) of the resam-

pling algorithm are eliminated) and therefore, this procedure is free of the variability generated by

the estimation of the conditional mean in Step (6). It is worthwhile stressing that both the au-

toregression bootstrap and the conditional bootstrap lead to very similar results for all the models

considered in our study. This is a very interesting robustness property with respect to the data

generating model.

In general, previous considerations are valid for the three prediction horizons. Except for models

M2, M6 and M8, the values of d•u, u = 1, 2, tend to decrease for larger horizons regardless of the

bootstrap method. The nonlinearity of models M2, M6 and M8 is mainly revealed at lags of order

higher than one and for this reason the sieve bootstrap behaves poorly for these specific models.

Nonparametric AB and CB procedures are not affected by this feature and therefore they provide

better results.

The experiments conducted to investigate the sensitivity of our procedure to skewness and

kurtosis led to analogous conclusions. For example, Figure 3 shows the boxplots obtained with

exponential innovations for prediction horizons b = 1 and b = 3 using the distance d•1,X. The

corresponding boxplots with Student-t innovations are shown in Figure 4. Compared with the

Gaussian case (Figure 1), distributions of dSB
1 , dAB

1 and dCB
1 present larger bias and more skewness

to the right, especially with exponential innovations and for horizon b = 1. In any case, a good

performance of dAB
1 and dCB

1 is again observed. Similar graphs are obtained with d•2,X and therefore

our simulations seem to confirm the robustness of the procedure with respect to the deviations

from normality.

5 A case-study with real data

In this section we perform clustering on a real data example involving economic time series. The

dataset consists of a collection of time series representing the monthly industrial production indices

(seasonally adjusted) for 21 countries from January 1990 to November 2007. All the considered

countries are members of Organization for Economic Cooperation and Development (OECD), and
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in particular, this dataset is available from the Statistics Portal of OECD (http://stats.oecd.org/).

Graphs of these single series are depicted in the panel of Figure 5. Our purpose is to classify the 21

countries in accordance with the performance of their industrial production indices on next month,

so the short term b = 1 was considered as the forecast horizon of interest.

Note that the time series under study are clearly nonstationary. Hence, our clustering proce-

dure cannot be directly applied because the bootstrap predictions are computed under stationary

assumption. So, we proceeded as follows. First, each of the time series was transformed using

logarithms (if required) and taking an appropriate number of regular differences. In particular, the

program TRAMO (Time series Regression with ARIMA noise, Missing observations and Outliers)

developed by [Gómez and Maravall(1996)] was used to determine the order of regular differences

and to test for the log transformation. The bootstrap prediction-paths for the transformed series

were constructed following Steps (1)-(8) in Section 2. Then, the resulting bootstrap prediction-

paths were backtransformed to obtain the bootstrap predictions for the original series. From this

point on, our procedure was carried out as described in Section 2.

It is also worth pointing out that some of the series are nonlinear. In order to test the linearity

hypothesis, all the transformed series were subjected to the McLeod-Li test [McLeod and Li(1983)]

based on the empirical r-order autocorrelations of the squared residual of the best autoregressive

fit, for a wide range of values for r. The test led to rejection of linearity at level 0.05 for the series of

the following countries: Austria, Belgium, Canada, Hungary, Luxembourg, Mexico, Poland, Turkey

and United Kingdom. This fact justifies the application of our clustering procedure because it

performs well with nonlinear series (as shown in the simulation study).

Before running the clustering procedure, we carried out a standard univariate clustering based

on the last available observation of each series. This is not an adequate approach for performing

time series clustering because the past history of the series is not taken into account, but this is a

standard procedure of official statistical institutions. Therefore, this univariate clustering was only

performed for comparison purposes. Figure 6 shows the resulting dendrogram using the average

linkage method as the criterion of proximity between groups.

At the end of the agglomerative process, the two-cluster solution clearly identifies a group C1

formed by the 14 countries with the lowest indices and another C2 formed by the 7 countries with

the highest. If a finer partition identifying more compact groups is required, then C1 and C2 can be

17



split into the groups described in Table 1.

C1 C2

C1,1 C1,2 C1,3 C1,4 C2,1 C2,2

United Kingdom Portugal United States Sweden Finland Poland

Italy Canada Mexico Luxembourg Austria Korea

Norway Greece Spain Germany Ireland Turkey

France Belgium Hungary

Table 1: Six-cluster solution for the hierarchical clustering based on the last observation of each

series.

Then, we carried out our clustering procedure using the conditional bootstrap as resampling

procedure for generating the bootstrap predictions. The dendrograms obtained using the distances

d•1,X and d•2,X are shown in Figures 7 and 8, respectively.

Classification of the series based on the L1 distance (Figure 7) is similar to the one based on the

last available observation of each series (Figure 6). In both cases, C1 and C2 are identified at the

end of the process, and in particular, C1 is formed by the groups C1,i, i = 1, . . . , 4, with the same

membership. However, some important differences are observed when the agglomeration processes

for the two procedures are compared. Note that our dissimilarity measure modified the order in

which some series are joined. In C1,2, for instance, Mexico and Spain are now grouped together first,

joined later by United States. Analogously, in C1,4, Belgium joins {Sweden, Luxembourg } first, and

Germany later. Also some groups are joined in different order. So, C1,4 = {Sweden, Luxembourg,

Germany, Belgium } is now closer to {C1,2, C1,3} than the cluster formed by the three countries

with the lowest indices, C1,1 = {Norway, Italy, United Kingdom }. More substantial differences

are observed in the nested arrangement of series in C2. Here the series are even regrouped in a

different way. Note that, for example, Turkey and Hungary, two countries grouped together at an

early stage of the process in Figure 6, are now in different clusters in Figure 7. Furthermore, with

our procedure Ireland is the closest neighbor to Turkey, in contrast to the dendrogram in Figure 6

where Ireland and Turkey appear in different clusters.

Indeed, all of these differences rely on the comparison of the estimated forecast densities. For

18



clarity, the estimated forecast densities have been displayed in Figure 9. The same color was used to

depict the forecast densities forming one homogeneous cluster when dCB
1 was used as dissimilarity

measure. The last observation of each series was also indicated at the bottom of Figure 9 to

illustrate the changes in the distances. For instance, if the last observations are taken into account,

Mexico is closer to United States than Spain, but this order is reversed when the forecast densities

are compared. Analogously, the similarity between the forecast densities of Ireland and Turkey

justifies their proximity, while, on the other hand, Hungary is farther from these countries due to

the high kurtosis of its density. It is also observed that the forecast densities of Finland and Austria

appear to be practically isolated in Figure 9 and for this reason they tend to remain isolated until

very late in the agglomerative process in Figure 7. This kind of properties justify the use of the full

forecast densities instead of the point forecasts, as already pointed out by [Alonso et al.(2006)].

The classification based on the L2 distance (Figure 8) led to a disappointing result. For instance,

at an early stage of the clustering process, Norway, the country with the lowest industrial production

index in our dataset, is wrongly joined to the group formed by C ={ Turkey, Ireland, Poland, Korea

}, which is obviously inappropriate because these four countries present the highest indices. As

discussed in Section 2, the reason for this bad performance is that the estimated forecast density of

any of the countries in C and the estimated density of Norway have disjoint supports. In these cases,

d•2,X ignores the distance between the point forecasts and is governed by the similarity between the

densities shapes. In fact, Figure 9 shows that the forecast densities of the five mentioned countries

are similar and because of this they have been grouped together. Analogously, the forecast densities

of United States, Italy, United Kingdom and Canada are characterized by presenting the highest

kurtosis (see again Figure 9), and hence they are very close to each other but they are the farthest

from the remaining series. In summary, the L2 distance is not valid to cluster the series under

study.
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Figure 1: Simulation results for Gaussian innovations and the L1 distance d•1,X. Boxplots of the

values dSB
1 , dAB

1 and dCB
1 for prediction horizons: b = 1 (a), b = 3 (b) and b = 10 (c).
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Figure 2: Simulation results for Gaussian innovations and the L2 distance d•2,X. Boxplots of the

values dSB
2 , dAB

2 and dCB
2 for prediction horizons: b = 1 (a), b = 3 (b) and b = 10 (c).
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Figure 3: Simulation results for centered exponential innovations and the L1 distance d•1,X. Boxplots

of the values dSB
1 , dAB

1 and dCB
1 for prediction horizons: b = 1 (a) and b = 3 (b).
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Figure 4: Simulation results for Student-t innovations innovations and the L1 distance d•1,X. Box-

plots of the values dSB
1 , dAB

1 and dCB
1 for prediction horizons: b = 1 (a) and b = 3 (b).

25



Austria
1990 2000

40
80

12
0

16
0

Belgium
1990 2000

40
80

12
0

16
0

Canada
1990 2000

40
80

12
0

16
0

Finland
1990 2000

40
80

12
0

16
0

France
1990 2000

40
80

12
0

16
0

Germany
1990 2000

40
80

12
0

16
0

Greece
1990 2000

40
80

12
0

16
0

Hungary
1990 2000

40
80

12
0

16
0

Ireland
1990 2000

40
80

12
0

16
0

Italy
1990 2000

40
80

12
0

16
0

Korea
1990 2000

40
80

12
0

16
0

Luxembourg
1990 2000

40
80

12
0

16
0

Mexico
1990 2000

40
80

12
0

16
0

Norway
1990 2000

40
80

12
0

16
0

Poland
1990 2000

40
80

12
0

16
0

Portugal
1990 2000

40
80

12
0

16
0

Spain
1990 2000

40
80

12
0

16
0

Sweden
1990 2000

40
80

12
0

16
0

Turkey
1990 2000

40
80

12
0

16
0

United Kingdom
1990 2000

40
80

12
0

16
0

United States
1990 2000

40
80

12
0

16
0

Figure 5: Monthly industrial production indices of 21 countries: January 1990 – November 2007.
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Figure 6: Dendrogram based on absolute differences of the last observation of each series (November

2007) with the average linkage method.
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Figure 7: Dendrogram based on our clustering procedure for the prediction horizon b = 1 month.

The conditional bootstrap, the L1 distance d•1,X and the average linkage method were used.
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Figure 8: Dendrogram based on our clustering procedure for the prediction horizon b = 1 month.

The conditional bootstrap, the L2 distance d•2,X and the average linkage method were used.
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Figure 9: Kernel approximations to the forecast densities based on conditional bootstrap samples

of size 1000. Circles at the bottom depict the last available observation of each series.
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