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Abstract

This paper explores the existence of deterrence equilibria in a general
equilibrium model of guns and butter production. If fighting entails suf-
ficiently low destruction, war is the unique equilibrium of the game. If,
however, conflict generates sufficiently large damages, only mixed strategy
equilibria survive, in which players randomize over their deterrence and
war strategies. War, therefore, always occurs with positive probability for
any positive investment in weapons.
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“Si vis pacem, para bellum”.
Vegetius

1 Introduction

War constitutes an inefficient way to settle disputes. Two sources of inefficiencies
may be identified. On the one hand, resources are diverted from productive
activities to build up armies. On the other hand, if a war occurs it entails direct
costs (e.g. asset destruction, diseases, foregone trade). Nevertheless, human
history is plagued by armed conflicts. A large body of literature has addressed
this conundrum.

Ideally, one would desire peace without arms, which simultaneously solves
both inefficiencies. Were parties able to credibly commit not to arm, such a
scenario would be achieved. This kind of commitment, however, is highly de-
manding (e.g. third party enforcement). Recognizing the difficulty of refraining
from arming, scholars have therefore identified conditions preventing the out-
break of conflicts. The ancient maxim by the Roman strategist Vegetius quoted
above singles out deterrence as a powerful strategy to avoid war1.

∗Both authors belong to the CRED - University of Namur - Rempart de la Vierge, 8 - 5000
Namur, Belgium. Tel: +32 81 724838. E-mail: gdeluca@fundp.ac.be, psekeris@fundp.ac.be.

1Alternative solutions include credible commitment to transfer resources (Fearon, 1995;
Powell, 2006), reducing information asymmetries (Powell, 1999; Fortna, 2008), and bargaining
(Powell, 1996; Esteban and Sakovics, 2002; Slantchev, 2004; Leventoglu and Slantchev, 2007).
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Following the Second World War, the Cold War environment boosted re-
search around this topic. Two broad schools developed around the concept of de-
terrence in political science: structural deterrence theory, and decision-theoretic
deterrence theory. The former school posits that power parity across potential
opponents combined with high direct costs of war increases the likelihood of
deterrence (Waltz, 1964; Intriligator and Brito, 1984). The latter school adopts
a game-theoretic approach and emphasizes the role of the threats’ credibility
in deterring one’s opponent. Thomas Schelling (1960) elaborates thoroughly on
the concept of deterrence in his famous book “The Strategy of Conflict”. Ac-
cording to him, a good strategist would prevent war through the “skillful nonuse
of military forces”. The core of his argument is that the success of deterrence
rests on the credibility of the threat of retaliation. Although stressing the crucial
role of the threat’s credibility, Jervis (1976) warns about the risks associated
to spiraling investments in arms. Indeed, arming to deter the opponent can
lead to a vicious circle of increasing risk of a disastrous war (see also Glaser,
1997)2. A common feature of the political science literature on deterrence is the
exogeneity of the parties’ power. Indeed, even in game-theoretic works, agents
often do not choose their optimal armament level.

Put aside Schelling, other economists have elaborated on the concept of de-
terrence in recent years (Garfinkel, 1990; Grossman and Kim, 1995; Neary, 1996;
Chassang and Padro-i-Miquel, 2008; Jackson and Morelli, 2008). The added
value of some of these models has been to endogenize militarization. Indeed,
if deterrence is an equilibrium, it results from a deliberate rational choice by
agents. Exogenously assuming deterrent levels of arms for both opposing par-
ties does not necessarily make deterrence an equilibrium, as either party might
have an incentive to modify its armament level. On the one hand, increasing
one’s arms level might make the expected payoff of war larger then the returns
of peace, while, on the other hand there might be a a cost-saving reduction of
weapons such that deterrence does not collapse.

In Garfinkel (1990) and Jackson and Morelli (2008), a deterrence equilib-
rium is obtained in a dynamic setting. An infinitely repeated game contributes
to sustain cooperation by alleviating commitment problems. In particular, in
Garfinkel (1990), if the discount factor is large enough, peace is sustained with-
out any investment in arms. For lower values of the discount factors, positive
amounts of weapons may be necessary to deter the outbreak of a war. Jackson
and Morelli (2008) show that if the costs of war are intermediate, only mixed
strategy equilibria survive, in which opposing parties mix over three strategies
labeled “Hawk”, “Dove” (accepting passively aggression), and “Deterrent”. A
similar result is obtained by Neary (1996) in a static framework. In this study,
however, players mix over hawk and deterrence strategies only.

Grossman and Kim (1995) propose a static model of “guns and butter” in
which each party sequentially chooses its defense and offense levels of arma-
ments, before deciding whether or not to go to war. Deterrence results from

2The interested reader can refer to the first chapters of Zagare and Kilgour (2000) for a
more complete review of the works on deterrence by political scientists.
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producing sufficient defensive weapons in the first stage of the game such that
investing in offensive weapons is not worthwhile for the opponent.

This paper proposes a static two-stage general equilibrium model of “guns
and butter” in the spirit of Skaperdas (1992), Hirshleifer (1995), and Neary
(1997), in which two agents choose their armament level in stage one, and
whether to attack their opponent in the second stage. We show that if war entails
enough destruction, then only mix strategy equilibria survive, as in Jackson
and Morelli (2008) and Neary (1996). In our model, as in Neary (1996), agents
mix over two strategies only: deterrence and aggression. As compared to both
Jackson and Morelli (2008) and Neary (1996), we solve the model in a more
general setting. The only requirement regarding the production function in our
model is concavity. Moreover, while the cost of war is exogenous in the model of
Jackson and Morelli (2008), we link it explicitly to the armament levels decided
by the opposing agents in the first stage of the game. A critical implication of
our analysis is that whenever weapons’ production is positive deterrence is not
perfect. In other words, if weapons are produced, there always exists a positive
probability that a war breaks out.

The rest of the paper is organized as follows: in section 2 we present the
model and derive the equilibria under the assumptions of non-destructive and
destructive war, respectively; section 3 concludes by discussing the implications
of our results for the conflict theory literature.

2 The Model

2.1 The Setting

Two risk-neutral agents3 labeled 1 and 2 allocate their resource endowment,
Ri (i = {1, 2}), in guns, Gi, and butter, Xi. The agents’ specific production
technology Ci(Xi) transforms butter into consumables. Guns create no wealth
and their unique role is to improve the likelihood of appropriating the aggre-
gate production in case of a dispute. More specifically, agent 1’s probability of
winning is denoted by p(G1, G2). Agents 1 and 2 interact in a two-stage game.
They allocate their resources between guns and butter in the first stage of the
game. In the second stage, the players observe the output as well as the quantity
of weapons produced and decide whether to wage a war or not. When no guns
have been built, each player keeps his own production. If either player decides
to attack the other the outcome is conflict and the ensuing payoffs are given by:

U1w(G1, G2) = δp(G1, G2)
(
C1(X1) + C2(X2)

)
(1)

U2w(G1, G2) = δ
(
1− p(G1, G2)

) (
C1(X1) + C2(X2)

)
(2)

where δ ∈ [0, 1] is a parameter that captures the destructiveness of war, and the
superscript w stands for war.

3In section 3 we discuss the implications of relaxing the risk-neutrality assumption.
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If, however, both agents choose not to attack each other, the resulting utili-
ties are given by:

U ip(Gi) = Ci(Xi) i = {1, 2} (3)

where the superscript p denotes peace.
We impose the following standard assumptions on the production technol-

ogy:

Assumption 1. Ci(0) = 0 ∂Ci

∂Xi = Ci1 > 0 ∂2Ci

∂Xi∂Xi = Ci11 < 0

where the subscript k denotes the derivative with respect to the kth argument.
Regarding the conflict technology, we restrict the analysis to the class of

functions axiomatized by Skaperdas (1996)4:

p(G1, G2) =
F (G1)

F (G1) +H(G2)
(4)

Moreover, we impose the following assumption on the power functions F (.)
and H(.):

Assumption 2.

{
F1(G1) > 0 F11(G

1)
F1(G1) ≤ 2F1(G

1)
F (G1)

H1(G2) > 0 H11(G
2)

H1(G2) ≤ 2H1(G
2)

H(G2)

Assumption 2 accommodates both convex and concave power functions. In
the convex case, however, it restricts the degree of convexity for large values of
F (.) and H(.). In other words, a powerful agent should not experience too high
marginal increases in power. This assumption is used in Appendix A.1 to show
quasi-concavity of the agents’ war utilities as given by equations (1) and (2).

2.2 Agents’ best responses

The agents optimally allocate their resources to either maximize their expected
payoff of war, or to avoid the onset of a conflict.

The investment in guns and butter for agent 1, conditional on having war in
the second stage of the game, results from the following maximization problem5:

maxG1 δp(G1, G2)
(
C1(R1 −G1) + C2(X2)

)
s.t. 0 ≤ G1 ≤ R1 (5)

Saving on notations, the first derivative with respect to G1 equals:

U1w
1 = p1(C1 + C2)− pC1

1 (6)

In Lemma 4 we show that U1w is quasi-concave in G1. This allows us to
derive agent 1’s optimal war strategy.

4See also Hirshleifer (1991).
5All results in the paper are derived solely for agent 1 for notational convenience.
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Interior solution:
G1w(G2) = G1w

if p1

(
G1w, G2

) [
C1
(
G1w

)
+ C2

(
G2
)]
− p

(
G1w, G2

)
C1

1

(
G1w

)
= 0 (7)

Corner solutions:

G1w(G2) =

{
0 if p1

(
0, G2

) [
C1 (0) + C2

(
G2
)]
− p

(
0, G2

)
C1

1 (0) < 0
R1 if p1

(
R1, G2

) [
C1
(
R1
)

+ C2
(
G2
)]
− p

(
R1, G2

)
C1

1

(
R1
)
> 0

Alternatively, agent 1 can deter his potential opponent. His maximization prob-
lem is then the following:

maxG1 C1(R1 −G1)

s.t.

{
C2(G2) ≥ δ

(
1− p(G1, G2)

) (
C1(G1) + C2(G2)

)
0 ≤ G1 ≤ R1

(8)

Agent 1’s optimal deterrence strategy (superscript d) is therefore given by:

Interior solution:

G1d(G2) = G1d if C2(G2) = δ
(
1− p(G1d, G2)

) (
C1(G1d) + C2(G2)

)
(9)

Corner solution6:

G1d(G2) = 0 if C2(G2) > δ
(
1− p(0, G2)

) (
C1(0) + C2(G2)

)
Agent 1 chooses the utility maximizing strategy between war and deterrence,

for any guns levels of agent 2, G2. Formally:

G1(G2) =

{
G1w(G2) if U1w(G1w, G2) ≥ U1p(G1d, G2)
G1d(G2) otherwise

(10)

In the following two sections we derive the equilibrium results for non-
destructive, and destructive conflicts, respectively.

2.3 Non-destructive war (δ = 1)

In this section we consider war as a zero-sum activity. Under this assumption,
the only cost of conflict to society is represented by the inefficient allocation
of resources to non-productive (war) activities. Indeed, the socially optimal
resource allocation requires that G1 = G2 = 0. In this setting, we show that
the following proposition holds (see Appendix A.2 for a formal proof):

Proposition 1. If conflict is not destructive, the war strategy always dominates
the deterrence strategy.

6Notice that G1d < R1 since C2(G2) > δp(R1, G2)(0 + C2(G2)), ∀G2.
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By the definition of a zero-sum game, if agent 1 prefers war, agent 2 necessar-
ily prefers peace (and vice-versa). Proposition 1 states that both, nevertheless,
prefer war to deterrence. Notice first that, if agent 1 prefers war, by the defini-
tion of the deterrence strategy, agent 1’s optimal deterrence guns level is lower
than his optimal war guns level, while the inverse is true for agent 2. The gains
to agent 1 of reducing his guns investment to the deterrence level do not offset
the foregone expected rewards of war. For agent 2, on the other hand, the bur-
den of the deterring guns investment is too large as compared to the expected
war payoffs.

Since only the war strategies are relevant in the absence of destruction, a
well established result in conflict theory follows (Skaperdas, 1992; Skaperdas
and Syropoulos, 1997):

Proposition 2. If conflict is not destructive, there exists a unique stable pure
strategy war equilibrium.

For the proof see Appendix A.3.
As a consequence of Proposition 1, we obtain in Proposition 2 a standard

result in the conflict literature: at equilibrium the agents invest inefficiently high
amounts of resources in conflict activities and engage in war. Notice, however,
that for particularly poor performing war technologies and/or for production
functions exhibiting high marginal returns, the war equilibrium investment in
guns may be nil for both players. Although such non-militarized war equilibria
may indeed be observed in reality, they are not relevant for the purpose of our
study. Indeed, in such configurations the very definition of deterrence is mean-
ingless. In the following section we therefore restrict the analysis to situations
where undeterred players would invest strictly positive resources in guns.

2.4 Destructive war (δ < 1)

Assuming that war is destructive constitutes perhaps a more realistic hypothesis.
This assumption implies that Proposition 1’s result may not hold anymore.
Indeed, the agents may find it optimal to adopt their deterrent strategy for
some armament levels of the opponent, potentially changing the equilibrium
outcome. The existence of an equilibrium in Proposition 2 has been proved
for the setting in which the only relevant strategy is war. In the following
proposition, we address the equilibrium existence in the present framework:

Proposition 3. If conflict is destructive, an equilibrium always exists.

A formal proof is provided in Appendix A.4.
Having proved the existence of an equilibrium, we investigate the conditions

under which the various equilibria may arise. In particular, we want to isolate
the conditions under which war and deterrence equilibria emerge. A first crucial
qualification of the result in Proposition 3 is provided in the next proposition.

Proposition 4. A pure strategy deterrence equilibrium never exists.
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The proofs can be found in Appendix A.5.
In proposition 1 we show that deterrence strategies are irrelevant when δ = 1.

War destruction creates scope for the deterrence strategy to be relevant for
some armament levels. And yet, a pure strategy deterrence equilibrium never
emerges. The intuition underpinning this result goes as follows. Take any
initial combination of guns (G1o, G2o). For this distribution of power, at least
one agent strictly prefers peace (U ip) to war (U iw) since war is a negative-sum
game. Assume it is agent 1. The optimal level of guns to deter agent 1 are
necessarily lower than G2o. Indeed, agent 2 can cut his expenditure in guns and
still deter agent 1. The reduction in G2 increases agent 1’s war payoff, until war
becomes as attractive as peace to the latter. When agent 1 is made indifferent
between war and peace, it must then be the case that agent 2 strictly prefers
peace to war for this new distribution of power, since conflict is destructive.
This process eventually reduces the guns to a level where at least one player
finds it profitable to play according to his war strategy.

It is noteworthy that the war strategy remains optimal for some armament
levels despite assuming that fighting is destructive. As a consequence, a war
equilibrium may still arise. The next proposition identifies the necessary and
sufficient conditions under which a pure strategy war equilibrium emerges.

Proposition 5. A stable pure strategy war equilibrium exists if and only if
δ > δ.

For a formal proof see Appendix A.6.
The result presented in Proposition 5 is fairly intuitive: a war equilibrium

survives if the associated destruction is sufficiently low. The exact degree of
destructiveness compatible with a war equilibrium depends on the combination
of initial endowments, war technologies and production functions. When fight-
ing is destructive enough, the war equilibrium collapses since at least one agent
finds it optimal to deter his foe. By no means this implies that the deterring
agent devotes no resources to guns. Indeed, he needs to wield enough power
to dissuade any potential aggression. Interestingly, δ needs not be small. In
the perfectly symmetric case7, for instance, even when fighting provokes minor
damages, the war equilibrium collapses.

The findings of this section are summarized in the following theorem which
presents the main result of this paper:

Theorem 1. If aggregate spending in guns is strictly positive, war always occurs
with positive probability.

This result follows directly from Propositions 2, 3, and 4. Indeed, Proposi-
tion 2 ensures that when fighting is not destructive, war is the unique equilibrium
of this game. Moreover, Propositions 3 and 4 imply that even highly damaging
fighting cannot sustain peace as an equilibrium. For relatively low levels of de-
struction (δ ≥ δ), Proposition 5 shows that war is an equilibrium. Finally, the

7By perfect symmetry we assume that agents are symmetric in their endowment, war
technology, and production technology.
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only compatible equilibrium with relatively high levels of destruction (δ < δ),
is a mixed strategy equilibrium where agents mix over their war and deterrence
strategies. War thus occurs with a positive probability for any destruction level.

A straightforward implication of Theorem 1 is that if war entails relatively
large levels of destruction (δ < δ), a scenario in which both agents choose their
deterrence guns level in the first stage occurs with a positive probability. When
this materializes, both agents own sufficient guns to deter one another, while
none finds it optimal to initiate a war. An armed peace equilibrium results.

3 Concluding remarks

In this paper, we build a general equilibrium model of “guns and butter” in
which we consider the often neglected deterrence strategy. We show that war
is the only equilibrium outcome whenever fighting entails limited destruction.
If, however, the losses associated to war are sufficiently large, only mixed strat-
egy equilibria survive. Agents then follow the deterrent strategy with some
probability and the war strategy with the complementary probability.

The assumption supporting the mixed strategy equilibrium, namely that
war is destructive, is almost a pleonasm. In addition to the loss of assets, war
also entails other direct costs (e.g. casualties, diseases, decline in productivity,
uncertainty). The literature on conflicts is well aware of these costs (Garfinkel
and Skaperdas, 2007; Blattman and Miguel, 2008). And yet, some relevant
contributions to conflict theory, although assuming war is destructive, fail to
consider the deterrence strategy. In other words, in these models when agents
decide to arm, they are implicitly assumed to go to war in the second stage of
the game (e.g. Garfinkel and Skaperdas, 2000).

Alternative consequences of war may create the sufficient gap between the
aggregate production under peace and war for deterrence to occur (δ < 1).
If, for instance, the trade volume between the two potential foes is negatively
affected from war, as argued in the literature (Polachek, 1997; Dorussen, 1999),
then both agents might refrain from attacking their commercial partner while
maintaining the optimal armament level to deter one another. Complementarity
in production leads to the same conclusions.

Lastly, assuming risk averse agents creates the necessary disparity in returns
to obtain deterrence, as they prefer the certain outcome under peace to the
risky bet of war. Therefore, explicitly considering the deterrence strategy in
models like the ones of Skaperdas (1991) and Skaperdas and Gan (1995) would
probably broaden the scope of their analysis.
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A Appendix

A.1 Quasi-Concavity of U1w

Regarding quasi-concavity, we closely follow the steps of Skaperdas (1992), and
Skaperdas and Syropoulos (1997); we use Lemmas 1- 3 to establish Lemma 4
that guarantees quasi-concavity of U1w.

Lemma 1. Under Assumption 1, p11p ≤ 2(p1)2

Proof. We shall make extensive use of p as given by (4), and to economize
notation we do not write the F and H functions’ arguments. Deriving (4) yields
the following results:

p1 =
F ′H

(F +H)2
=
F ′

F
p(1− p) (A-1)

p11 =
(F ′′p(1− p) + p1F

′(1− 2p))F − (F ′)2p(1− p)
F 2

=
FF ′′p(1− p)

F 2
− 2p2(1− p)(F ′)2

F 2

Thus, p11p ≤ 2(p1)2 can be written as:

FF ′′ ≤ 2(F ′)2

And this last inequality is necessarily true by Assumption 1.

Lemma 2. Under Assumption 2, −p22(1− p) ≤ 2(p2)2

Lemma 2 can be proved along the lines of Lemma 1’s proof.

Lemma 3. U1w
11 < 0 if U1w

1 ≤ 0

Proof. If U1w
1 < 0, the first order condition (6) can be written as:

p1(C1w + C2)
p

< C1w
1

Replacing this term in U1w
11 which is obtained by using (6):

U1w
11 = p11(C1w + C2)− 2p1C

1w
1 + pC1w

11 (A-2)

This eventually gives us:

U1w
11 <

C1w + C2

p

[
p11p− 2(p1)2

]
+ pC1w

11

Because of the production function’s concavity, a sufficient condition for estab-
lishing the result is therefore that p11p ≤ 2(p1)2, which is shown in Lemma 1.
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Lemma 4. U1w
11 < 0 ,∀G2

Proof. Denote by Ḡ1 the smallest value of G1 such that U1w
1 (G1) < 0. By

Lemma 3 we can directly deduce that U1w
1 (G1) < 0, ∀G1 ≥ Ḡ1. To establish

the present Lemma’s result, we thus need that U1w
1 (G1) ≥ 0 ,∀G1 < Ḡ1, which

is necessarily true since if there exists some G1
′

< Ḡ1 such that U1w
1 (G1

′

) < 0,
then Ḡ1 is not the smallest value of G1 such that U1w

1 (G1) < 0.

A.2 Proof of Proposition 1

Proof. Assume 1 wants to deter 2. Then:

δp(G1w, G2)(C1w + C2) < C1p (A-3)

The deterrent levels of guns for 1 must satisfy the following expression:

δ
(
1− p(G1p, G2)

)
(C1p + C2) = C2 (A-4)

which can be re-written as:

p(G1p, G2)(C1p + C2) = C1p + C2 − C2

δ
(A-5)

And since G1w is the argmax of U1w, it is necessary that the next expression
be true:

p(G1w, G2)(C1w + C2) ≥ p(G1p, G2)(C1p + C2) (A-6)

Combining these results yields:

p(G1w, G2)(C1w + C2) > δp(G1w, G2)(C1w + C2) + (1− 1/δ)C2 (A-7)

which cannot be true if δ = 1.

A.3 Proof of Proposition 2

Existence:

Lemma 5. Under Assumptions 1 and 2, a pure strategy equilibrium always
exists.

Proof. For the existence part of Proposition 2, we need that the strategy set
of each player is compact and convex, and that each player’s utility function is
continuous in all the players’ strategies, and quasi-concave in his own strategy.

¿From player 1’s viewpoint (an analogous reasoning may be carried for player
2), the compactness and convexity of the strategy set is a direct consequence of
G1 ∈ [0, R1], while the continuity of U1w follows from the continuity of p and
C1.

The above results together with Lemma 4 complete the proof of Lemma 5.
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Uniqueness:

Lemma 6. Provided an equilibrium exists, it is unique and stable.

Proof. We first prove that if an interior equilibrium exists, it is the unique
stable equilibrium. We then show that if no interior equilibrium exists, the
unique stable equilibrium (G1∗, G2∗) is such that either G1∗ = 0 or G1∗ = R1.

To show the uniqueness of an interior equilibrium it is sufficient to prove
that the composite function Γ1(G1) = G1(G2) ◦G2(G1) is continuous, singled-
valued, and that whenever it admits a fixed point, ∂G1w/∂G2 · ∂G2w/∂G1 < 1.
Continuity and single valuedness of Gi(Gj) follow from the continuity of U1w

in G1 and G2, and from the quasi-concavity of U1w in G1.

Lemma 7. U1w
1 = 0 ⇒ ∂G1w/∂G2; U2w

2 = 0 ⇒ ∂G2w/∂G1 = 0

Proof. By using the implicit functions theorem on G1(G2) and on G2(G1), we
obtain the two following equations:

∂G1w

∂G2
= −U

1w
12

U1w
11

∂G2w

∂G1
= −U

2w
12

U2w
22

We construct the reasoning for U1w
12 alone since the proof follows the same

lines for U2w
12 . By using U1w

1 as given by Equation ( 6), we can obtain the
following term:

U1w
12 = p12(C1w + C2)− p1C

2
2 − p2C

1w
1 (A-8)

Given, however, that we assume we are at the equilibrium, and superscripting
the equilibrium variables by a star, we must have by Equation (6) and by an
analogous reasoning for agent 2 that the two next equalities hold:

C1w∗
1 =

pw∗1 (C1w∗ + C2w∗)
pw∗

C2w∗
2 = −p

w∗
2 (C1w∗ + C2w∗)

1− pw∗

Replacing these two optimality conditions in (A-8) yields:

U1w
12 = pw∗12 (C1w∗ + C2w∗) +

pw∗1 pw∗2 (C1w∗ + C2w∗)
1− pw∗

− pw∗1 pw∗2 (C1w∗ + C2w∗)
pw∗

Which, rearranged, gives:

U1w
12 =

C1w∗ + C2w∗

pw∗(1− pw∗)

[
pw∗(1− pw∗)pw∗12 + pw∗1 pw∗2 (2pw∗ − 1)

]
The square bracketed term, however, can be shown to be nil. Indeed, setting

the bracketed term equal to zero and re-arranging it, we obtain:

− p
w∗pw12
pw∗1 pw∗2

=
2pw∗ − 1
1− pw∗

(A-9)

It can be shown that:
p12

p2
=

(1− 2p)F1

F

Replacing p12/p2 and p1 as given by (A-1) in the LHS of (A-9) establishes the
result.

11



Assume a unique stable interior equilibrium exists. This implies that if
(
0, G2(0)

)
and/or

(
R1, G2(R1)

)
are equilibria, then they are not stable. Indeed, ifG1(G2(0))

= 0, then ∂G1

∂G2 |G1=0
> 1. Similarly, if G1(G2(R1)) = R1, then ∂G1

∂G2 |G1=R1 > 1.
If, instead, a stable interior equilibrium does not exist, we have three po-
tential cases. If G1(G2(0)) = 0 and G1(G2(R1)) < R1, then ∂G1

∂G2 |G1=0
<

1. If G1(G2(0)) > 0 and G1(G2(R1)) = R1, then ∂G1

∂G2 |G1=R1 < 1. Lastly,

if G1(G2(0)) = 0 and G1(G2(R1)) = R1, then either ∂G1

∂G2 |G1=0
< 1 and

∂G1

∂G2 |G1=R1 > 1 (implying (R1, G2(R1)) is a non-stable equilibrium), or ∂G1

∂G2 |G1=0

> 1 and ∂G1

∂G2 |G1=R1 < 1 (implying (0, G2(0)) is a non-stable equilibrium).

A.4 Proof of Proposition 3

Proof. We construct this proof for agent 1 alone since it extends straightfor-
wardly to agent 2.

To establish the equilibrium existence we apply Kakutani’s fixed point the-
orem to the correspondence Γ1 = G1(G2) ◦G2(G1).

Notice first that the strategy set, G1 ∈ [0, R1], is non-empty, compact, and
convex.

To prove the continuity of Γ1 it is sufficient to show thatG1(G2) is continuous
on the interval [0, R2]. From ( 10) we know that G1(G2) is either equal to
G1w(G2), or to G1d(G2).

Regarding G1w(G2), it is non-empty ∀G2 ⊂ [0, R2]. Moreover, G1w(G2)
is continuous on [0, R2] if U1w(G1, G2) is continuous in (G1, G2) and quasi-
concave in G1w. The continuity and quasi-concavity proofs can be found in
Appendices A.1 and A.3.

Regarding the deterrent strategy G1d(G2) it is also non-empty ∀G2 ⊂ [0, R2].
To prove continuity of G1d(G2) we apply the implicit functions’ theorem on the
implicit function ϕ(G1d, G2). This theorem states that if:

1. ϕ(G1d, G2) = 0,

2. ϕ(G1d, G2) is continuous,

3. ∂ϕ(G1d, G2)/∂G1d 6= 0 at G1d = Ĝ1,

4. ϕ(G1d, G2) has continuous first partial derivative with respect to G1d in a
neighborhood Ĝ1,

then G1d(G2) is continuous in G2.
Denote ϕ(G1d, G2) = C2(G2)− δ

(
1− p(G1d, G2)

) [
C1(G1p) + C2(G2)

]
= 0.

Notice that ϕ(G1d, G2) is continuous as each of its components is continuous.
Moreover ∂ϕ(G1d, Gj)/∂G1d is given by the following expression:

∂ϕ(G1d, G2)
∂G1d

=
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δ
(
p1(G1d, G2)

[
C1(G1d) + C2(G2)

]
−
(
1− p(G1d, G2)

)
C1

1 (G1d)
)
> 0

since p1 > 0 and C1
1 < 0.

Continuity of ∂ϕ(G1d,G2)
∂G1d follows from the continuity of all the elements.

G1(G2) is continuous in G2 because both G1w(G2) and G1d(G2) are continuous
in G2 ∈ [0, R2], and because G1(G2) = λG1d(G2) + (1 − λ)G1w(G2), ∀G2 s.t.
U1d(G1d(G2), G2) = U1w(G1w(G2), G2), ∀λ ∈ [0, 1].

To complete the proof, the convex-valuedness of Γ1 still needs to be estab-
lished. Since both G1(G2) and G2(G1) have been shown to be convex-valued,
Γ1 is necessarily convex-valued.

A.5 Proof of Proposition 4

Proof. Suppose a pure strategy deterrent equilibrium (G1d∗, G2d∗) exists. By
the definition of such an equilibrium, it is necessary that:

C1(G1d∗) > δp
(
G1w(G2d∗), G2d∗) (C1(G1w(G2d∗)) + C2(G2d∗) (A-10)

Moreover, by the definition of a deterrent equilibrium, G2d∗ is such that the
following equation must hold:

C1(G1d∗) = δp
(
G1d∗, G2d∗) (C1(G1d∗) + C2(G2d∗)

)
(A-11)

Combining those two expressions we obtain:

p
(
G1d∗, G2d∗) (C1(G1d∗) + C2(G2d∗)

)
>

p
(
G1w(G2d∗), G2d∗) (C1(G1w(G2d∗)) + C2(G2d∗) (A-12)

which contradicts G1w(G2) being the argmax of U1w.

A.6 Proof of Proposition 5

Proof. We first prove the ⇒ part.
Take δ1 : C1

(
G1d(G2w∗)

)
= δ1p(G1w∗, G2w∗)

(
C1(G1w∗) + C2(G2w∗)

)
. Such

a δ1 exists and is unique. Indeed, when δ = 0,

C1
(
G1d(G2w∗)

)
> δp(G1w∗, G2w∗)

(
C1(G1w∗) + C2(G2w∗)

)
Moreover, by Proposition 1, if δ = 1, then U1w∗ ≥ U1d. Since C1(.) is continu-
ous, δ1 exists.

To show uniqueness it is sufficient to prove the monotonicity of
∂(U1d−U1w∗)

∂δ .
Notice that G1d is implicitly defined as follows:

C2(G2) = δ
(
1− p(G1d, G2)

) (
C1(G1d) + C2(G2)

)
We thus obtain that ∂G1d/∂δ > 0, which implies that ∂C1(G1d)/∂δ < 0. More-
over, using equation ( 1) we deduce that ∂U1w/∂δ > 0, thus implying that
∂
(
U1d − U1w∗) /∂δ < 0, ∀δ.
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If C2
(
G2d(G1w∗)

)
≤ δ1

(
1− p(G1w∗, G2w∗)

) (
C1(G1w∗) + C2(G2w∗)

)
, then

δ = δ1.
Otherwise, following the above reasoning, there exists a unique δ2 = δ, with

δ2 > δ1, and such that:

C2
(
G2d(G1w∗)

)
= δ2

(
1− p(G1w∗, G2w∗)

) (
C1(G1w∗) + C2(G2w∗)

)
We can therefore conclude that there exists a unique δ = max

{
δ1, δ2

}
.

The ⇐ part is straightforward. War being an equilibrium implies:

C1
(
G1d(G2w∗)

)
≤ δp(G1w∗, G2w∗)

(
C1(G1w∗) + C2(G2w∗)

)
(A-13)

C2
(
G2d(G1w∗)

)
≤ δ

(
1− p(G1w∗, G2w∗)

) (
C1(G1w∗) + C2(G2w∗)

)
(A-14)

Reduce the value of δ until either expression (A-13), or expression (A-14) (or
both) hold with equality, and denote this δ as δ

′
. Any δ < δ

′
makes the pure

strategy war equilibrium collapse. Setting δ = δ
′

completes the proof.
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